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The observation by Klauder that in the space of the a = (1/ vl2) (p + iq) variables the Feynman 
integral can be defined in terms of a Gaussian measure, forms the basis of a prese~tation of the 
Feynman formulation of nonrelativistic quantum mechanics. The extension of this formulation 
to the case of a Bose field is sketched. 

INTRODUCTION 

T~E alternate appro~c~ to quantum mechanics 
gIven by Feynman' has a great deal of 

intuitive appeal as it makes clear, ab initio, the 
logical structure of quantum mechanics.3 It also 
makes clearer the nature of the limiting situation 
encompassed by classical mechanics.4 Moreover, it 
may be the case that this particular formulation is 
somewhat more general than the "historical" one 
based on the correspondence between observables 
and linear self-adjoint operators and states to vectors 
in Hilbert space. 

* This work is supported in part through AEC Contract 
AT(3O-1)-209S, by funds proVided by the U. S. Atomic 
Energy Commission, the Office of Naval Research, and the 
Air Force Office of Scientific Research. 

t Permanent address: Department of Physics, Brandeis 
University, Waltham, Massachusetts. 

iR. P. Feynman, Ph.D. dissertation, Princeton University 
( 1942). 

2 R. P. Feynman, Revs. Modern Phys. 20, 367 (194S). 
3 R. P. Feynman, "The Concept of Probability in Quantum 

Mechanics" in Proceedings of the Second Berkeley Symposium 
on Mathematical Statistics and Probability (University of 
California Press, Berkeley, California, 1954). See also A. R. 
Hibbs in M. Kac, Probability and Related Topics in Physical 
Sciences (Interscience Publishers, Inc., New York, 1959). 

• See in this connection P. A. M. Dirac, Physik Z. Sow­
jetunion 3,64 (1933) and Revs. Modern Phys. 17, 195 (1945), 
as well as the interesting article by E. T. Whittaker, Proc. 
Roy. Soc. (Edinburgh) A, 61, 1 (1941). 

In Feynman's formulation of the quantum dy­
namics for a one-particle system, a prescription is 
given for the calculation of the transformation 
function (q"t" I q't') (the absolute value squared 
of which gives the probability density for the 
particle, 'whose dynamics is described by a Hamil­
tonian operator H, to be found at the position 
q" at time t" if its initial position at time t' was q') 
by assigning a complex probability amplitude to 
each space-time path starting at q' at t' and ending 
at q" at t". To the space-time path q(t) [with 
q(t') = q' and q(t") = q"J Feynman associates the 
complex amplitude <P 

<P [path q(t)] = exp [~{" L(q(t), q(t)) dt], (la) 

where L(q(t), q(t)) is the classical Lagrangian for 
the particle. In the right-hand side of Eq. (Ia), 
the action 

l[o(')I(t", t') = {" L(q(t) , q(t)) dt (lb) 

is evaluated for the particular path q(t) under 
consideration. The amplitude (q"t" I q't') is then 
obtained as the sum of the amplitudes <P over all 
paths joining q't' to q"t" and is usually written 
in the form 
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(q"t" [ q't') = J ... J ~[q(t)J 
X exp [~ {" L(q(t), ri(t» dt J (2) 

In order for Eq. (2) to provide a practical alter­
native formulation of quantum mechanics, it is 
necessary to make more precise the concept of inte­
gration over paths involved therein. Thus Feynman1 

interprets Eq. (2) as follows: Divide the time interval 
t" - t' into N equal parts of duration E = (t" - t')/N 
and denote the successive times by to = t', tl, ... , 
tN = t", with t;+1 - ti = E. A path q(t) is specified 
by the sequence of points qo = q(to), .,. qk = 
q(tk ), • " • In the limit as N -7 co, E -7 0 but N E = 
t" - t', this sequence is expected to approximate 
the path q(t). It is then assumed that the motion 
in the time interval tk to tk+1 is described by the 
classical path joining qk to qk+l' The action associated 
with this segment is 

as well as the composition law 

(q"t" [ q't') = J (q"t" ! q"'t''') 

X (q"'t'" I q't') dq"'. (7) 

These results are identical to those obtained by 
computing 

(q"t" I q't') = (q" lexp [-(i/n)H(t" - t')] I q'), (8) 

where H is the Hamiltonian operator for the system. 
If one does not wish to use this "Riemann" 

approach to the Feynman integral but instead tries 
to adopt Eq. (2) as the defining equation for quantum 
mechanics, one is then faced with two problems. 
The first consists in giving a precise specification 
of the class of paths over which to integrate. The 
"ansatz" of Feynman5 essentially specifies this set 
to be the class of all continuous functions con­
necting (q't') to (q"t"). Although in the case of a 
single particle this prescription is evidentally suf­

S(qk+l' qk) = jtH"ak+' L(q(t), ri(t» dt. 
t l;'(lk 

(3) ficient, if one wishes to incorporate the Bose or 
Fermi statistics within the Feynman formalism 
when describing a system of identical particles, 
classes of "unruly" histories must also be con­
sidered.6 The second difficulty is connected with 
the fact that in evaluating the right-hand side of 

Since in (3) the integration is carried out over the 
classical path joining qk to qk+lJ for E small enough 
S will only depend on qk+l and qk' The amplitUde 
~[q(t)] associated with the path q(t) is then written 
as ~(qo, '" qN) with 

1 [. N-l jtk+,.Okh ] 
~(qo. '" qN) = ffi' exp ~ L L dt 

vL Itt k=O tk,qk 

(4) 

where ;rr and Ak are normalization factors. The Ak 
are actually independent of the particular path 
qk to qk+l and depend only on the mass of the 
particle and the time inteval. The Feynman principle 
[Eq. (2)] is then interpreted as stating that 

(q" t" I q't') 

lim J ... J IT exp [is(qk+l, qk)] d
A

qk . (5) 
E-O k=D k 

Nf.=t"-t' 

Feynman2 has shown that for any Lagrangian of 
the form L = ! m(/ - V1(q)ri - V 2 (q), the trans­
formation function defined by the right-hand side 
of Eq. (5) satisfies for t" ~ t' the Schrodinger 
equation 

{in at" - H(q", -in aq")}(q"t" [ q't') = 0 

H(q, p) = pq - L; p = aL/aq, 

and the initial condition 

lim (q" t" I q't') = B( q" - q') 
."----.t" 

(6a) 

(6b) 

(6c) 

Eq. (5) one encounters non convergent integrals of 
the form 

L+ooOO exp (i:/) dx. 

To give meaning to such integrals, Feynman gives 
the mass m of the particle a small negative imaginary 
part -iE. The rule is then that one is to pass to the 
limit E -7 0+ after all the integrations have been 
carried out. More generally, one can try to replace 
the factor i in the exponent by a parameter A = 
- E + i and take the limit E -7 0+ after the com­
putations or, better still, note the analyticity 
properties of the Feynman integral as a function 
of A and attempt an analytic continuation to A = i. 
It is, however, not clear whether either of these 
procedures works in genera1.7 This lack of absolute 
convergence also implies that mathematical dif­
ficulties are encountered in trying to give a rigorous 
meaning to the Feynman integral in terms of a 
measure over a suitably defined function space (i.e., 
in the space of paths). 

6 See in this connection K. O. Friedrichs, Integration of 
Functionals (New York University Institute of Mathematical 
Sciences, New York, 1957). 

6 J. R. Klauder, Ann. Phys. (New York) 11, 123 (1960). 
7 See in this connection the review article by 1. M. Gel'fand 

and A. M. Yaglom, J. Math. Phys. 1,48 (1960) . 
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It has been noted by Klauder,6 that this last 
difficulty is not encountered if, instead of dealing 
with the observable q of the particle, one deals with 
the non-Hermitian variables a = (1/ V2)Cq + ip) 
and a* = (1/ V2)(q - ip). These variables define 
a realization of Hilbert space in terms of entire 
analytic functions. This has been investigated in 
detail by Bargmann.s We shall, in the following 
exposition, establish the Feynman formalism in 
terms of the a variables, using the work of Bargmann 
as a basis. Thus, in Sec. II we review the necessary 
mathematical background. In III we derive the 
transformation function for the a variables. In 
IV we give a statement of the Feynman principle 
in terms of these variables. The extension of this 
method to the case of Bose fields is then established 
in Sec. V. In Secs. I-IV we shall limit ourselves 
to the case of a single nonrelativistic particle with 
one degree of freedom. These results can be easily 
generalized to the case of a finite number of degrees 
of freedom and to any finite number of particles. 

II. THE HILBERT SPACE OF ENTIRE FUNCTIONS 

In the usual formulation of quantum mechanics 
in the Heisenberg picture, a particle (with one 
degree of freedom) is described by a time inde­
pendent state vector I'l!) and by the Hermitian 
operators q(t), pet) corresponding to the position 
and momentum observables. These operators obey 
the commutation rules 

[q(t) , pet)] 

[q(t) , q(t)] 

i (n = 1), 

[P(t) , pet)] = O. 

(9a) 

(9b) 

The dynamical behavior of the system is determined 
by the equations of motion of these operators 

i a,q(t) 

i a/pet) 

- [q(t), H], 

-[pCt), ll], 

(lOa) 

(11) 

where H is the Hamiltonian operator. The Schro­
dinger wave function if,t(q', t) is given by the pro-

s V. Bargmann, Commun. Pure and App!. Math. 14, 187 
(1961). Such Hilbert spaces of analytic functions have also 
been considered by 1. E. Segal in his lectures at the University 
of Colorado during the summer of 1960. J. Schwinger has made 
extensive use of such non-Hermitian variables see, e.g., 
"Differential Equations of Quantum Field Theory" lectures 
by J. Schwinger, given at Stanford during the summer of 1957. 
(unpublished). The first use of such non-Hermitian variables 
is due to V. A. Fock, Z. Phrsik. 49, 339 (1928) and Physik. Z. 
Sowjetunion 6, 425 (1934). For the applications of related 
methods to problems in functional integration in field theory 
see also the review article by J. V. Novozilov and A. V. Tolub, 
Fortschr. Physik 6, 50 (1958). See also J. Schwinger, Proc. 
Nat!. Acad. Sci. U. S. 46, 1401 (1960). I am indebted to 
Professor Schwinger for a personal communication regarding 
this work which contains material related to the present 
investigation. 

jection of I'l!) on the eigenvectors Iq', t) of the 
position operator q(t): 

if,t(q', t) = (q', t 1 'l!), (12a) 

with 

q( t) I q', t) = q' I q', t), (12b) 

f Iq', t) dq' (q', tl = 1. (12c) 

The vectors Iq"t') and Iq"t") at times tf and t" are 
related by a unitary operator UCt', t") 

(q", t"/ = (q", t'/ U(t", tf). (13a) 

For a conservative system, as the one under con­
sideration, H does not depend on the time ex­
plicitly and is, in fact, constant in time. In this 
case, the time translation operator U is given by 

U(t", tf) = e-iH(t"-"l. (13b) 

We are interested in computing the transformation 
function 

(q" t" 1 q't') = (q", t" I U( t", t') 1 q', t') 

= (q" le- iHC
'''-'') I q'), (14) 

which corresponds to the probability amplitude for 
the system to undergo a transition from the initial 
state Iq') at time t' to the state Iq") at time t". 
The time evolution of the system arising from an 
initial configuration if,t(q', t') can then be calculated 
as follows: 

(q" t" I ':It) = y..( q", t") 

= J (q"t" / q't') dq' (q't' I ':It). (15) 

To indicate the correspondence of the usual 
formulation of quantum mechanics with the Feyn­
man prescription for computing the propagator 
(q"t" I q't'), subdivide the time interval t" - t' 
into N + 1 equal time intervals of duration € and 
repeatedly insert the completeness relation (12b) 
to obtain 

(q"t" I q't') = f '" f dql '" dq,v (q" le-m'l q,v) 

< I -iH'1 > < I -iT"1 ') q,v e q,v-l' .. ql e q. (16) 

In the limit as N ---+ OJ, it can be shown9 that for 
a suitable class of Hamiltonian Eq. (16) reduces to 
Eq. (5), the Feynman definition of the transforma­
tion function. This approach, however, suffers from 
the difficulties mentioned above, namely, that one en-

9 See, for example, W. Tobocman, Nuovo cimento (10), 3, 
1213 (1956). 
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counters integrals of rapidly oscillating functions, 
which in general will not be convergent, and it is 
necessary to resort to certain devices such as con­
sidering the mass m of the particle to have an 
imaginary part and to carry out the limiting pro­
cedure of allowing this imaginary part to go to 
zero only after all the integrations have been 
performed. 

In the above, the resolution of the identity cor­
responding to the position operator has been made 
use of and some of the convergence difficulties en­
countered with the Feynman integral can be traced 
to this decomposition. It is, of course, true that it 
is in terms of such a decomposition that the integral 
over paths has its most intuitive meaning. It turns 
out however that some of the convergence difficulties 
are alleviated if instead of the complete set Iq', t'), 
one considers the set of eigenvectors la', t') corre­
sponding to the operator 

aCt) = (1/ V2) (q(t) + ip(t)}. (I7a) 

The properties of this operator and of its adjoint 

a*(t) = (I/ v2) (q(t) - ip(t)} (17b) 

which will be needed are the following: First that 
aCt) is not a Hermitian operator; it is not even a 
normal operator since from the commutation rules 
(9) for pet) and q(t) we deduce that 

[a(t),a*(t)] = 1, 

[a(t), aCt)] = [a*(t) , a*(t)] = O. 

U8a) 

(I8b) 

From these commutation rules one verifies in a well­
known fashion that the positive semidefinite ~perator 

N(t) = a*(t)a(t) (19) 

has as its eigenvalues the positive integers and zero: 

N(t) In, t) = n In, t), 

with 

n = 0, 1,2, (20a) 

In, t) = (n!)-1I2{a*(t)}" 10), (20b) 

and where 10) is the "no-particle" state charac­
terized by 

aCt) 10) = o. (21) 

An explicit representation of the operators aCt) and 
a*(t) is given by 

aCt) In, t) = n1/2 In - 1, t), (22a) 

a*(t) ! n, t) = (n + 1)1/2 In + 1, t). (22b) 

The eigenfunctions of the operator aCt), la', t), can 
be expressed in terms of the basis vectors In, t) 
as follows: 

00 

la', t) = L (n!)-1/2a ,n In, t) 

= ea'a.(t) 10). (23) 

In the right-hand side of Eq. (23) a' can take on 
all complex values. One verifies, using Eq. (22a), 
that the so-defined vector la', t) has the property that 

aCt) Iz, t) = z Iz, t). (24) 

In view of the fact that the eigenvalue z can take 
on all complex values we must be careful in defining 
the adjoint vector to Iz). This question does not 
arise in the case of eigenfunctions of Hermitian 
operators since their eigenvalues are real. We define 
the adjoint of the vector Iz) by using the defining 
equation, Eq. (23), i.e., we definelo 

00 

(Iz', t»* = L(n!f
I/2

I
n 

(n, tl = (01 exp [Ia(t)] (25a) 
n=Q 

== (z', tl. (25b) 

Note that we write (z', tl even though it is I which 
appears in the right-hand side of Eq. (25a),10 By 
the vector (1, tl we mean 

'" 
(I, tl = L (n!)-1I2z,n (n, tl· (26) 

n-O 

The vector (z', tl is a left eigenvector of the operator 
a*(t) with eigenvalue z'. These vectors are not 
normalized, nor are they orthogonal for different 
values of z' and z" since 

'" 
(z' I z") = L (n! m!)-1/2I

n
z"m(n I m) 

n,m=O 

co In f,n 

= L ~ = exp [/z"] , 
n~O n! 

(27a) 

or alternatively 

(z' I z") = (01 exp [Z'a(t)] exp [z"a*(t)] 10> 

= exp [/z"J (01 exp [z"a*(t)] exp [Z'a(t)] /0) 

= exp [/z"]. (27b) 

The specification of an arbitrary normalizable vector 
If) by its components along the "axes" specified by 
the vectors Iz) is then given by the quantities 

00 

fez) = (z I f) = L (n!)-1/2zn (n I f). (28) 
n-O 

The expansion (28) defines an analytic function of 
the complex variable z. Since Eq. (28) is defined for 
all values of the complex variable z, it in fact defines 
an entire analytic function. The vector space I/(z)}, 

10 z denotes the complex conjugate of z, i.e., z = x - iy. 
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whose elements are entire analytic functions, can Their completeness is verified by noting that if fez) 
be made into a Hilbert space, JeB , by defining on is given by Eq. (32a) then 
it the following Hermitian scalar product 

(m I f) = (Urn, f) = am, (36a) 

(f I g) = J dp.(z) fCz) g(z) == (f, g), (29) so that 

where dp.(z) is the following real measure (z = x + iy) 

dp.(z) = O/1r) exp (-zz) dx dy. (30) 

In (29) the integration is carried out over all values 
of x and y; explicitly 

I1f+ 00 

-(t I g) =;: -00 dx dy exp (-zz) fez) g(z). (31) 

Bargmann 8 has made a detailed study of this 
(separable) Hilbert space of entire functions, as 
well as some of its applications to quantum me­
chanics and group theory. We here collect the 
formulas that will be of relevance for our exposition. 

If fez) and g(z) are two entire functions with the 
following pov,'er-series expansions 

00 

fez) = L an n 

n~O (nl)V2 z , (32a) 

00 

g(z) = L f3n n (32b) (1)'/2 z , 
n~O n. 

(f, f) = L amam = L (f, Um)(Um, f)· (36b) 
m m 

These facts are essentially a reflection of the com­
pleteness of the eigenfunctions of the number 
operator a*a. Within JeB the operators a and a* 
have the following representation 

(f, a* g) = J d)J.(z) fez) zg(z) , (37a) 

(f, ag) = f dp.(z) .fCz) d~~) , C37b) 

i.e., the operator a* corresponds to multiplication 
by z, and a to differentiation by d/ dz. The latter 
operation is of course well defined, since the ele­
ments of JeB are entire analytic functions. 

The following useful bounds on Jj(z)1 can be obtained 
by applying Cauchy's inequality to the right-hand side 
of the expression 

then and yields 

The integrations can be carried out by introducing 
polar coordinates, z = Izl e'''', z = Izl e- i

"" in which 
case 

In (33), the angular integration vanishes unless 
n = m, so that 

(34) 

The square of the norm of the vector If) is thus 
given by 

00 

IIfl12 = (f I f) = L la"l" < OJ (35) 
71=0 

From the above, one readily deduces that zm (m 
integer) is orthogonal to zn (n, integer), and that the 
vectors 1m) with components (z I m)=um(z) =zmjml, 
m = 0, 1, 2, '" form an orthonormal basis in JeB • 

< IlfWe'z 

so that 

If(z) I < Ilfll exp [(Ij2)zz]. 

By applying this inequality to the difference of two functions 

If(z) - g(z) I < exp [(lj2)zz] Ilf - gil 
one infers that the strong convergence in :lCB implies ordinary 
point-wise convergence on bounded sets. However the 
condition 

[f(z)i < I!fll e(J/2)lzl' 

is not sufficient to guarantee that the vector If ) is in :leB • 

The condition 

If(z) I < C exp [(A 2 j2)zz] 

turns out to be sufficient.s Calling h(z) = f(l\z), it can be 
showns that if Ilhll < C for alll\ such that 0 < l\ < 1, then 
If ) is an element of :lCB and 

lim Ilf - fxll ~ 0. 
x~, 

Consider next the mapping of the vectors If) 
on the complex-valued functions fez) such that 
A, Ii,) + A2 I f2) is mapped into "Ad,(z) + Ad2(Z) 
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for every If), Ifl), If2) in Je and every complex 
number A. If we denote this mapping by T., i.e., 

T. If) = f(z) , (38a) 

then T. is a linear functional on Je. By Riesz' 
theorem, it must be of the form 

T. If) = fez) = (e., f). (38b) 

Using Eq. (28) and the definition of the scalar 
product Eq. (29), we infer that Ie.) = Iz) and 

(z lea) = ea(z) = exp (liz), (39a) 

or equivalently 

(ea , eb) = exp (a b) . (39b) 

Equation (39a) implies that 

f(a) = (ea, 1) = I dJJ.(z) exp (liz)f(z) 
(40) 

= I dJJ.(z) exp (az)f(z) 

In other words exp (az) acts like a delta function 
in the Hilbert space of entire analytic functions. 
Although neither orthogonal nor normalized [see 
Eq. (39b)], the vectors lea) are complete in the 
sense that 

(f I g) = I (1 lea) dJJ.(a)(ea I g). (41) 

The proof is immediate since 

(42) 
and 

(ea I g) = g(a), (42b) 

so that Eq. (41) reduces to the definition of the 
scalar product. The completeness relation is ex­
hibited in another fashion by the assertion that the 
operation of taking the trace of an operator A can 
be accomplished by the operation J dJJ.(a') (a' IAI a'), 
i.e., 

= 211" o(a) 0(/3), 

(44b) 

(44 c) 

the familiar result. In (44b) the factor exp (-la'[2) 
from the measure element dJJ.(a) canceled the factor 
exp la,[2 = Ca' I a'). 

We conclude this section by exhibiting the unitary 
operator (z I q) which maps JeB on the Hilbert 
space of configuration space wave functions [i.e. 

(2) , 

L (- 00, +00)]. If we call (q I ~) = if;(q), and to 
avoid confusion, (z [ ~) = fez) we then wish to 
exhibit the kernel 

(z I q) = A(z, q), 

having the property thatll 

fez) = I A(z, q)if;(q) dq, 

if;(q) = I A(z, q)f(z) dJJ.(z) , 

(45) 

(46a) 

(46b) 

and guarantees that IIfil = IIif;II and that the map 
is one-to-one. The conditions on the kernel A (z, q) 
which ensure that these requirements are satisfied 
are that 

I dq A(z, q) A(z, q) = exp (z'z) = ez,(z), (47a) 

J dJJ.(z) A(z, q) A(z, q) = o(q - q'). (47b) 

The unitarity of the kernel can be inferred from the 
completeness of the set e.,(z) occurring on the right­
hand side of (46a). An explicit representation of 
A(z, q) is obtained by noting that 

(z' la*1 q') = (l/V2)(z' Iq - ipl q') 

= (1/ V2)( q' + a:' )<z' I q') 

= z'(z' I q'), (48a) 

Tr A = I dJJ.(a')(a' IA I a'). (43) and similarly that 

For example 

Tr (eiaP+i~ql = I dJJ.(a')(a' /eiap+i~ql a') 

= I dJJ.(a')e- (114) (a'+~') 

x Ca' le O/v2 ) (i~-a)a· 

X e(J/V2)(i~+a)al a') 

= ;: II da~ da~ e v2i~a, 
(44a) 

(z' lal q') = (d/dz)'(z' I q'), 

= (1/ V2)(z' I q + ip I q') 

= (1/ V2) (q, - a:' )CZ, I q'), (48b) 

11 The inverse relation (46b should be interpreted as 

if;(q) = l.i.m. J A(z, q)f).(z) dJJ.(Z) 
).-1 

since (46b) does not always converge, whereas this last equa­
tion does. See. the explicit representation for the kernel A(z q) 
given by Eq. (48). ' 



                                                                                                                                    

ON FEYNMAN QUANTIZATION 837 

which equations imply that (a i+1 le-i.HI ai) ~ (a i+1 11 - iEHI ai) 

A(z, q) = C exp [-!(l + q2) + V2 zq] (49) = (ai+l I ai) - iEH(ai+l' ai)(ai+l I ai) 

The conditions (47a, b) further assert that C = 7r -1/4. 

In an analogous manner one verifies that 

B(z, p) = (z I p) 

/"""'tV -iEH(a i +1 ,aO(a. I a·) - e 1+1 1· (55) 

The expression (54) for the propagator (a"t" I a't') 
valid to order E thus takes the form 

= (l/V;;:) exp [_!p2 + V + iV2 zp] (50) (a"t" I a't') 

Weare now ready to derive the Feynman integral 
representation for the transformation function 
(a"t" I a't'). 

m. THE FEYNMAN INTEGRAL OVER PATHS IN 
PHASE SPACE 

We are interested in deriving a Feynman integral 
over paths representation for (q"t" I q't') for a 
system with one degree of freedom described by 
the Hamiltonian H. It will be assumed in the 
following that H is written in normal form with 
all a* operators standing to the left of all a operators 
so that (a" IHI a') = H(a", a') (a" I a') = c number. 
The procedure that we will employ will again be to 
break up the time interval til - t' into N + 1 equal 
intervals of duration E and to repeatedly insert 
the unit operator expressed as 

1 lea(t» djl(a) (ea(t) I = 1. (51) 

It is clearly sufficient to consider the transformation 
function 

sInce 

(a"t" I a't') = (a" le-· H('''-'') I a') 

= (a" l(e- iH')N+l! a'), 

(q"t" I q't') = 11 djl(a") . 

x (q" t" I a" t")(a" t" I a't') 

X (a't' I q't') djl(a') , 

(52) 

(53) 

and the transformation function (a't I q't) is known. 
Upon inserting the resolution of the identity (51) 
into (52) we obtain 

(a"t" I a't') 1 ... J djl(a1) ••• djl(an) 

1 .. , J Va [exp [-iH(ai+l, ai)E] 

N 

X (ai+l I aj)] II djl(aj) , (56) 
j=1 

with ao == a' and aN+l == a". We can further simplify 
Eq. (56) by using the normalization condition 
(ai+l I ai) = exp (ai+1a;). We next explicitly separate 
from the measure element djl(aj) the Gaussian factor 
and write 

(a = aT + iai), 

(57a) 

(57b) 

so that the expression for the propagator becomes 

(a" t" ! a't') 

X exp [ ~ (-! lal+11 2 

+ al+ 1al - ! lal1 2 
- ieH(al+l' az) 1 (58) 

The limit N ---+ ex>, (N + l)e = t" - t' defines the 
Feynman sum. As E ---+ 0, the exponent in Eq. (58) 
can also be written as 

1· ~ {. i [- al+ 1 - al al+l - al ] 
1m £..oJ tE -2 al+ 1 - al 
E-O l =0 E E 

} 
a"'" J' (- d (t) 

- ieH(aZ+l' al) ---+ i Lt. dtl~ (a(t) ~t 

- d~~) a(t») - H(a(t) , a(t)}. (59) 

If we symbolize 

N 

lim II dBam = !D[a(t)]. (60) 
N-H~ m=l x (a" le-iH'1 aN)(aN le-ill'l aN-I) ... (al le-'Il'1 a'). 

(54) 
Equation (58) is then the desired expression for the 

In the limit as N ---+ ex> , i.e., for infinitesimal E, we Feynman integral over paths representation of the 
can evaluate each factor to order E as follows: propagator (a"t" I a't') 
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e l -(!/2 J la"I'J(a"t" I a't') e l -(l/2 J la'I'1 

= J ... J ;D[a(t)] exp [i t::'" 
x L(a(t) , aCt), aCt), da/dt) dt]' (61) 

since 

i (- da(t) da(t») -2 aCt) dt - dt a(t) - H(a(t) , aCt»~ == L (62) 

is the Lagrangian for the system when the dynamical 
variables of the system are taken to be the a vari­
ables. The factor exp (-! la"12) and exp (-! la'12) 
occurring on the left-hand side of (61) are normaliza­
tion factors arising from the fact that our states 
la') are not normalized but satisfy the normaliza­
tion condition (a' I a') = exp (Ia'n. The state exp 
(-! la'n ·Ia') is a normalized state. 

The advantage of defining the Feynman integral 
in terms of the a variables lies in the following 
circumstances: In configuration space the expression 
(q"t" I q't') is not necessarily an ordinary function 
but rather a distribution. (Recall that for t" = t' 
it is the delta function.) Questions of convergence 
are therefore "delicate." In "phase space" on the 
other hand (a"t" I a't') is not only a function, it 
even is analytic. For example, in the case of a 
harmonic oscillator whose Hamiltonian is H = wa*a, 
so that H(a", a') = wa"a', the finite number of 
Gaussian integrals involved can readily be evaluated 
to yield 

(a"t" I a't') = exp (a"a' e-idN+IJ") 

exp (a"a' e-iWW-'''J), (64) 

and in fact only absolutely convergent integrals are 
encountered. It is of course true that some of the 
intuitive appeal of the original Feynman approach 
has been lost in that the integration is now over 
phase space [since dBa = (1/11") dp dqJ. However 
this very fact suggests that this particular approach 
ought to be particularly useful in the problems 
encountered in the determination of the classical 
limit of both quantum and quantum statistical 
mechanics. Our motivation for the study of the 
Feynman formulation in terms of the a variables 
is that in such a formulation some of the mathe­
matical ambiguities found in other approaches are 
not encountered. In particular, this approach permits 
a study of the absolute convergence (or lack thereof) 
of integrals such as those encountered in Eq. (58) 
for certain classes of Hamiltonians. It thus paves 
the way for a rigorous formulation in terms of a 

measure over paths in phase space as well as for 
the study differential version of the dynamical 
principle and thus make contact with the Schwinger 
action principle. 12 Here we shall only study the 
"derivation" of the usual rules of quantum me­
chanics if the form (61) is adopted as the basic 
dynamical principle. 

IV. THE FEYNMAN PRINCIPLE 

Let us adopt as the Feynman principlel3 the as­
sertion that the transformation function (a"t" I a't') 
is given Eq. (61) with the integration over paths 
defined by Eqs. (58)-(60). We shall explicitly assume 
that our Lagrangian is of the form given by Eq. 
(62), i.e., that it is of first order in a,aU) and a,(a(t». 
We shall then show that the usual rules of quantum 
mechanics follow. If the Lagrangian is of first order 
in a,a and a,a, we can approximate the exponent 
in (62) by 

r~:a" L dt 

~ ( _ _a,,-,l +'-!..I_-.---:a'-!.l = .t...J L aI, aI, 
1-0 E 

(65) 

Hence upon breaking up this sum 

N (;-1 N) 
{;L= ~+ t; 

(66) 

(with aN+I = a" and ao = a'), we deduce that 

(a"t" I a't') = e+O/2Jla"I' 

x J '" J exp [~ t L(al, a1+1) ] j1 dHal 

X J ... J exp [~ ~ L(al, a1+1) ] 

i-I 

X II dBal·dBa;e+(J/2Jla·I' 
1-1 

(67) 

If we now identify the left-hand side of Eq. (62) 
as the Hermitian scalar product of two vectors in 

12 J. ~chwi~ger! Phys. Rev. 82, 914 (1951); 91, 713 (1953). 
13 ThIS sectIOn IS patterned after the work of J. C. Polking­

borne, Proc. Roy. Soc. (London) A 230, 272 (1955). In the 
present section we shall differentiate between operators and 
eigenvalues by denoting the former by boldface letters. 
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Hilbert space [which is consistent with the right­
hand side of Eq. (62)], Eq. (67) then allows us to 
infer that the set lajt j ) is complete: 

J lajtj) dp.(aj) (ajt j I = 1. (68) 

We next define the operator aCt) in terms of its 
matrix elements, by the equation 

e- O /2) la"I'(a"t" la(t) I a't') e-(1/2) la'l' 

= J ... J ~[a(t)]·a(t) exp [ -~ f::'" LdtJ. (69) 

If we set t = t', then since aCt) is not integrated 
over in the right-hand side, we deduce that 

(a"t" la(t) I a't') = a'(a"t" I a't' ). (70a) 

and using the completeness relation (70), we obtain 

aCt) la't) = a' la', t). (70b) 

The definition (69) of the operator aCt) therefore 
implies the interpretation of the kets la' , t') as 
eigenvectors of the operator aCt'). Similarly one 
readily verifies, using the decomposition property 
(66), that 

e-(J/2)la"I'(a"t" IP(a(t,) ... a(tn» I a't')e- O/2 )la'l' 

= J ... J exp [~ f::'" L dt] 

x aCtl) ... aCta) ~[a(t)], (71) 

where P denotes the time-ordering operator. 
The statement that the operator aCt) satisfies the 

same equations of motion as the classical c-number 
variables aCt) follows from the fact that 

(a"t" 10I/oa(t) I a't') = e(l/2)(la'I'+la"I') 

(72a) 

J[a(t)] = f::'" L[a(t)] dt. (72b) 

The integral on the right-hand side of Eq. (72a) 
vanishes since the integrand is a total derivative, 
namely, 

(h/i) [0/ oa(t)] exp (iJ[a(t)]/h) , 

and the particular variable of ~a(t) referring to 
the time t in question can be directly integrated. 
For both limits of aCt) the integrand, as interpreted 
by Eq. (58), "'ill vanish, so that 

oI/oa(t) =' 01/ oa*(t) = O. (72 c) 

It should be stressed that in (72a) the symbol 

01/ aa(t) is only given a meaning by the right-hand 
side, where OJ / aa(t) assumes its usual variational 
meaning in terms of the classical variables a and ii, 
namely: Consider new functions aCt, E) such that 
aCt, 0) = aCt) and such that at t = t' and t = t", 
aa(t, E)/aE = o. By OJ/aa we then mean 

OJ = (d/dE)J[a(t, E)]I._o. (73) 

We next define the operator bet) by14 

(a"t" Ib(t") I a't') = a"(a"t" I a't'). (74) 

From the fact that we have interpreted (a"t" I a't') 
as the scalar product of two vectors in Hilbert 
space, upon taking the complex conjugate of Eq. (74) 
and comparing the resulting equation with Eq. 
(70a) we deduce that 

bet) = a*(t). (75) 

One next computes, using the above enumerated 
properties that 

(a"t" I [aCt") , b(t")] I a'i') 

= J (a" t" laCt") I a'" t") 

X dp.(a"')(a"'t" IbU") I a't') 

- J (a"t" Ib(t")a(t") I a'''t'') 

X dp.(a''')(a'''t'' I a't') 

= J (la' ''1 2 
- a"a"')(a"t" I a"'t") 

X (a"'t" I a't') dp.(a''') 

= J (la'''1 2 
- a"a'")e"''a''' 

X (a'flt" I a't') dJ1.(a"/). (76) 

The right-hand side of Eq. (76) can be evaluated 
by substituting for (a'llt" I a't/) its explicit form 
as given by Eq. (62). The result is the expected 
one, namely,t5 

(a"t" I [aCt") , b(t")] I a'l') = (a"t" I a't'), (77) 

whence 

[aCt), a*(t)] = 1. (78) 

14 Alternatively we can define bet) by 

(a"t" Ib(t' ) I a't') = [iI/ilal(t')J(alt" I a't' ). 

15 The correctness of the resulting formula is checked by 
noting that 
f dJ1.(a" l )a"I(? - al/)ea' 'n" '(alii)" 

= n(a")a - (n - l)(a")a 

= (a")a. 
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v. THE FIELD THEORETIC CASE 

The treatment of a quantized field can be pat­
terned after the example of a system with a finite 
degree of freedom. We shall here consider only the 
simplest situation, namely that of a real scalar field. 
To develop the formalism by analogy to the case 
of a system of particles, we expand the field 
cf>(x) [x = (XO = t, x)] and its canonically conjugate 
variable ?rex) into a complete set of real orthonormal 
functions IOn (x) which have the properties that 

J d3
XlOm(X)lOn(X) = Omn, 

L: IOm(X)lOm(X') = o(x - X'). 
n 

The expansions are 

(79) 

(80) 

anCt) IZI' ... Zn, ... ; t) = Zn IZI' ... Zn, ... ; t) 

n = 0, 1,2, .... (87) 

These eigenfunctions are vectors in a separable 
Hilbert space which is the direct product of the 
Hilbert spaces {lzl) l. {IZ2) l. ... . The mathe­
matical characterization of such direct product 
spaces has been given by Von Neumann.16

-
18 We 

can express the vectors IZI, ... Zn, .•. ; t) in terms 
of the eigenfunctions of the number operators 

(88a) 

N;(t) Inl' ···n;, ···;t) 

= n; Inl' ... n;, ... ; t), (88b) 

as follows: 

cf>(X) (81a) IZI,··· Zn, ... ; t) 

and 

a£ 
?rex) = ~ Pn(t)lOn(X) = acf>o(X) , 

(81b) 

(82) 

x Inl' n2, ... n i ••• ; t) 

= exp [L: z;a~(t)J 10). (89) 
i 

An arbitrary normalizable state vector of the field 

Pn(t) = J d3XlOn(X)?r(X) , 
system I 'iF) can be expanded in terms of these basis 

(82b) vectors, the expansion coefficients 

where £ is the Lagrangian density of the field system. 
In the quantized theory the expansion coefficients 
qn(t) and Pn(t) are Hermitian operators which satisfy 
the commutation rules 

'iF(ZI, ... Zn, ... ) = (ZI' ... Zn, ... I 'iF) (90) 

now being entire analytic functions in each of the 
variables ZI, Z2, .... The Hermitian scalar product 
of two vectors I 'iF), I <I» is defined as 

[qn(t) , Pm(t)] = ih onm, 

[qn(t), qmCt)] = [Pn(t) , Pm(t)] = 0, 
(83a) J J '" 
(83b) (<I> I 'iF) = . . . IT djJ.(Zi) 

which in turn imply the usual equal-time canonical 
commutation rules for the field operators cf>(x) 
and ?rex): 

[cf>(X) , ?r(x')Lo-zo' = ih o(x - x'). (84) 

We next introduce the operators 

X <I>(Zj, ••• Zn, ... )'iF(Zj, ... Zn, ... ), 

djJ.(z;) = ?r -I exp (-z;z;) dXi dYi 

(91a) 

(91b) 

the integration over each set of variables Xi, Yi 
being carried out over all values of Xi, Yi: - ro < 
(Xi' Yi) < ro. We here note that 

an(t) = (2h)-1/2(qnCt) + ipn(t», 

a~(t) = (2h)-1I2(qn(t) - ipn(t», 

(85a) (zi',z~', ... Izi,z~, ... ) 

(85b) = ~ exp (Z;Zi) = exp (L: ZiZi) , 

which satisfy the commutation rules 

[an(t) , a!(t)] = Onm, (86a) 

[an(t) , am(t)] = [a~(t), a!(t)] = o. (86b) 

Simultaneous eigenfunctions of the operators an(t) 
(n = 0, 1, 2 ... ) can be written in the form 
IZj, •.• Zn, ..• ; t) with 

and also that in terms of the fields U(x) and U(x) 
defined by 

18 J. von Neumann, Compositio Math. 6, 1 (1939). 
17. It ca~ be shown .that in terms of von Neumann's theory, 

one.ls dealmg here Wlth the incomplete direct product for the 
eqmvalence class e of {J0;} where all jO.(z) = 1. This is as 
should be since the Hilbert space is isomorphic to Fock space 
(see Bargmann18). 

18 V. Bargmann, Proc. Nat'l. Acad. Sci. U. S. 48,199 (1962). 
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VeX) L ZjIPj(x) , 

Vex) L ZjIP;(x), 

(93a) (x~', x~' ... ; t" I x~, x~ . " ; t') from the knowledge 
of <z~', z~' .•• ; t" I zit z~ ... ; t'). Let us therefore 

the expression Li ZjZj can be written as 

L Z,Zj = J d3x V(x)V(x). 

(93b) compute the latter. The steps in this derivation 
are analogous to those involved in obtaining Eqs. 
(58) to (62). One again breaks up the time interval 
t" - t' into N + 1 equal intervals of duration E 

(94) and repeatedly inserts the resolution of the identity , 

Formulas which are the generalization of Eqs. 
(45) to (50) can also readily be written down for 
the present situation. 

We next turn to the computation of the trans­
formation function (Zl' ... z., Ix) where the 
state Ix) is an eigenstate of the field operator 
cf>(x) , i.e., 

cf>(x) Ix) = x(x) Ix). (95) 

<x I'l!) is thus the amplitude for finding the field 
system described by the Heisenberg state vector 
!'l!) in the field configuration x(x, xo) at time t = XO.19 

An explicit representation of the basis vectors Ix) 
can be obtained in terms of the eigenstates of the 
operators q,,(t) , n = 0,1,2, '" . If we denote these 
eigenstates by Iqr, q~, '" ; t) with 

q i (t) I qr, qL .. , q~ ... ; t) 

= q~ I qr, q~, '" q:, ... ; t>, (96) 

then the vector Ix) has the following representation 

Ix> = lXI, X2, ••. Xn, "'; t), (97) 

where the Xn's are the expansion coefficients of x(x) 
in terms of the orthonormal set lPn' i.e., 

One thus obtains the following expression for the 
propagator 

(zr' , Z~', ... ; t" I zi, z~, ... ; t') 

X ( (1) (1) I -i'HI " ) Zl ,Z2 , ••• e Zl , Z2, ••• , (101) 

where H is the Hamiltonian of the field system which 
will be assumed to have been written in normal 
form (Le., all creation operators standing to the left 
of all annihilation operators) so that 

(Z(i+l) Z(i+1) IHI Z(i) z(i) ) 1 ,2 ,. • • 1, 2 ••• 

(102) 

We have denoted by Z(i) the set Ziil, z~i), 
If we again separate from the measure element 
(916) the Gaussian factor and write 

II d ( <i) - II -I"U) 1'1. d (j) d (j) JJ. Zl - e Xl Yl, 
I I '7r 

(103) 

(98) the expression for the propagator becomes, with 
Z(O) = Z' and Z(N+l) = Z", 

The kernel of interest (Zl' ... zn .. , lXI, ... Xn, •.. ) 

is then readily computed and the result is 

= II 7r-
1/4 exp [-(1/2)(z~ + x:) + V2 ZiX.]· (99) 

This transformation function allows one to com­
pute the transformation function (x"t" I X't') = 

19 In the case of a noninteracting real scalar field, the 
vectors Ix ) will in general only exist only for x (x) which 
are normalizable solutions of the Klein-Gordon equation, i.e., 
if we denote by x (k) the Fourier transform of x(x) 

X(x) = J d4k oW - ,./)X(k)e-ik-x, 

X( -k) = x(k) , 
Ix) will exist only for x's such that d4kO(k2 - 1-'2) Ix (k) 12 < co 
In the case of interacting fields the exact conditions have not 
been investigated. 

(Z"t" I Z't') 

= J ... J II dJJ.(z~~») '" II dJJ.(z;~» 
II IN 

N 

X II exp C~::: z;j+llz;j) - ieH(ZU+l), Z(j)] 
j=O l 

N 

X II exp [2::: l-~ Iz;,+I) 12 
j=O ; 

+ z~;+l)Z;il _ ! Iz;il 12}] 

X exp [-ieH(Z(i+ll, Z(il)] 

X exp a 2: llz:'1 2 + Iz:i"l], (104) 
i 

which in the limit e ~ 0 becomes equal to 
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(Z"t" ) Z't') 

= exp [t ~ {/Z:,)2 + /zW}] J ... J 5:>[Z(t)] 

X exp[iJz"t" dllt L(Zj(t)iJt) 
Z't' 

- z;(t)Zj(t» - iH(Z(t), Z(t» } ] ' 

where we have written :o[Z(t)] for 

5)[Z(t)] 

x a,U(x) - a,U(x)U(x» - X(D, U)} ] 

(l07a) 

= J ... J 5:>[U(x)] exp [i J d~x£'(U) ] (107b) 

where JC(O, U) is the Hamiltonian density for the 
(105) classical field, expressed in terms of U and 0, with 

H = J d3xJC, and £, is the Lagrangian density. The 
first-order form for the Lagrangian is again to be 
noted. In Eqs. (107a) and (107b) the expression 
5:>[U(x)] is given meaning by Eqs. (106) and (105). 
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Maxwell's equ~tions are .formulated in a nu~ber of dirt:erent representations: (a) As a single 
four-component spmor equatIOn whose transformation properties are almost identical with those of the 
Dirac .equation. (b) As a.pai.r ~f uncoupled two-comp.onent spin or equations, in two different repre­
sentatIons. One of these IS similar to the Weyl equatIOn for the neutrino field and the other to the 
two-component spinor form of the Dirac equation. (c) As a single equation in which the field variables 
are 2 X 2 matrices. In terms of these new field variables corresponding conservation laws are derived. 
Identification of these conservation laws with the standard ones is made. The transformations that 
are appropriate to the maintainance of covariance of the field equations are discussed. 

1. INTRODUCTION 

MAXWELL'S equations have an important place 
in the development of both the classical and 

the quantum theory of fields. As a field theory 
describing macroscopic classical electrodynamics it 
is eminently successful. The application of the theory 
to microscopic phenomena by Lorentz, however, 
gave rise to a number of difficulties such as the 
infinite self-energy of the point electron, its self­
acceleration, and the concomitant radiation by the 
accelerated point electron. 

The classical electromagnetic field served as a 
model for Yukawa's meson theory. It has been taken 
as the prototype for the construction of quantum 
field theories because of a greater understanding of 
electromagnetic forces as compared with other types 
of forces. However, some difficulties of the present­
day quantum field theories are traceable to those 
present in classical theory. 

A theory, developed by US,l attempts to resolve 
these difficulties by considering the interaction be­
tween particles rather than the free particle fields 
as the elementary entity. The field variables are 
then reinterpreted in terms of the interactions be­
tween particles instead of the intrinsic properties 
of the isolated particle. Contained in this theory 
is a reinterpretation of the Maxwell field equations. 
According to this interpretation, Maxwell's equations 
are nothing else but a covariant means of obtaining 

* The work of one of the authors (MS) was supported 
in part by a grant from the National Research Council of 
Canada. 

t Present address: Physics Department, Boston Univer­
sity, Boston, Massachusetts. 

1 M. Sachs and S. L. Schwebel, Nuovo cimento suppI. 21, 
197 (1\)61). 

force field variables through which to represent a 
source field or vice-versa. Thus, within the frame­
work of the theory, we can only accept the par­
ticular solutions of Maxwell's equations as physically 
meaningful. 

Within this interpretation, it follows that there 
is no special reason for maintaining the vector form 
of the Maxwell field equations if it is possible to 
express them in other covariant forms. It is our 
object in this paper to present the reader with 
several new mathematical forms of Maxwell's equa­
tions. The new forms are particularly interesting 
because of their transformation properties. These 
lead to generalizations because of the appearance 
of generalized conservation laws. One of these 
forms [Eq. (7)] is used in our formulation of quantum 
electrodynamics. l However, it should be emphasized 
that, independent of microscopic phenomena, these 
equations can also be useful because solutions of 
Maxwell's equations applied to macroscopic phe­
nomena may be more readily determined in some 
cases from the forms of the equations that we 
present here than from the conventional form. 

The mathematical forms of the Maxwcll field 
equations that we present in Sec. II require only 
that the principle of covariance be satisfied in order 
to obtain the transformations of the field variables 
defined by these equations. In particular, two of 
these forms of Maxwell's equations [Eqs. (7) and (8)] 
are so similar to the corresponding forms of the 
Dirac equation that both sets of variables one 
representing the Maxwell field and the othe~ the 
Dirac field, have the same transformation properties 
under the elements of the proper Lorentz group. 
In Sec. III we discuss the conservation laws which 
are intimately connected with the transformation 

843 
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properties that prescribe the covariance of these 
new forms of the field equations. 

II. FORMS OF MAXWELL'S EQUATIONS AND THEIR 
TRANSFORMATION PROPERTIES 

ILl Review of the Conventional Forms 

The well-known form of Maxwell's equations is2 

v )( E + atH = 0 

V )( H - a IE = 4'1Tj 

V·H = 0 

V·E = 47rp. 

(1) 

In this form, the electric field variable E(x) trans­
forms like a polar vector and the magnetic field vari­
able H(x) transforms like an axial vector when the 
charge density p(x) is assumed to transform like a 
scalar. Further, the imposed requirement of covari­
ance of (1) requires that proper Lorentz transforma­
tions on E and H will yield field variables in the new 
inertial frame that are particular combinations,3 
respectively, in terms of E, V)( Hand H, v x E. 

Next, a form of Maxwell's equations that makes 
its covariance more obvious is in terms of two field 
equations in the field variable F",-an antisym­
metric matrix. The field equations area 

(2) 

apF", + a,Fp" + a"F,p = O. 

Here again, it is only when we specify that the four 
variables [p(x) , il(X), i2(X) , j3(X)] must transform 
as a four-vector that the principle of covariance 
ensures that FI" transforms as a second-rank tensor. 

In the covariant forms of Maxwell's equations 
discussed below, no additional statement has to be 
made about the a priori transformation properties 
of the source terms. The principle of covariance 
alone determines these properties. Also, in view of 
the ensuing discussion, it should be emphasized 
that (2) was constructed by identifying the ele­
ments of FI" with components of E and H in a 
particular Lorentz frame. (This is the procedure 
that will be followed below.) However, Lorentz 
transformations preserve the covariance of (1) if 
the field variables transform as three-vectors while 
the covariance of (2) is maintained when the solu­
tions transform as a tensor field. In the forms of 
Maxwell's equations demonstrated below, the field 
variables transform (isomorphic with the proper 

2 Units are chosen with c = 1. 
3 See, for example, L. Landau and E. Lifshitz, The Classical 

Theory of Fields (Addison-Wesley Publishing Company, Inc., 
Reading, Massachusetts, 1951). 

Lorentz group) neither as vectors nor as tensors. 
The conserved quantities follow from the equa­

tions of continuity. These are the equations that 
relate to the four-divergence of a function whose 
time component (or components) are the conserved 
quantities. For example, in the case of equations 
of the type (2), we have the continuity equation 

(3) 

where k, are the components of the four-Lorentz 
force density, 

T", = (I/47r)(Fl'pF,x - IF!x 0",) 

is the energy-momentum tensor and f T"o d3x is 
the conserved energy-momentum vector of the field. 
[This, of course, follows from the integral form of (3) 
combined with Gauss' theorem.] 

In the discussion that follows, we will demon­
strate new covariant forms of the Maxwell field 
equations and corresponding conservation laws. It 
will be seen how the new conservation laws contain 
the old ones and therefore represent a generali­
zation. Throughout this development it will be 
assumed that the underlying symmetry that governs 
the structure of the field equations is described by 
the proper Lorentz group (i.e., discontinuous trans­
formations such as spatial and temporal reflections 
are not contained in the group). Also, we do not 
restrict ourselves to a spin-one field, rather we 
allow a reduction from the vector field to a spinoI' 
field representation. The justification for this follows 
from our interpretation of the Maxwell field equa­
tions. 

II.2 A Four-Component Spinor Form 

SpinoI' formulations of Maxwell's equations have 
been proposed by several authors.4 It is our aim 
here to present different forms of spinoI' equations 
than those cited in reference 4. In particular, some 
of these equations have the same transformation 
properties as the Dirac equation (in its two-com­
ponent form). We start with a discussion of the 
four-component spinor form. 

Defining the complex vector 

G=H-iE 

the two-component functions 

4 O. Laporte and G. E. Uhlenbeck, Phys. Rev. 37 1380 
(1931); J. R. Oppenheimer, ibid. 38, 725 (1931); G. Moliere 
Ann. Physik 6, 146 (1949); T. Ohmura, Progr. Theoret: 
Phys. (Kyoto) 16, 684 (1956); R. H. Good, Jr., Phys. Rev. 
105, 1914 (1957); H. E. Moses, ibid. 113, 1670 (1959). 
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T1 = 41l"i[-~ + .~3l 
Jl + ~J2 

T2 = 41l"i [- i] + i~2J 
P + 33 

and the four-component functions 

ep = [epl] T = [-~T2] 
epz ~'I\ 

and using the notation 

(4) 

(5) 

x = {xo = it; Xk} a(=ajax) lao = -i at; ad 

'Y = hoI's; 'Yd 1'5 = 1'01'11'21'3 1'0 = [I 0] 
o -I 

(k = 1,2,3) 

where O"k are the usual Pauli matrices and I is the 
unit 2 X 2 matrix, it is a straightforward matter 
to verify that the bispinor field equation 

'Yv avep(x) = T(x) (6) 

is a representation of Maxwell's equations in the 
form given by Eq. (1). 

Since 'Y v differs from 'Y v only in the time component 
'Yo = 'Yol's, the similarity between the form of 
Maxwell's equations (6) and the Dirac equation 

I'v av""(x) = -m""(x) (6') 

should be noted. 
It should be emphasized here that as far as the 

field equation (6) is concerned, the transformed 
spinors ep'(x') = Aep(x) and T'(x') = BT(x) are not 
form-invariant with respect to the conventional field 
variables E, H, j and p; e.g., epeE, H) +t ep(E', H'). 
Thus, once a connection between the new field 
equation and (1) is established in one Lorentz frame, 
then we choose to consider the new form of the 
field equations thereby abandoning the old vector 
field variables for the new spinor field variables. 
The conserved quantities do, however, match those 
of the conventional formalism, along with the 
predictions of new conserved quantities. 

II.3 Two-Component Spinor Forms 

The Weyl Form 

If we operate on Eq. (6) from the left with 1'5, 

this field equation splits into two uncoupled two-

component spinor equations 

O"~ a~epa(x) = Ta(x) (a = 1,2) (7) 

where 0"0 = if. With Ta = 0, Eq. (7) is the Weyl 
equation for the neutrino field. 5 The covariance of 
this form of the field equations (7) is demonstrated 
in the Appendix. It is shown there that when Lorentz 
transformations take epa(x) into Sepa (x) , the source 
term Ta(x) must transform as (St)-ITa(x) in order 
to maintain the covariance of these equations. 
Thus, in terms of these variables, ep:T~ (a, (:J = 1, 2) 
are invariant forms. 

The invariant metrics which define the two­
component spinor algebra are6 

ep~ri0"2epl = II 

T~ri0"2Tl = I2 

If we express epa and Ta in terms of the conventional 
variables (in a particular Lorentz frame) according 
to Eq. (4), the invariants take the form 

I1 = E2 - H2 + 2iE·H = F~v + 2iEpp).pF"vF).p 
·2 = Jp 

which are the invariants of the conventional form­
ulations. 

The Dirac Form 

Operating on the left-hand side of one of Eqs. (7) 
(say, the equation with a = 2) with the Wigner 
time-reversal operator W, Eqs. (7) become 

where 

and 

CTp a"ep1 = T1 

iiI' aA>2 = T2 

ii = {O"o; - O"d 

fV = (i0"2)K, 

where K denotes complex conjugation. 

(8) 

The covariance of the two-component spinor 
equations (8) are determined by the same trans­
formation properties as those associated with the 
Dirac equation in its two-component form 

CT. a"cp = -imx 

6 See P. Roman, Theory of Elementary Particles (N orth­
Holland Publishing Company, Amsterdam, 1960), p. 107. 

6 For a more comprehensive discussion of spinor algebra, 
see the article by Laporte and Uhlenbeck.4 
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ti" d"x = -im<p 

This is derived from Eq. (6') by calling 

1f = [::l and <p = 1fl + 1f2, 

IIA A Matrix Form of Maxwell's Equations 

Still another form of the field equations is ob­
tained by combining the uncoupled set of equations 
(7) to form a single equation in which the field 
variable and source term are themselves 2 X 2 
matrices. When this is done, the result is 

rT" d"cI>(X) = 2:(x) 

where (9) was constructed by allowing 

(9) 

to be the 2 X 2 matrices involved in the field equa­
tion. In specifying the covariance of the field equa­
tion (9) however, just as before, we do not maintain 
form invariance in terms of the variables ef>1! ef>2' 
Thus, the variables cI>(x) and 2:(x) are to be re­
garded as 2 X 2 matrices and covariance of (9) 
is maintained with 

cI>'(x') - cI>(x) = S-lcI>'(X')S 

2:'(x') _ 2:(x) = st 2:'(x')S 

where S is defined in the Appendix [Eq. (All)]. 
This representation of Maxwell's equations is closely 
related to the conventional treatment in terms of 
second-rank spinors with mixed dotted and un­
dotted indices. Since this formalism has an ap­
preciable literature,4 we will not develop it here 
anew. 

It is also noted that (9) may also be expressed 
in terms of quaternions by choosing as units the 
identity I and the Pauli matrices (multiplied by i). 
Equation (9) then takes the form 

rT,. d,.{rTk(Hk - iEk) I = 411'irT,j, 

where Ho - iEo == O. 

III. CONSERVATION LAWS 

The procedure for deriving relations that are 
interpretable as conservation laws is very similar 
for all forms of Maxwell's equations. To eliminate 
such repetitive manipulations we shall undertake 
only the calculations for Eqs. (6) and (7) and leave 
to the interested reader the task of obtaining the 
counterparts to these results for the remaining 
equations. 

MUltiply Eq. (6) on the left by ef>tO;, where OJ 

is one of the operators of the set 

to;} = {l,'Yo, 1'5, 1'01'51· 

Take the Hermitian adjoint of Eq. (6) and multiply 
it on the right with Oief>. Adding or subtracting the 
equations obtained with the same selection for ai' 
we find that 

d.(iVi.ef» = qJT - Tef> (lOa) 

d ,( qJ'Y 0'Y.ef» = qJT'oT + T'Yoef> (lOb) 

d .(qJ'Y o'Ys'Y.ef» = qJ'Yo'YsT - T'Yo'Ysef> (lOc) 

d,(qJ'Ys'Y.ef» = qJT'sT + TT'sef>. (lOd) 

The procedure with regard to Eqs. (7) is simpler. 
Multiply one of these equations (which we denote 
by the subscript a) bYef>; and the Hermitian adjoint 
of the other of these equations (denoted by the 
subscript (3) by ef>a and then add. We thus gbtain 

a"cef>;rT"ef>a) = ef>;Ta + T;CP" (a, (3 = 1,2). (11) 

Equations (10) and (11) are the conservation 
laws that we sought. Expressed in the field variables 
ef> and T these equations are unfamiliar ones indeed. 
However, if we undertake to express them in terms 
of the usual field variables E, H, p, and j, we find 
that Eqs. (10) and (11) give the familiar forms which 
describe the conservation of energy and momentum 
of the electromagnetic field. For example, Eq. (lOd) 
becomes 

(1/811') dt (E2 + H2) 

+ (1/411') V ·(E xH) = -E·j (12) 

which is the usual energy-momentum conservation 
law. 

Equation (11), which is a more compact form of 
Maxwell's equations, yields the above conservation 
equation when the two equations obtained for 
a = {3 = 1 and a = {3 = 2 are added. 

A rather interesting distinction between Eqs. (6) 
and (7) arises from their invariance under trans­
formations belonging to the proper Lorentz group. 
This is, that the transformation properties for the 
field variables and the source terms of Eq. (7) are 
such that all four equations that appear in (11) 
are Lorentz invariants, while such is not the case 
for the conservation laws (10) that are associated 
with the bispinor form (6) of Maxwell's equations. 
This additional symmetry along with the fact that 
Eq. (7) represents Maxwell's original formulation 
as a set of two uncoupled spinoI' equations serves 
as a strong stimulus to explore further. In addition 
to the application of the form (7) of Maxwell's 
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equations to our formulation of quantum electro­
dynamics/ the implications in the formulation of 

Writing this equation out, we find 

(S-l) ter,T t = Ter.S-1 
the classical electrodynamical interaction have also 
been discussed7 and will be published in the near or 
future. t t 

er.T S = S Ter, (p = 1,2,3). 
APPENDIX 

A proof of the covariance of Eqs. (7), 

(0: = 1,2) (AI) 

under a proper Lorentz transformation follows below. 
The Lorentz transformation is given by 

(A2) 

where a~. is real for }.L, P = 1,2, 3, aoo is real, and a~o 
and ao~ are pure imaginary for }.L = 1, 2, 3. From 
the invariance of x!, we obtain the relations 

o 
°J,J.V· 

(A3) 

The principle of covariance requires that in the 
coordinate system {x~l Eq. (AI) becomes 

(0: = 1,2). (A4) 

If we assume that 

(A5) 

where Sand Tare 2 X 2 matrices independent of 
fx~l. and that {x~l is related to {x~l by Eq. (A2) , 
then (A4) takes the form 

(0: = 1,2) 

Consequently, the principle of covarIance can be 
satisfied if 

(A6) 

or 

(p = 0, 1, 2, 3). (A7) 

For p = ° 
(A7') 

We now take the Hermitian adjoint of (A7'). Because 
of the Hermiticity of the Pauli matrices erk, k = 
1, 2, 3, the reality of aoo and the pure imaginary 
character of ero and a~o for }.L = 1,2, 3, we find that 

(T S-l) t = T S-l . (AS) 

For p ~ 0, we also find that 

(Ter.S- 1)t = (Ter.S- 1). (A9) 

7 M. Sachs and S. L. Schwebel, Bull. Am. Phys. Soc. 5, 
505 (1960). 

But from (AS), TtS = StT. Thus, TtS commutes 
with the three Pauli matrices er1, er2, and era. It follows 
that 

(AI 0) 

with b a real constant. That b is real follows from 
(AS) or from the fact that TtS = StT. We can 
normalize T by requiring its determinant to be 
unity. Then from (A7') it follows that the deter­
minant of S is unity and hence the constant b in 
(AlO) must be 1. Thus, 

T = (S-l) t = (St)-l. (AlO') 

Equation (A6) may now be rewritten as 
t 

S er~a~.S = er, 

or 

(All) 

To finish the proof, we must establish the existence 
of S. To do this we consider an infinitesimal proper 
Lorentz transformation 

(AI2) 

where €~, are small. The invariance of x; requires 
that €~, = - €'W Under this transformation we have 

(AI3) 

and 

st = I + E~.X:, 
where A~, are the matrices which are to be deter­
mined and E~. are the complex conjugates of €w 

Since €~. = - €,~ these parameters are not linearly 
independent. However, if we specify that X,~ = - A." 
we may then treat the parameters €~, as linearly 
independent for we then obtain redundant equations. 
The alternative is to define the double summation 
€.;A~. as L.>, €~,A., .. vVe will use the first procedure. 

Applying Eqs. (AI2) and (A13) to Eq. (All), 
we find 

If }.L = 0 (ero = iI), then 

The Hermitian adjoint of this equation is 
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Thus, 

(/I = 1,2,3). (AI5) 

U, = -2(A~vua - uaAa,) 

For f.L rf 0, /I = ° 
(AI8) 

(AI9) 

When f.L rf 0, the Hermitian adjoint of (AI4) IS Equation (AI7) has the solution 

The last equality follows from (AI4). The summation with 
over k is for k = 1,2,3. Since the Uk'S are linearly 
independent it follows that 

f.LrfO (AI 6) 

Returning to Eq. (AI4) and making use of Eqs. 
(AI5) and (AI6), we find that for f.L rf 0, /I rf ° 

(AI7) 

The right-hand side is not to be summed over f.L. 

For f.L = 0, /I rf ° 

Equation (AI8) has the solution 

Equation (AI9) is solved with 

Note that Aa, = - A,a as required. 
Thus, we have evaluated all Ap. and determined 

the matrices S of Eq. (AI3). 
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Dynamical Mappings of Density Operators in 
Quantum Mechanics. II. Time Dependent Mappings* 
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The most general continuous time-dependent evolution of a physical system is represented by a 
continuous one-parameter semi-group of linear mappings of density operators to density operators. 
It is shown that if these dynamical mappings form a group they can be represented by a group of 
unitary operators on the Hilbert space of state vectors. This proof does not assume that the absolute 
values of inner products of state vectors or "transition probabilities" are preserved but deduces this 
fact from the requirement that density operators are mapped linearly to density operators. An example 
is given of a continuous one-parameter semi-group of dynamical mappings which is not a group. 

I. INTRODUCTION 

T HE most general dynamical transformation of 
a physical system can be represented by a 

linear mapping of density operators to density opera­
tors. It was pointed out in an earlier paper! that there 
are many such dynamical mappings which are not 
Hamiltonian mappings, that is, there are linear 
mappings of the set of density operators into itself 

* Supported in part by the U.S. Atomic Energy Commis­
sion. 

t Research assistant visiting under the cooperative 
program from Antioch College, Yellow Springs, Ohio. 

! T. F. Jordan and E. C. G. Sudarshan, J. Math. Phys. 
2,772 (1961). 

which can not be represented by unitary transforma­
tions on the Hilbert space of state vectors. The 
present paper is a continuation of the investigation 
begun in reference 1, and answers some questions 
which were left open there. In particular, we consider 
whether there can be non-Hamiltonian dynamical 
mappings which represent a continuous time de­
pendent evolution of a physical system. 

In Sec. II the property that a family of dynamical 
mappings represent a continuous time dependent 
evolution of a system is formulated in the require­
ment that it forms a continuous one-parameter 
semi-group. The requirement that it form a con-
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tinuous one-parameter group and the requirement 
that it is a continuous family of Hamiltonian map­
pings, i.e., that it is representable by a continuous 
group of unitary operators on the Hilbert space of 
state vectors, are apparently more restrictive con­
ditions. In Sec. III it is shown that the latter two 
requirements arc equivalent. Every continuous 
group of dynamical mappings is a continuous family 
of Hamiltonian mappings. But in Sec. IVan ex­
ample is given of a continuous semi-group of dy­
namical mappings which is not a group and, there­
fore, is not a family of Hamiltonian mappings. 

The one-parameter groups of dynamical trans­
formations which we call" time dependent" can be 
used to represent other symmetry transformations 
on the system besides transformations in time. In 
fact, it is no problem to generalize our results from 
one-parameter groups to representations by dynami­
cal mappings of many continuous groups such as 
the Lorentz group. That such representations must 
be generated by continuous unitary representations 
on the Hilbert space of state vectors2 then follows 
in analogy to our proof in Sec. III that the group 
property implies that a time-dependent family of 
dynamical mappings is a family of Hamiltonian 
mappings. This proof does not require the assump­
tion that the absolute values of inner products of 
state vectors or "transition probabilities" are pre­
served but proves this fact from the requirement 
that density operators are mapped linearly to 
density operators. 

II. TIME-DEPENDENT DYNAMICAL MAPPINGS 

In the quantum mechanical description of a 
physical system by operators on a seperable Hilbert 
space X, the state of the system can be represented 
by a density operator on Jr. A density operator is 
a positive semi-definite, self-adjoint operator which 
has unit trace. These operators form a convex set. 
The extremal elements of this convex set are the 
pure state density operators; they are projection 
operators onto one-dimensional subspaces of X. 
The properties of density operators were outlined in 
some detail in reference 1. It was shown that density 
operators belong to the Hilbert space .£ of operators 
p on X for which3 1'1' (ptp) is finite, the inner product 
in .£ being defined by 

(2.1) 

2 E. P. Wigner, Ann. Math 40, 149 (1939). 
3 It is sufficient for our purposes to consider only bounded 

operators which form a linear space without causing any 
problems of domains. 

The pure state density operators span the space £, 
so that a linear mapping on the density operators 
uniquely defines a linear mapping on £. A dynamical 
transformation of the physical system may be 
represented by a linear transformation of £ which 
maps the convex set of density operators into itself. 
If A is a linear operator on £ such that, if p is a 
density operator, then 

p' = Ap (2.2) 

is also a density operator, we will call A a dynamical 
• 4 mappmg. 

In order to represent dynamics in the usual 
sense, that is as a continuous time-dependent evolu­
tion of the state of the system, we must have a 
family of dynamical mappings A (t), 

p ~ pet) = A(t)p 

depending on a real parameter t, such that 

A(t)A(s) = A(t + s) 

for non-negative values of t and s, and 

A(O) = I. 

(2.3) 

(2.4) 

(2.5) 

In other words we must require that the dynamical 
mappings A (t) form a one-parameter semi-group. 
In addition we must require that the expectation 
value 

«(f), = Tr «(fp(t» = «(f, A(t)p) (2.6) 

of the self-adjoint operator (f belonging to £, for 
the time dependent state p(t), be a continuous 
function of the parameter t. Since the trace of the 
product is the inner product in .£, as is indicated in 
Eq. (2.6), this means that A(t) must be weakly 
continuous as a function of t. The mathematical 
condition for a time dependent evolution of density 
operators is then that we have a family of linear 
transformations of the form (2.3) on £, and that: 

(I) A (t), 0 ::::; t < C1O, is a weakly continuous one­
parameter semi-group of dynamical mappings (linear 
transformations of £ that map the convex subset 
of density operators into itself). 

If we want the dynamics to be reversible, that is 
if we require that every dynamical mapping have all 
inverse which is a dynamical mapping, then we 
need the stronger condition that: 

(II) A(t), - C10 < t < + C1O, is a weakly COIl-

4 We will use the same notational convention as in reference 
1. Capital letters A will represent operators on .£ and Greek 
letters p, OJ, <J", operators on X (elements of .£). Greek letters 
</>, '" will denote vectors in X, and small letters a, c will denote 
scalars. 
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tinuous one-parameter group of dynamical mappings 
(A(t)-l = A(-t». 

Finally we are interested in time dependent 
Hamiltonian dynamical mappings which are defined 
by the condition that: 

(III) There exists a (strongly or weakly) con­
tinuous one-parameter group of unitary operators 
wet) on X, such that A(t)p = w(t)p wt(t) for each p 
belonging to £. 

Clearly (III) implies (II) implies (I) . We will see 
that conversely (II) implies (III), but that (I) does 
not imply (II). 

III. HAMIL'TONIAN MAPPINGS 

In this section we will show that a time dependent 
family of dynamical mappings is a family of Hamil­
tonian mappings whenever it is a one-parameter 
group. In reference 1 conditions were given which 
are necessary and sufficient for a dynamical mapping 
of the general form (2.2) to be a Hamiltonian map­
ping. However, no consideration was given to the 
time dependence of these mappings, or to the 
implications of time dependence which could possi­
bly restrict the allowed dynamical mappings to 
Hamiltonian mappings. It is the purpose of this 
paper to consider these questions and thus com­
plete the study of the relation of Hamiltonian 
quantum dynamics to the more general dynamics 
of density operators. 

If a dynamical mapping takes pure state density 
operators to pure state density operators, then it 
defines a mapping of normalized vectors in X to 
normalized vectors in X. For each vector this 
mapping is defined up to a phase factor. If these 
phase factors can be chosen so as to yield a linear 
mapping on X, we say that the dynamical mapping 
induces a linear mapping on X. In the earlier paper I 
it was stated that if a dynamical mapping maps 
pure state density operators to pure state density 
operators and induces a linear mapping on X, then 
it is a Hamiltonian mapping. This statement is true 
only for those dynamical mappings which map the 
set of pure state density operators onto itself. In 
Theorem 2 of reference 1, the possibility for a 
dynamical mapping to map the set of pure state 
density operators one-to-one onto a proper subset 
of itself was not given proper consideration. Before 
moving on to the new questions, we will give a cor­
rected statement of this theorem, giving explicit 
attention to this particular feature: 

Theorem. Equivalent necessary and sufficient 
conditions for a dynamical mapping to be a Hamil­
tonian dynamical mapping are: 

(i) There exists a linear unitary operator w on 
X such that the dynamical mapping maps each 
operator p in £ to wpw t . (This can be taken as the 
definition of a Hamiltonian dynamical mapping.) 

(ii) The dynamical mapping maps the set of pure 
state density operators onto itself and induces a 
linear mapping on X. 

(iii) For each member cp (i) of any set of basis 
vectors in X, there exists a normalized vector f(i" 
such that the set of these vectors spans X, and the 
dynamical mapping maps cpCi)cpUJt to f(i)!J;(j)t. 5 

(iv) There exist linear operators wand (]" on X, 
which have inverses, such that the dynamical 
mapping maps each operator p on X to WP(/. 

Now we can proceed to the consideration of con­
ditions under which time dependent dynamical 
mappings represent Hamiltonian dynamics. 

Theorem. A time dependent family of dynamical 
mappings A (t) is a family of Hamiltonian mappings 
(satisfying condition III) if it is a weakly continuous 
one-parameter group (satisfying condition II). 

Proof. If the dynamical mappings A (t) form a 
group, then for any value of t the dynamical map­
ping ACt) has an inverse dynamical mapping A( -t). 
Now A( -t) can not map a density operator p which 
is not a pure state density operator to a pure state 
density operator. For let p = api + (1 - a)p2' where 
o < a < 1, and PI and P2 are distinct density opera­
tors. Then A(-t)p = aA(-t)Pl + (1 - a) A(-t)P2 
is not a pure state density operator unless 
A(-t)Pl = A(-t)P2' which can not be true, since 
A ( - t) must be one-to-one if it is to have an inverse. 
Hence, only pure state density operators can be 
mapped to pure state density operators by A(-t). 
From this we can conclude that A (t) must map all 
pure state density operators to pure state density 
operators, and must, in fact, map the set of pure 
state density operators one-to-one onto itself, since 
it has an inverse dynamical mapping. The group 
property, therefore, implies that we have an induced 
mapping of X one-to-one onto itself. We need to 
determine that this induced mapping is linear. 

Let P-i> be the projection operator whose range is 
the one-dimensional subspace of X spanned by the 
normalized vector cpo Then, 

(3.1) 

The density operators are the operators P on X of 

• 5 The notation is the same as in reference 1. ",,,,tis a 
lInear operator defined on ;JC by its matrix elements with 
respect to any set of basis vectors .p (i) in ;JC as (.p (;) ",.p t.p c; ») = 
(.p(i), "')("', ",U»). ' 
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the form 

where 0 :::; ai :::; 1, Li ai = 1, and <Pi are a set of 
orthonormal vectors in JC. Since ACt) maps the set 
of pure state density operators one-to-one onto itself, 
we can let 

A(t)p</>; = P</>;', 

where cp; form a set of distinct normalized vectors in 
JC. Then, 

p' = A(t)p = L aiP""" 

Now 

and 

Tr (p'2) = L a: + L aiai [(<p~, <pi) [2 
i i~j 

~ Tr V). 
By applying the same argument to A( -t), which 
maps p' to p, we get that 

Tr (l) ~ Tr (p'2) 

which, together with the previous result, implies 
that 

which can be true only if 

Tr (P</>,'P</>i') = [(<p~, <Pi) [2 = 0 

for i ~ j. Hence, we can conclude that orthogonal 
projections are mapped to orthogonal projections by 
A(t), or in other words that sets of orthonormal 
vectors in JC are mapped to sets of orthonormal 
vectors by the mapping induced by A(t). From this 
it follows that, if p is a completely continuous 
symmetric operator belonging to .,c which is mapped 
to pi by A(t), then 

Tr (p'2) = Tr (/) 

since a completely continuous symmetric operator 
has a pure point spectrum. In particular, since 
p", - p", is a completely continuous symmetric 
operator, we have that 

Tr ([p" - p",J") = 2 - Tr (p"p", + p",p,,) 

is equal to 

Tr ([Pf' - pot>,r) = 2 - Tr (p",p"" + p""p",), 

where p,,' and p",' are the images under the mapping 

A(t) of p" and p</>, respectively, which implies, by 
Eq. (3.1), that 

[(~, <pW = [(~', <p')i 2
• 

The mapping induced on JC by A (t) therefore 
preserves the absolute value of inner products. 

Wigner6 has shown that if a mapping of a Hilbert 
space preserves the absolute value of inner pro­
ducts and is defined up to phase factors, then 
these phase factors can be chosen to make the 
mapping either linear and unitary or antilinear and 
antiunitary. The latter possibiliby is eliminated by 
the requirement that the dynamical mappings A(t) 
form a weakly continuous one-parameter group 
with A(O) = l.7 Hence, for each value of t we have 
that, for any operator p belonging to .,c, 

A(t)p = w(t)pwt(t), 

where wet) is a unitary linear operator on JC which 
is defined up to a phase factor. The operators wet) 
form a one-parameter group up to a phase factor, 
that is 

w(t)w(s) = e(t, s)w(t + s), 

where c(t, s) is a complex number of absolute value 
one. 

From the weak continuity of A (t) it follows that, 
for any vectors ~ and <P in JC, 

Tr (w(t)p"wt(t)p</» = [(w(t)~, <p)1 2 

is a continuous function of t. The operators wct), 
therefore, give a continuous unitary ray representa­
tion of the additive group of real numbers. It has 
been shown by Bargmann8 that in such a case the 
phase factors of the wet) can be chosen so that the 
wet) form a continuous one-parameter group of 
unitary operators on JC. This completes the proof 
of the theorem. 

We notice that the proof of this theorem remains 
valid if, instead of a representation of the additive 
group of real numbers, we are interested in a repre­
sentation by dynamical mappings of any locally 
compact topological group for which we can use the 
theorems of Bargmann8 to substitute a continuous 
unitary representation for a ray representation 
(representation up to a phase factor). For any 
symmetry group of this type, such as the Lorentz 

6 E. P. Wigner, Group Theory and its Application to the 
Quantum Mechanics of Atomic Spectra (Academic Press Inc., 
New York, 1959). 

1 The continuity condition is not needed here. That wet) is 
unitary is implied by the group property. For wet) is equal to 
within a phase factor to the square of w(t/2), which is unitary 
whether w(t/2) is unitary or antiunitary. 

8 V. Bargmann, Ann. Math. 59,1 (1954). 
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group, we can deduce the necessity of a representa­
tion by unitary transformations on the Hilbert 
space of state vectors.2 The requirement that the 
induced mappings preserve the absolute values of 
inner products, or that" transition probabilities" be 
preserved by the symmetry transformations, need 
not be assumed; it can be proved from the require­
ment that each symmetry transformation maps 
density operators linearly to density operators. 

IV. NON-HAMILTONIAN MAPPINGS 

In this section we will show that the group 
property is necessary if a time dependent family of 
dynamical mappings is to be a family of Hamil­
tonian mappings. We present an example of a 
family of dynamical mappings A (t) which have 
almost every property one might ask for except the 
group property. Let wet) be a continuous one­
parameter semi-group of operators on X which are 
isometric but not unitary. Examples of such semi­
groups are well known.9 For each operator p belong­
ing to £, let 

ACt) p = wet) pwtct). (4.1) 

It is easy to see that the A (t) form a continuous 
one-parameter semi-group, and that, since pure 
state density operators are mapped to pure state 
density operators, each A (t) is a dynamical 
mapping. Therefore, the A (t) satisfy condition I. 

9 F. Riesz and B. Sz. Nagy, Functional Analysis, translated 
from the second French edition by L. F. Boron; (F. Ungar 
Publishing Company, New York, 1955), p. 396. 

But each A(t) does not have an inverse dynamical 
mapping, so they do not satisfy condition II. 

In addition to the property of time dependence, 
we have that for each t the A (t) of this example is 
an extremal element of the convex set of dynamical 
mappings which maps the set of pure state density 
operators one-to-one onto a subset of itself, induces 
a linear mapping on X, preserves the entropy or 
the trace of the square of density operators, and 
preserves the multiplication of operators on X. 

Every continuous one-parameter semi-group of 
isometric operators is generated by a maximal sym­
metric operator,t° so the transformation (4.1) can 
be thought of as the solution of a "Schr6dinger equa­
tion" for the pure states with a maximal symmetric 
Hamiltonian operator. It is also known that such 
a semi-group can be made into a unitary group by 
extending the Hilbert space. The extension of the 
maximal symmetric generator of the semi-group is 
the self-adjoint generator of the unitary group.9 
Hence, the dynamical mappings defined by the 
isometric semi-group can be thought of as the 
restriction of a family of Hamiltonian dynamical 
mappings to a subspace of the pure states. 
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4 and 5 Point Wightman Functions* 
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A method is given for estimating the dimensions of different types of boundary surfaces which 
ar~ relevant for ~he d?mains of holomorphy, without using local commutativity, of the 4 and 5 point 
Wightman functIOns III scalar product space. The procedure is a straightforward application of the 
explicit parametrization given by Kallen and Wightman for vectors on the boundary. The DAN AD 
and other hypersurfaces for the 4 point function are deduced. For the 5 point function, in addition to 
generalizations of hypersurfaces corresponding to lower point functions, a new type of hypersurface 
appears which can be denoted in a matrix form Z = DUMUD but not in the form Z = DAN AD. 

1. INTRODUCTION 

MUCH effort and interest has centered in recent 
years on the study of relativistic quantum 

field theory based on the properties of vacuum 
expectation values of products of Heisenberg field 
operators, or in terms of Wightman functions.! 
Beginning with very general physical requirements 
on the theory, such as Lorentz invariance, absence 
of negative energy states and local commutativity, 
one attempts to obtain the mathematical and 
physical consequences of these assumptions. In the 
deduction of the consequences of the general re­
quirements, the theory of analytic functions of 
several complex variables has played an important 
role since, by virtue of the spectral conditions and 
relativistic invariance, the Wightman functions are 
boundary values of analytic functions of several 
complex variables analytic in a region called the 
future tube. By virtue of their analyticity and 
invariance properties these functions are also 
analytic functions of the scalar products of their 
4-vector variables, or of their invariant variables.2 

Local commutativity allows an extension of the 
domain of analyticity of these functions. 

A complete determination of the domain of 
holomorphy,3 using local commutativity, has been 
carried out4 for the 3 point but not for the higher 
point functions. A possible first step in the procedure 

* Supported in part by the National Science Foundation 
and the Office of Naval Research. 

t Present address: Palmer Physical Laboratory, Princeton 
University, Princeton, New Jersey. 

! A. S. Wightman, Phys. Rev. 101, 860 (1956). 
2 D. Hall and A. S. Wightman, Kgl. Danske Videnskab. 

Selskab, Mat.-fys. Medd. 31, No.5 (1957). 
3 For the definition of this term, see A. S. Wightman, in 

Dispersion Relations and Elementary Particles (John Wiley & 
Sons, Inc., New York, 1960), p. 229. 

4 G. Kallen and A. S. Wightman, Kgl. Danske Videnskab. 
Selskab, MatAya. Skrifter 1, No.6 (1958). 

of determining the domain of holomorphy for these 
functions is to find the image in scalar product space 
of the mapping of the tube. We call this image the 
primitive domain. Kallen and Wightman5 have 
given an explicit parametrization of vectors corre­
sponding to the boundary of the primitive domain, 
for all the functions. This enables one to investigate 
in detail the types of boundary surfaces that could 
arise. In this note we make a straightforward 
application of this parametrization to derive the 
boundary surfaces for the 4 and 5 point functions 
in scalar product space. 6 A detailed study of the 
hypersurfaces for the 4 point function has been 
hitherto carried out by several investigators.7

-
12 

The results we derive for the 4 point function have 
also been obtained by Kiillen using different tech­
niques. 

The contents of the present note are as follows: 
In Sec. 2 we outline the arguments leading to the 
definition of B~m} (N) surfaces (n :::; 4) which make 
up the boundary. In Sec. 3 we estimate the dimen­
sions of these sets and pick only those which can 
possibly be hypersurfaces. It is shown that there 
are only five basic types of hypersurfaces. The first 
three (the Cut, S, and F) have already been studied5 

by the methods of this note. In Sec. 4 we show the 
equivalence of the fourth hypersurface to the 
DAN AD. (It appears for the 4 and 5 point func­
tions). Finally in Sec. 5 we prove that the fifth 

• Appendix II of reference 4. 
6 Professor A. S. Wightman informs me that he has 

obtained a similar derivation for the 4 point function bound­
ary [J. Indian Math. Soc. 24, 625 (1960)]. 

7 D. J. Kleitman, 1959 (unpublished), see reference 9. 
8 R. Jost, 1959, see reference 10. 
g G. Kallen, in Dispersion Relations and Elementary Particles 

(John Wiley & Sons, Inc., New York, 1960), p. 389. 
10 G. Kallen, Nuclear Phys. 25, 568 (1961). 
11 C. Fronsdal, J. Math. Phys. 2, 748 (1961). 
12 G. Eriksson (to be published). 
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type of hypersurface, which appears for the 5 point 
function, cannot be expressed in the DAN AD form, 
but can be expressed in a modified form Z = 

DUMUD. In Appendix A a list is made of the 
equations in terms of invariant variables for the 
basic surfaces, and in Appendix B an alternative 
proof that points of DUMUD lie on the boundary 
of the 5 point is given. The arguments there indicate 
that the primitive domain is a domain of holo­
morphy. 

2. DEFINITIONS AND PRELIMINARIES 

As usual we restrict ourselves to the case of scalar 
fields A.(x). Our study is then concerned with the 
properties of the Wightman function 

w(n+l)(~I' ~2' ••• ~n) 

w(n+l)(Xl - x2 , X 2 - Xa, .•• Xn - xn+ 1) (2.1) 

(0 IA 1(xt)A 2 (X2) •• , A n + 1(xn + 1) I 0) (2.2) 

which, due to the absence of states of negative 
energy and spacelike momenta, are boundary values 
of a function 

i = 1, .,. n (2.3) 

analytic 1 in the open set13 

1]7 > 0, 

i = 1, .,. n (2.4) 

called the future tube Tn. The Wightman functions 
are invariant under transformations of the proper 
orthochronous homogeneous Lorentz group L!. The 
Bargmann-HaIl-Wightman theorem2 states that 
w(n+l) is also an analytic function of the scalar 
products !;;Sk = Zik, j, k = 1, ... n. As S. varies 
over the tube Tn, Zik varies over a domain mln in 
scalar product space (ml space). 

Our object is to determine the boundary (denoted 
amln ) of mln for n = 3, 4. To achieve this, it is 
useful to consider the extended tube T~ which is 
defined as the set of all points At;, i = 1, ... n, 
where S. E Tn and A E £+ the group of all complex 
Lorentz transformations of determinant + 1. The 
extended tube T:' contains the tube Tn as a subset. 
Since a complex Lorentz transformation leaves 
scalar products of space-time vectors invariant, the 
extended tube also maps onto mln • 

To determine amln , one uses certain general 

13 The scalar product of r is defined here as 1;2 = 1;(0)2 - t;2. 

properties2
•
14 of the mapping of vectors ri onto 

their scalar products SiSk = Z,k' It can be shown 
that the image of aT:' is amln and that amln is con­
tained in the image of aTn • Hence it is not necessary 
to consider all points of aT:'. Let Bn = (aTn) n 
(aTD, i.e., the intersection of the boundary of 
the tube and the boundary of the extended tube. 
In fact the image of Bn itself is amln • On the other 
hand, there exists no complex Lorentz transforma­
tion A E £+ which carries points of Bn into Tn. 
It is thus possible to partition the points of Bn 
into disjoint subsets B;,m) , m = 1, ... n: B~m) is 
the set of points s;, i = 1, ... n, of Bn such that 
there exists a A E £+ carrying any (m - 1) element 
subset of r. into T m-l, but there exists no A E £+ 

carrying some m element subset of S. into T m' 

Let those vectors of B;,m) which cannot be trans­
formed into Tm be relabeled Si, i = 1, .,. m. They 
are characterized by15 

2 0, (O) > 0, i 1, 1]. = 1]i = ... m (2.5) 
m 

L: Ai(~i /\ 1],) = 0, L: Ai = 1, 
1 

Ai > 0, i = 1, ... m, (2.6) 

where /\ denotes the antisymmetric tensor product. 16 

Suppose there are N linearly independent vectors 
among the 1]i, i = 1, ... m. We relabel them 1]., 
i = 1, ... N. We can then express the other vectors 
in terms of them as 

1]k = L: {3k;1];, k = N + 1, ... m, 

j = 1, '" N (2.7) 

l = 1, ... m (2.8) 

and Eq. (2.6) may be written5 in the more explicit 
form 

Ai~i + L: Ak{3k.h = L: Cl'i,1]" } 

a = CI' (real) 17 

k = N + 1, ... m, i, j = 1, ... N 

(2.9) 

L: Az = 1, AI > 0, l = 1, ... m. (2.10) 

We see from Eqs. (2.7) and (2.9) that of the 2m 

14 A good part of what follows in Sec. 2 is a summary of 
the results of reference 5. We omit a discussion of the limit 
points mentioned there. 

~5 .We ~ave.norm~lized the ~i, and also set them strictly 
p.osltlve, slllce If one IS zero, say ~;, then I;.,.i = 1, . " (j - 1), 
(J + 1), ... m belongs to Bn(m-I) too, whIch contradicts the 
definition of Bn (m). 

16 Ui /\ "1;)("') = I;i(") "Ii(') - 1;;(') "Ii ("), where 
J.t < v are space-time indices. 

17 a denotes the transpose of the matrix ll'. 
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real vectors (t., '11., i = 1, ... m), the maximum 
number that are linearly independent18 is m. 

We shall denote by B~m)(N) the subset of B~"') 

defined by Eqs. (2.7) to (2.10) where the indices of 
the vectors in these equations are permutations of 
the original ones in Eq. (2.3). The subset of a~n 
arising by mapping the points of B~"l) (N) will be 
referred to as the surface B~m)(N). 

3. THE SURFACES Bn(m)(N) n = 2, 3, 4 

From the definitions of N and 'in we have 
1 S; N S; 'in S; n, and since we are dealing with 
4-space, we also have N S; 4. We shall restrict our 
discussion, in the following, to the 3, 4, and 5 point 
functions, so that n = 2, 3, 4, respectively. The 
number of complex scalar products is (n/2)(n + 1) 
and the vectors ti giving rise to them are, in general, 
linearly independent since n S; 4. A surface of real 
dimension n(n + 1) - 1 = D (say) in the space 
~(n/2)(n+I) of (n/2)(n + 1) complex variables [or 
n(n + 1) real variables] will be called a hypersurface. 
For a given n we wish to know which of the B~m) (N) 
sets could give rise to hypersurfaces. We expect the 
boundary a~n to be covered by all such sets together 
with their limit points. 

We shall first consider the surfaces B~n) (N) and 
obtain upper bounds for their real dimension. This 
upper bound will be denoted by P. We take, as our 
point of departure, the explicit parametrization 
given by Eqs. (2.7) to (2.10) for vectors of B~m) (N). 
Since 'in = n ,<ve have 1 S; N S; min (n, 4). 

The real parameters Ai, OIi;, 13k;, will be allowed 
to range over all values subject to the restrictions 
(2.10), & = 01, and (2.7) to (2.8), respectively. The 
1Jk, k = N + 1, ... n, depend on the 1J;,j = 1, ... N, 
through Eq. (2.7) and the ti, i = 1, ... N, depend 
on the 1J; through Eq. (2.9). From Eq. (2.9) we have 

Ait. = L <Xii1Ji - iAi1Ji - L Ak{3kih, 

i, j = 1, .,. N, k = N + 1, ... n. (3.1) 

Also, from Eq. (2.7) ,ve obtain 

!;k = h - i L (3ki'l1i, 

j = I, ... N, k = N + I, ... n. (3.2) 

The scalar products Zij = Ls;, i, j = 1, ... n, would 
then contain the real paramcters Ai, 01,;, 13k;' 
'I1i1Ji (i < j), 1Jii;k, htl (k S; l), i, j = 1, ... N, 
k, l = N + 1, .,. n. The total number of these 
parameters, the restrictions in (2.7) to (2.10) having 
been taken into account, will be our estimated upper 

18 This result has been proved also by other means in 
reference 11. 

bound for the (real) dimension of the surface B~n) (N) 
and is denoted by P. 

The number of independent Ai is en - 1), of 
<Xi; is tNeN + 1), of 7}i'l1i is tN(N - 1), of 'I1.i;k is 
N(n - N), and of hi;l is Hn - N)(n - N + 1). Tf 
N = 1 the number of (3ki is (n - 1). But if N > 1, the 
condition (2.8) that all the 1J. lie on the forward cone 
(none being zero) gives a relation on the (3's and 
they are not all independent. For example, if 
N = 2, n = 3, then 1J3 = f311Jl + (321J2 and Eq. (2.8) 
implies (31{321J17}2 = O. Now '111'112 > 0 since 7}1, 7}2 
are linearly independent and by our stipulation 
7}~O) > 0 in Eq. (2.8) we cannot have 131 = 0 = (32' 
Thus (31 = 0 or (32 = O. If N = 3, n = 4, then 
'113 = {317}1 + f327}2 + f3a7}3, giving Li<; {3i{3;1Ji1J; = 0 
and at least one {3i 7"" 0, which equation may, in prin­
ciple, be solved for one of the {3i in terms of the others 
and the 1Ji1Ji (i < j). Hence, if N > 1, the number 
of independent parameters {3k. is (n - N)(N - 1). 
Adding up these numbers, we obtain 

if N = 1 P _ {!n(n + 5) - 2 

!n(n + 1) - tN(N - 1) + nN - 1 if N > 1. 

Thus, letting R = D - P, 

R = n(n + 1) - 1 - P 

{
Hn - 2)(n - 1), 

= Hn - N)(n - N + 1), 

N=l 

N>1. 
(3.3) 

No hypersurface is possible if R > O. On the other 
hand if R S; 0 then we have suitable candidates for 
hypersurfaces. In fact inspection of Eq. (3.3) shows 
that the upper bound P has been chosen judiciously 
enough to give R ;::: 0 for all the B~") (N) surfaces 
(n S; 4). We see that (since n ;::: N) 

R O 'f d I 'f {n = 1, 2 for N = 1 = ,1 an on y J 

n = N for N> 1. 

The values in Eq. (3.4) (1 S; n S; 4) are 

(n, N) = (1, I), (2, 1), (2, 2), (3, 3), (4, 4). 

The surfaces are,19 respectively, 

(3.4) 

Bi ll (l), B~2)(1), Bi2 )(2), Bi 3 )(3), B~4)(4) 

and denoted by the respective names 

19 The 2 point function cut is only obtained by taking a 
suitable limit for the points of R 1• This is because we have 
excluded the tip of the light cone for the vector 17 in our 
discussion. This is also a boundary point of the tube. So, 
to be quite accurate, we could possibly have N = 0 when 
Eqs. (2.5) and (2.6) no longer apply. However we notice 
that r2 = e in this case, and that if 1;2 2': 0 we are also on 
the boundary of the extended tube. This boundary U·2 2': 0) 
is in fact the cut. 
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Cut S F DANAD DUMUD. 
(3.5a) 

They are, except for the last, already well known6
,lO 

and one readily satisfies oneself that they are in 
fact hypersurfaces and not of lower dimension, The 
DUMUD hypersurface for the 5 point function is 
discussed below in Sec. 5. We notice that the 3 
point function is exceptional in the sense that it 
gives a hypersurface for N < n as well as for N = n. 
The numbers P are given in Table 1. For brevity 
we shall sometimes refer to the DAN AD and 
DUMUD as the A and U surfaces, and denote the 
cut by C, 

The surfaces B~m) eN), m < n remain to be dealt 
with, In these cases Eqs. (2.7) to (2.10) parametrize 
80me m-element (proper) subset of the vectors 
ti, i = 1, ... n, each remaining ti lying within the 
tube T 1• The totality of points of B~m) (N) is given 
by vectors !:~" ... tdrn satisfying Eqs. (2,7) to 
(2.10), where (J denotes any permutation of 1, ,., n, 
Of the in(n + 1) scalar products Z~i~i1 i, j = 1, ... n, 
those with i, j = 1, ... m are parametrized in 
precisely the same form as Z~i~i' i, j = 1, .. , m in 
B;:)(N). Thus B~m)(N), m < n, can give rise to 
hypersurfaces20 for no values of (m, N) other than 

(m, N) = (1,1), (2, 1), (2,2), (3, 3). (3,6) 

We introduce generalizations of the surfaces 
C, S, F, A of (3,5a). The generalized surfaces are 
denoted by 

where i < j < k, 

tions as z,,' r, 8 1, 2, 3, in A, the 
other z'" r, 8 = 1, 2, ... 4, r, 8 r= i, j or k, being free. 
The Fij, Sij, Ci, are defined in similar fashion. Then 
all points on the surface B~ml(N), m < n (apart from 
limit points) must lie21 on the appropriate surfaces 
of (3,6a). For example, any point of B~3)(3) lies on 
A J23 , A 124 , A 134 , or A 234 • 

To summarize, for points on a;mn it is sufficient 
to consider the hypersurfaces B~n) (N) with (n, N) 
given by Eq, (3,5), together with the surfaces 
B~m)(N), m < n, with (m, N) given by Eq, (3,6). 
The former set of surfaces B~nl (N) are precisely 
C, S, F, A, and U, whereas each of the latter set 
B~m) (N), m < n is contained in the generalizations 
of C, S, F, and A. There are, in all, only the Cut, 
and four other basic types of surfaces, For example, 
in the case of a;m4 we need only consider B!4l(4), 
B~3l (3), B~2) (2), B~2) (1), and B!l) (1). Points of 
B!4) (4) form the U (or DUMUD) surface (Sec. 5). 

4. THE DANAD BOUNDARY FOR 
THE 4 POINT FUNCTION 

We demonstrate now that the DANAD boundary 
for the 4 point function is precisely the surface 
Bi3l(3), The equations for the latter, from Eqs, 
(2.7) to (2,10) are 

& = a (real), 
3 

Ai> 0, L Ai = 1, i, j = 1,2,3, (4.1) 
1 

where the TJi are 3 (variable) linearly independent 

i, j, k = 1, .,. n. (
vectors on the future light cone. Equation (4,1) 

:3 ,6a) . 
gIves 

The Zr., r, 8 = i, j, k, in Aiik satisfy the same equa-

TABLE 1. Upper bounds for dimensions of Bn (nl(N) surfaces. 

No, of 
linearly 

(n + 1) point Dimension of independent 
function boundary amI" l1i 

n D = n(n + 1) - 1 N 

2 5 2 
1 

3 11 3 
2 
1 

4 19 4 
3 
2 
1 

Upper bound 
for 

dimension of 
Bn(n)(N) 

p 

5 
5 

11 
10 
10 
19 
18 
16 
16 

20 Roughly speaking, each W (n+1) n > 1 can have "lower 
poin~ function bounda~es," This is alrea'dy clear for the 
3 pomt. ~or the 4 pomt, KiilIen has numerically plotted 
pl.ane sectIons of amr3 exhibiting the intersection of DANAD 
wIth Sij or F i; (reference 10). 

(4.2) 

and 

(4,3) 

Let TJjTJI = Mil, j, l = 1, 2, 3, Then M = M. 
Mii = ° and Mil> 0, j r= l. It is possible to express 
the scalar products of the TJi in the form 

TJjTJI = M jl = /l-;Njl/l-z 

where /l-i > 0, j = 1,2,3, 

{
o j = 

and Nil = 1 
j r= l; j, l = 1,2,3. 

(4.4) 

• ~1 On t~e ot~er hand, parts of the surfaces (3,6a) certainly 
lie m the mtenor of the singular region for the function. 
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In fact, the /Li are given uniquely by 

/LI = (M 12M 1dM23) 112 , /L2 = (M12M23/M 13) 1/2 , 

/L3 = (M13Mn/M12)1/2. (4.5) 

The use of Eq. (4.4) in (4.3), with the substitutions 

(4.6) 

gives 

j,l 

or in matrix form6 

Z = DANAD (3 X 3), (A = A, d i > 0). 

This expression is identical to that of Jost8 and 
Kiillen9

•
1o

; the real part of A is a symmetric matrix 
and the imaginary part is diagonal with strictly 
negative elements. 

The other hypersurfaces for the 4 point are parts 
of the 3 point type boundaries F i ;, Si; (three of 
each) and the three cuts Gi , 1 ::; i < j ::; 3. Equa­
tions for these surfaces (including the DAN AD) 
in terms of the 6 complex variables Zij in ;m space 
are given in Appendix A. The DAN AD boundary 
is denoted by Am. 

5. THE DUMUD BOUNDARY FOR 
THE 5 POINT FUNCTION 

In this section it is proved that a new type of 
surface appears when we consider the 5 point func­
tion. This is the surface B~4)(4) which we show 
below can be written, in matrix notation, as 
Z = DUMUD (4 X 4) but not in the form 
Z = DANAD (4 X 4). 

The equations for vectors on the boundary satisfy 
the same Eqs. (4.1) to (4.3) except that now the 
subscripts range from 1 to 4. There are 4 linearly 
independent vectors 1]i on the future light cone, 
giving six independent scalar products 1]i1];(i < j). 
It is not possible, in general, to find four /L;, 
j = 1, ... 4 satisfying Eq. (4.4). However those 
points of B~4)(4) where Eq. (4.4) is satisfied give 
us a 17 -dimensional subset forming the (4 X 4) 
DAN AD. This surface certainly lies on the boundary 
a;m4 but is of 2 dimensions too low to be a hyper­
surface. 22 

Let 

j, l = 1, ... 4, 

(M = M, Mil = 0, Mil > 0 for j ~ l), (5.1) 

22 An alternative proof that all points Z = DAN AD 
(4 X 4) lie on the 5 point function boundary haa been given 
in reference 9. 

and then Eq. (4.3) can be written in the form 

Z = DUMUD, 

where 

d i (Ai)-l > 0 

and 

U = a - i D- 1 = O. 

(5.2) 

(5.3) 

(5.4) 

This is 19-dimensional hypersurface.23 The other 
possible hypersurfaces for the 5 point are parts of 
the four 4 point type boundaries A w , the 3 point 
type boundaries F i ;, So'; (six of each) and the four 
cuts Gi , 1 ::; i < j < k ::; 4. Equations for these 
surfaces, in terms of the 10 complex variables Zij 

in ;m space, are given in Appendix A. 
Another proof that DUMUD gives points on the 

boundary is given in Appendix B. We note here 
that the points of the surfaces m2 )(2), B~3)(3), as 
well as B~4) (4), are all expressible in the form (5.2) 
with 2-, 3-, and 4-dimensional matrices, respectively. 
The results of Appendix B give specific functions 
(~(+») having singularities at all points of these 
surfaces. Those surfaces not covered by the forma­
lism of Appendix B are analytic hypersurfaces 
(G i, Si;)' (So is Fi;') It follows that the primitive 
domain is a domain of holomorphy. 
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APPENDIX A. ~ SPACE EQUATIONS FOR 
THE BASIC TYPES OF SURFACES 

We use the notation Zi = Zii, Yi = 1m Z,; a is a 
real symmetric matrix, M is a symmetric matrix 
with strictly positive nondiagonal elements, zero 
diagonal elements, and d i > O. Then we have the 
following equations: 

The cut G i : Zi = p, 0 ::; P < OJ. 

Sii(i < j): 2Zii + kz, + zjk = 0, 

O<k< OJ y,y, < o. 

23 The DAN AD (4 X 4) surface is that part of the 
DUMUD (4 X 4) satisfying the 2 restricting real conditions 
M12 M34 = MI3 M24 = M14 M 23 . It is of dimension 17. 
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F;;(i < j): 2z i ; = ZiZ,/r + r, 
O<r<co, YiY,. > O. 

(BS) 

where 
A ij k (i < j < k): After elimination of only the 

diagonal elements of a, we have ~~!i(Zlm; aik) = J dpi .. , dp" exp (-i L p,t;) 

where 

and p < q are two of the numbers i, j, k, r being the 
third. 

U: The 10 invariant scalar products are 

Zii = di d; L aikMk/ali - Mii - i[d; L aikMki 

+ di L a;kMki] , 1 ~ i ~ j ~ 4. 

APPENDIX B. ALTERNATIVE PROOF THAT 
Z = DUMUD LIES ON BOUNDARY 

We give, in this Appendix, an alternative proof 
that all points Z = DUMUD (n X n) lie on the 
boundary a;m" for n = 2, 3, or 4. 

Let A = a - iA, (n X n), n = 2,3, or 4, where 
a = a (real), 

Ai> 0, (Bl) 

and let T/i, i = 1, ... n, be linearly independent 
vectors on the forward light cone, i.e., T/~ = 0, 
T/;O) > 0. Then the points 

(B2) 

lie within the tube Tn or on its boundary. Writing 
Dii = di Oi;, di > 0, T/iT/; = Mij (which is > 0 or 
= ° according as i ~ j or i = j, M M), and 
Zij = tit;, we obtain 

Z = DAMAD (B3) 

and that these scalar products must lie inside or on 
a;m". 

On the other hand, the Fourier transform G of 
the boundary value w(n+l) (t) of w(n+l) (t.) is 
givenlO,24 by 

(B6) 

and the integration range over the masses in Eq. 
(BS) being defined by 

ajk ;:::: 0, -Ia;; aikj;:::: 0 all j, k, 
ajk akk 

... (-r+ 1 det (ajk) ;:::: 0. (B7) 

The Z dependence of W(z) is contained in the ~ (+) 

function which has been explicitly evaluated. 24 

Writing Y = Za and denoting the eigenvalues of 
Y by O'i, the singular manifold for the ~~!i function 
is given by25 

n 

L ± (0';)112 = t (real number). 
i=l 

Let us choose masses a = D-1M D-r, that is, 
ai; = d~IMi; dil. These masses satisfy the condi­
tion (B7) and are thus within the range of integra­
tion in Eq. (BS). We also have, for this choice of a, 

Y = DAMAMD-I = D(AMY D- 1
• 

The eigenvalues of (AM/ are those of Y, namely, 
O'i' Thus 

L ± (O'i)1I2 = Tr AM = L Ai;Mi; 

L (a;i - iAij)Mi; = L ai;Mi; 

t (say), (real number). 

This means that the points Z in Eq. (B3) must lie 
on or outside a;mn' Combining with the previous 
result, Z DAMAD lies on a;m •. 

The above argument is valid for any choice of A 
provided its elements are strictly positive. The 
extra parameters may, in fact, be dropped by setting 
A = D-r, when we get the DUMUD form considered 
in the body of the text. 

N oies added in proof. 
w(n+l\~" ... ~n) = J dpi ... dPn 

X exp (-i L p"~j)G(PjPk) O(PI)'" O(Pn)' 

This enables one to write 

(a) N. H. Mi:iller, using techniques different from 
ours, has independently obtained (preprint) hyper­

(B4) surfaces for the 5 point function. His met,hod 
consisted of investigating the singularity domain of 
the ~~+) function. A transformation diai; d, -+ aij, 

24 G. Kiillen and H. Wilhelmsson, Kgl. Danske Videnskab. 
Selskab, MatAys. Skrifter 1, No.9 (1959). 26 There is no correlation of ± signs in the sum. 
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Mij ~ diM;; d j in our equation Z = DUMUD 
(cf. the last equation of Appendix A) takes it to 
the form Z = U M U and preserves the restrictions 
on the parameters (Xii, M ij , and Uij • The latter 
form is identical with his. 

(b) The article cited in footnote 6 contains proofs 
of results we have summarized in Sec. 2 regarding 
the parametrization of vectors which give rise to 
a~n' Using the new results contained in that article 
it is possible to give a direct treatment of the 
main limit points we have not discussed in the text. 
Special points of B~m) arise when ~i /\ 7Ji = 0 for 
some of the vectors ri, i = 1, ... m. In the case 
7Ji ~ 0 we have ~i = (X7Ji which means that these 

points belong to B~l), i.e., the cut Ci • On the other 
hand, in the case 7Ji = 0, that is to say some of the 
vectors ri are real, it has been shown that the 
parametric Eqs. (2.6), (2.7), (2.9), and (2.10) still 
hold with the following provisions: When 1m ri = 0 
for some values of i, the 7Ji with the same values of 
i no longer stand for 1m L but denote auxiliary 
vectors satisfying ~i7Ji = 0, 7J~ ~ 0, 7J:

O
) > O. 

Parameters may again be counted almost exactly 
as done in Sec. 3. The only difference now is that 
on account of the additional restriction 1m ri = 0, 
which is seen to be independent of the parametric 
equations, these special points of B~m) cannot give 
rise to hypersurfaces by themselves. 
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Heisenberg Fields which Vanish on Domains of Momentum Space* 

O. W. GREENBERG 

University of Maryland, College Park, Maryland 
(Received April 18, 1962) 

If a local Heisenberg field vanishes, or where appropriate has an infinite zero, on one of the 
momentum space domains <t, p2 = -a2; CB, 0 ::; p' < m2, and p = 0; or e, p2 > M2, then the field 
is a generalized free field. Counter examples show that this conclusion cannot be drawn if the field 
vanishes on the momentum space domains ~, 0 ::; ilf\2 < p2 < M 22, p r" 0; or 8, p = O. It follows 
that if two fields in the same Borchers class are equal on one of the domains <t, CB, or e, then the 
fields differ at most by a generalized free field in their Borchers class. 

I. INTRODUCTION 

LOCAL quantum field theories, at present, seem 
to separate into two types: one type which 

can neither be solved exactly nor be shown to 
exist mathematically, and another which can be 
constructed in closed form. The first kind, hopefully, 
allows the description of a wide range of physical 
phenomena, such as the interactions of elementary 
particles. The second kind, typically, describes 
trivial systems, such as collections of noninteracting 
particles. Some middle ground would be very 
valuable-cases of field theory which are soluble, 
in some sense, and have physical interest. 

Of less importance, but still of interest, is the 
question: What restrictions, in addition to the 
general requirements of field theory, force a theory 
to be physically empty? Answering this question 
will help narrow our search for this middle ground, 

* This research was in part supported by the U.S. Air 
Force through the Air Force Office of Scientific Research and 
Development Command under Contract AF 49(638)-24. 

and may increase our understanding of the structure 
of quantum field theory. 

In this paper we discuss t.he effect of the require­
ment that the Fourier transform of the field A(p), 
should vanish or have an infinite zero on some 
domain in momentum space.1

-
4 For Lorentz in-

1 G. F. Dell'Antonio, J. Math. Phys. 2, 759 (1961) 
gave a weaker result of the kind discussed here. Dell' Antonio 
showed that A(x) is a generalized free field if A(x) satisfies 
the usual repuirements of local quantum field theory and 
A(p) vanishes for both p2 < 0 and p2 > M2. We thank 
Dr. Dell' Antonio for communicating his results prior to 
publication. 

2 H. J. Borchers (private communication) has found 
results equivalent to our cases a and e below (and also 
equivalent counter examples for cases ~ and 8) using methods 
of the theory of analytic functions of several complex vari­
ables rather than the wave equation technique we use. 
Dr. Borchers informed us of his result for case e before we 
obtained a result for this case. Our knowledge of Dr. Borchers' 
proof using the kantensatz was helpful in constructing 
our proof via the wave equation. In addition, Dr. Borchers 
has pointed out that since p(k2) = 0, k2 > M2, where p is 
the Kallen-Lehmann weight of the two point function, 
implies A(k)wo = 0, k2 > M2, which in turn implies the same 
region of vanishing for fp(q) as A(k) = 0, k2 > M2 [see Sec. 3 
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Mij ~ diM;; d j in our equation Z = DUMUD 
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variant theories, it suffices to consider invariant 
regions in momentum space corresponding to inter­
vals in the variable p2, together with the origin, 
p = O. We will treat the cases: 

CB,O ::; p2 < m 2, and p = 0; 

:D,O ::; .M~ < p2 < .M~, p ;4 0; 

and e, p = O. 

We use the same script, capital letter to label the 
case and the corresponding region in momentum 
space. With one rather singular exception,5 the 
cases we consider exhaust the possible connected 
invariant regions in momentum space. For each 
of cases <X, CB, and e, we show that vanishing of 
A(p) on the corresponding domain implies that 
A (x) is a generalized free field. ' ·6 • 7 For cases :D 
and (, we exhibit a counter example to show that 
in general, the above conclusion cannot be drawn 
for A (p) vanishing in :D or e. 

As corollaries of these results, we show that if 
fields which commute with each other at space-like 
separation in configuration space (i.e., are in the same 
Borchers class8

) are equal in either of the regions 
<X, CB, or e, then the fields differ at most by a general­
ized free field which commutes with both of them 
at space-like separation in configuration space (i.e., 
is in their Borchers class). 

In Sec. 2, we discuss the main mathematical tool 
which we use in this work, Garding's analysis of 
distributions on a four-vector (in a Lorentz metric 
space) which vanish for space-like value of their 
argument. Section 3 contains the proof of our results 
including the corollary for cases <X, CB, and e and 
Sec. 4 contains counter examples for cases :D and e. 

(d)], it suffices to IISsume that p vanishes above some mllSs 
for case e. We thank Dr. Borchers for communicating his 
results prior to publication. 

3 After the present paper WIIS completed, we received 
a preprint "Support of a field in momentum space," by 
Derek W. Robinson, Institut fiir Theoretische Physik, 
ETH, Zurich, which contains a result equivalent to our 
cIISe a. We thank Dr. Robinson for communicating his 
results prior to publication. Note added in proof. Dr. Robinson 
hIlS informed us later (private communication) that he has 
also obtained independently results equivalent to our cases 
ill and e. 

4 There is an earlier result of a similar kind, namely, 
that if the KaIli\n-Lehmann weight of a field is concentrated 
on a single mllSS, then this field is a free field of that mllSs. 
This result was proved independently by P. G. Federbush 
and K. A. Johnson, Phys. Rev. 120, 1926 (1960); R. Jost, 
Lectures on Field Theory and the Many Body Problem, edited 
by E. R. Caianiello (Academic Press Inc., New York, 1961), 
pp. 127-145; and B. Schroer (unpublished). 

5 The exception is (1', p2 = 0, and p = O. 
6 O. W. Greenberg, Ann Phys. (N. Y.) 16, 158 (1961). 
7 A. L. Licht and J. S. Toll. Nuovo dmento 21. 346 (1961). 
8 H. J. Borchers, Nuovo cimento 15, 784 (1960). 

2. GAIillING'S ANALYSIS OF LOCAL DISTRIBUTIONS 

Our main mathematical tool in this work will be 
Garding's analysis9

•
10 of temperate local distribu­

tionsj(x), where by "local" we mean thatj(x) = 0, 
x 2 < O. Since this work is not well known, we give 
a brief summary of Garding's analysis following 
Wightman's exposition9 and refer the reader to 
that exposition for a more detailed discussion. 

Garding showed that for every local temperate 
distribution j(x) there corresponds a unique temper­
ate distribution G(q, 0") defined by 

G() 1 f ( 2)'12 '."j-( ) d4 
q, U = (211")4 cos 0" x e x x, 

which satisfies the five-dimensional wave equation, 

( 
il 3 a2 a2

) 

aq02 - f: aqi2 - a0"2 G(q, 0") = 0, (1) 

is even in 0" 

G(q,o) = G(q, -u), (2) 

and whose restriction to the plane 0" o satisfies 

G(q, 0) = f(q) = (2;)4 f e'··xJ(x) d
4x. (3) 

Conversely, for every temperate G satisfying Eqs. 
(1) and (2) there is a unique local temperate J 
whose Fourier transform f is given by Eq. (3); 
and in particular the null functions G = 0 and 
J = 0 correspond uniquely to each other. 

According to Eq. (3), statements concerning the 
support of f(q) in momentum space lead directly 
to statements about G(q, 0") in the plane 0" = 0. 11 

If G vanishes in some region of (q, 0") space there 
are three principles which allow this region to be 
enlarged: 

1. If G and all its normal derivatives vanish 
on a time-like curve, then G vanishes in the double 
cone region subtended by that curve.9 

9 L. GII,rding, (unpublished). This work is discussed by 
A. S. Wightman, Dispersion Relations and Elementary Par­
ticles, edited by C. de Witt and R. Omnes, (Hermann et Cie, 
Paris, France, 1960), pp 291-308. 

10 The analysis of local functions due to Jost and Lehmann, 
and Dyson; R. Jost and H. Lehmann, Nuovo cimento 5, 
1598 (1957); and F. J. Dyson, Phys. Rev. 110, 1460 (1958), 
also leads to the results found here when the Jost-Lehmann­
Dyson method is extended to treat more general regions 
of vanishing of f(q) than were originally considered (private 
communication from H. J. Borchers and R. Stora). 

11 It is important to note that it is permissible to consider 
the distribution, G(q, 0"), restricted to a given value of 0", 
because Malgrange and Garding have shown that a temperate 
distribution which satisfies the wave equation is CO" in its 
space-like variables when integrated with a test function 
in its time-like variable, and vice versa. 9 This theorem of 
Malgrange and Garding also allows the discussion of an 
infinite zero in the commutator matrix elements of A(p) 
which are considered in Sec. 3. 
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2. If G and its first normal derivative vanish on 
a space-like disk, then G vanishes in the double 
cone region subtended by that disk.9 

3. A solution of the wave equation with prescribed 
initial data on a given space-like surface is analytic 
at any point which cannot be reached by character­
istics from regions on the given space-like surface 
where the initial data is nonvanishing. (For an odd 
number of space-like dimensions the above statement 
holds in a stronger form with "vanishes" replacing 
"is analytic.") If the solution of the wave equation is 
known to vanish somewhere in the region of ana­
lyticity, then this third principle allows the region 
of vanishing to be extended to the whole region of 
analyticity. 12 .13 

Statement 1 is remarkable since it states that 
the values of G in a solid five-dimensional region 
are controlled by the values of G and its derivatives 
on a single time-like line. Statement 2 is Huygens 
principle. It follows from Asgeirsson's lemma, how­
ever, that these two statements are equivalent.9 

Statement 3 follows from the form of the funda­
mental solutions of the wave equation. 

3. PROOF THAT A(x) IS A GENERALIZED 
FREE FIELD FOR CASES (1, CB, AND e 

(a) Requirements of Quantum Field Theory 

We list the usual requirements of local field 
theory14: I. relativistic transformation properties; 
II. unique, normalizable, invariant vacuum state ~o, 
and no negative energy states or states of space-like 
momenta (spectrum); III. vanishing of the com­
mutator [A(x), A(y)J for x - y space-like (locality); 
IV. completeness of the set of states obtained by 
applying polynomials in the smeared field operators 
to the vacuum state ~o. In addition, we will 
strengthen property II to require that the states 
above the vacuum all have nonzero mass, i.e., for 
all (improper) energy-momentum eigenstates ~".a, 
p2 ~ f.L2 > O. We consider the case of a single neutral 

12 We thank Dr. J. Peetre for bringing this third principle 
to our attention. 

13 We conjecture that a still stronger principle of vanishing 
holds: (2') (Generalized Huygens principle). If from some 
point, P, all straight lines lying in or on one cone intersect 
one or more disconnected regions in which G and its first 
normal derivative vanish, then G vanishes at P. We can 
express this conjecture heuristically by saying that light 
must travel in straight lines. 

14A. S. Wightman, Phys. Rev. 101, 860 (1956); and 
"Problemes mathematiques de la theorie quantique des 
champs," University of Paris lecture notes, 1957 (unpub­
lished). 

scalar field; however this simplifying assumption is 
not essential. 

(b) Reduction to Proof of Vanishing of a 
Matrix Element of the Commutator 

We will show below that for cases (X, (\3, and e, 
(~p.a, [A(x), A(y)]~o) 

vanishes unless ~p.a is the vacuum state [where 
{~p. a I is a complete set of (improper) energy­
mementum eigenstates labeled by energy-momen­
tum p and other quantum numbers aJ. From this 
fact it follows that the commutator behaves like 
the c number 

i Ll'(x - y) == (~o, [A (x) , A(y)]~o) 

acting on the vacuum state ~o, where Ll' is an 
integral over masses of free field commutator func­
tions. Then 

{[A(x), A(y)] - i Ll'(x - y)}~o = 0, 

and a fundamental argument due to Jost,15 which we 
will not repeat in this note, leads to the conclusion 
that the commutator is a c number, i.e., 

[A (x) , A(y)] = i Ll'(x - y). 

This c-number property of the commutator, to­
gether with the requirement (property II) of no 
negative energy states, implies that A (x) is a 
generalized free field. The only assertion in this 
paragraph which remains to be proved is the first 
one, 

Fp.a(x, y) = (\}Fp.a, [A(x) , A(y)]~o) = 0, 

unless ~p.a = \[10' (4) 

We devote the next three subsections to proving 
Eq. (4) for cases (X, (\3, and e. 

(c) Domains (X, (\3, and e 
We will show that if, in addition to the general 

requirements of subsection 3(a), the Fourier trans­
formed field _4 (p) vanishes or has an infinite zero on 
anyone of certain domaine of momentum space, 
then A (x) is a generalized free field. [The require­
ment that for p in some region [A(p), A(x)J vanish 
for all x, which leads to the same results, is not 
really weaker than vanishing of A (p).J In the cases 
where we require an infinite zero of A (p) on a given 
domain, this requirement can be replaced by 
A (p) = 0 on any arbitrarily f:lmall open domain 
which includes the original one. The cases for which 
we show that A(x) is a generalized free field are: 

16 R. Jost, Lectures on Field Theory and the Many-Body 
Problem, edited by E. R. Caianiello (Academic Press Inc., 
New York, 1961), p. 136. 
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a : A(p) = 0, and (8j8p2rA(p) = 0, n 
integral, for p2 = _a2

• 

ill : A(p) =0, 0:::;p2 <m2; and A(p) =0, 
and (9(8j8p")A(p) = 0, for p = 0, 
where (9 is an arbitrary polynomial 
of differentiation. 

e : A(p) = 0, p2 > ]}J2. 

(d) Requirements on the Commutator Function 

For convenience in proving Eq. (4), we introduce 
the commutator function, Ip",(x), from which the 
center-of-mass coordinate dependence has been 
removed 

and also the Fourier transforms, Fp(k l , k2 ) and 
fv(q) of F and I, where, for example, 

We have suppressed the quantum numbers a, since 
they play no part in our discussion. It is straight­
forward to find the relations between the large and 
small f's. They are 

and 

Fp(x, y) = e iP
' (l/2)(X+Yl]p(x - y) 

f = SPACE (CT = 0) 

fO 

FIG. 1. Domains of vanishing of fp(q) for case a: fp(q) = 0 
in the shaded regions from property II, spectrum (the exist­
ence of a lowest mass state is not used for t.his region), and 
fp(q) has an infinite zero on the hyperboloids H:: (q "F tp)2 = 
-a2 from the assumption that A(k) has an infinite zero on 
k 2 = -a2• 

The conditions on fv are 

from property III (locality), 
fp(q) = 0, outside the union of q > -tp and 
q < tp, where kl > k2 means (k l k2)2 2:: 0, 
k~ - kg > 0, 

from property II (spectrum) and 
fp(q) = ° on domains a, ill, or e, one at a time 

from vanishing of A (p) where, in detail, these con­
ditions are 

a : f.,,(kl + tp) = 0, and (8j8k;r 
fp(k l + tp) = 0, n integral, for 
ki = _a

2
; and the same with +kl 

replaced by -k2' and lei + tp 
replaced by - k2 - tP. 

ill : fp(k l + tp) = 0, ° :::; k~ < m2
; 

fp(k l + tp) = 0, and (9(8j8kn 
fp(k l + tp) = 0, kl = 0; and the 
same with kl -+ - k2' and kl + tp -+ 

-k2 - tP. 
e : fp(k l + tp) = 0, k~ > M2; and the 

same with kl -+ - k2' and kl + tp -+ 

-lez - tP. Since p is time-like here 
(spectrum) we choose p = (ll, 0) with 
no loss of generality. 
(See Figs. 1, 2, or 3, respectively.) 

(e) Vanishing of fp for Cases a, ill, and e 
Now we show that Ip(x) vanishes for cases ex, ill, 

and e. We refer again to Figs. 1, 2, and 3 in which 
the shaded regions and heavy lines are domains 
where Gp(q, 0) = fp(q) vanishes. We note that in 
cases a and ill the only use we make of property II, 
spectrum, is to place p on the time axis without loss 
of generality. In case e the only use we make of the 
strengthened spectral condition which prohibits 
light-like states is again to place p on the time axis. 
We consider the three cases in alphabetical order 
and show for each that principles 1, 2, and 3 allow 
the regions where Gp vanishes to be enlarged to the 
whole (q, u) space. 

This conclusion follows for case ex in two steps. 
First we use principle 1, which is valid for the family 
of time-like curves ITA I lying in the hyperboloids 
(q - tp)2 = _a2 and (q + tp)2 = _a2, with 
end points (til + (q2 a2

)1/2, q, 0) and 
(-til - (q2 - a2

)1/2, q, 0), for all iqi = A, provided 
Gp and all its derivatives vanish on this family of 
curves. This last condition holds since (i) all deriva­
tives along the surfaces of these hyperboloids 
vanish since G p vanishes on these hyperbloids, 
(ii) all derivat.ives normal to the surface of these 
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hyperboloids, but in the plane u = 0 vanish by the 
infinite zero hypothesis, (iii) all odd u derivatives of 
Gp vanish because Gp is even in u, Eq. (2), and finally 
(iv) all even u derivatives of Gp , starting with 
rl/au2

, vanish since Gp satisfies the wave equation 
Eq. (1). Using principle (1) for longer and longer 
families of lines {TAl we find that Gp(q, u) vanishes 
in the union, eA, of the family of double cones 
with vertices at (til + (q2 - a2

)1/2, q, 0) and 
(-h - (q2 - a2

)1/2, q, 0), for all Iql = A. For any 
finite point P : (0, q, u) in the qO = 0 plane there is 
a Ao ;:, for A > Ao P is included in CA/

6 and thus in 
the limit A ---} co, Gp(q, u) [and by similar arguments 
(a/aq°)Gp(q, u)] vanishes in this qO = 0 plane. 
Now from principle (2) we conclude that Gp(q, u) 
vanishes everywhere, and, therefore, so does jp(x), 
which completes the proof that A (x) is a generalized 
free field for case a. 

The same conclusion follows for case ffi from 
similar arguments based on the region of vanishing 
for this case (Fig. 2). 

For case e we first use principle 1 which suffices 
to prove vanishing of Gp(q, u) in 

a : lUCk) vtk,O) I (k + tp)2 = M2, kO + til > 01; 

{3: {UCk)VZk.O) I (k - tp)2 = M\kO - til < OJ; 

and 

'Y : lUCk) V(k.O) I (k + tp? = 0, kO + til > 0, 

X Ikl > tpl n lUCk) Tltk.O) I (k - tp)2 = 0, 

X kO 
- til < 0, Ikl > tp}, 

where VT •.• ) is the five-dimensional forward (back­
ward) cone with vertex at (q, u). It is clear intuitively 
and is confirmed by an envelope calculation that 
these regions are 

a : Vt-PI2.M) n V7-pI2.-M); 

and 

'Y : (q, u) EE [Vt-pI2.T) U V(p/2.T)], T arbitrary. 

Regions a and {3 are the intersections of five-di­
mensional cones; region 'Y is a cylinder, with base 
the original region of vanishing in the u = 0 plane, 
and with developable sides orthogonal to this 
u = 0 plane. Since a, f:3, and 'Yare disjoint, principle 
2 leads to no further increase in the region 
of vanishing. 

In order to prove that Gp vanishes identically, it 
suffices to connect a and (3 to 'Y. We do this by 
proving vanishing in the neighborhood of a point 

f- SPACE (cr" 0) 
'10 

FIG. 2. Domains of vanishing of fp(q) for case ffi: fp(q) = 0 
in the dotted region bounded by J .. : (q =F !p)2 = m', (A(k) = 0, 
o ::::; k2 < m'), andfp(q) has an infinite zero at q = ±!p(A(k) 
has an infinite zero at k = 0). The figure is drawn for the 
case m' < (!p)'. 

f - SPACE (0- ~ 0) 

FIG. 3. Domains of vanishing of fp(q) for case e: fp(q) = 0 
in the vertically shaded regions 'Y (spectrum) and in the 
dotted regions a and {J bounded by K+ +: (q ± !p)' = M', 
qO + !p > 0, and K_-: (q - !p)2 = M', qO - !p < 0, re­
spectively, (A(k) = 0, k' > M2). The figure is drawn for 
the (least favorable) case M' > p'. 
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,-SPACE (,,'0) 

FIG. 4. Intersection in the <T = 0 plane of regions which 
occur in the discussion of case e. 

(w, 0) which lies in the (j = 0 plane in the region 
between the four-dimensional cone V7P/2) and the 
upper sheet of the hyperboloid, (q + !p)2 = M2 
which approaches it asymptotically. (See Fig. 4.) 
The argument which we will give for vanishing of 
Gp near (w, 0) is a simple geometrical one based on 
principles 2 and 3. However, to give formulas 
for all t.he regions involved is cumbersome, and may 
cloud the simplicity of the argument. For this 
re.ason, we first state the argument qualitatively, 
wIth reference to Figs. 4 to 7, and postpone the 
details of the argument to the next paragraph. Our 

c.. 

objective is to show that Gp is analytic in a neighbor­
hood of (w, 0) which includes points in a and l' at 
which Gp vanishes. Then it follows that Gp vanishes 
in the neighborhood of (w, 0), and this new region 
of vanishing connects the old regions a and 1'. We 
show analyticity in this neighborhood of (w, 0) by 
using principle 3 applied to the data in the inter­
section of the backward cone of dependence of 
(w, 0) and some plane qO = -v, v > 0, region T". 
(See Figs. 4, 5,7.) Principle 3 will imply analyticity 
at (w, 0) provided we can prove, from our informa­
tion about regions of vanishing of Gp that Gp(w, 0) 
cannot obtain a contribution from characteristics in 
the plane qO = -v. We use principle 2 in two steps 
to show this. First we consider the domain of de­
pendence of (w, 0) in the plane qO = 0, the region 
S'. (See Figs. 4, 6, 7.) We note that vanishing in l' 
restricts this region to S. The domain of dependence 
of (w, 0) in the plane qO = -v is then restricted to 
the domain of dependence of S in this plane, which 
we call T'. Vanishing in {3 restricts this domain of 
dependence of (w, 0) still further to T. The crucial 
point is that for proper choice of wand v, T contains 
no characteristics v,hich can reach a neighborhood of 
(w, 0), which proves the desired analyticity at w. 

Kow we go through this argument again giving 
formulas for the regions involved. We choose (w, 0) 
to be any point such that 

-h + Iwl:::; W
O 

:::; _!p + (w2 + M2)1/2. 

The region T" in the qO = - v plane is bounded by 
the surface C", 

C" : (q - W)2 + (j2 = (WO + V)2. (See Figs. 5, 7) 

--",*~4-+-£::.......:l"""':;~rf--l--+- , The region S' in the qO = 0 plane is bounded by the 

I'L--L 

c-'-Y-

FIG. 5. Regions of in~erest fo~ case e in the qO = -v plane. 
T~e figure sho":8 the. mtersectlOn of the regions of interest 
WIth the two dlmen~lonal p!ane containing q = wand <T. 

Formul.as f?r ~he vafi0.us regIOns are given in the text. T" is 
the regIOn Inside the Circle CIt. T' is bounded on the left by 
an arc 1jJ of CIt with extrema E±, above and below by arcs 
of the circles C,.:, whose centers D,.: are given by q = tllw, 
IT = ":UD = ,.:[wo'. - ([w[' - til)']!", and whose radii are 
both v, and at the fight by a segment of the straight line L 
wh?se end po~nts !-... are give,! be q = (til + v)11" <T = ±UD: 

Q .IS the regIOn ms!de .the mtersection of the circles Q ... 
T }s that pa:t of T .whlCh does not lie in Q. Note that no 
P?mts of the llltersectlOn ?f the ~haracteristic cone from (w, 0) 
WIth the plane qO = -v, I.e., pomts on the circle CIt, lie in T. 

surface B, 

B : (q _ W)2 + (j2 = W02 • (See Figs. 6, 7) 

The region S in the qO = 0 plane is bounded by the 
surfaces Band D, 

D: Iql = h· (Figs. 6, 7) 

The region T' in the l - v plane is bounded by 
the surfaces C", C±, and L, where C± and L are 
given by 

C .. : envelope of (q-he)2+(u=Fu.)2 = 
Il, for all e, where e iil a unit 3-
vector and (Figs. 5, 7) 

u. = [W0
2 

- (w - !lJe)2r!2, 

L: Iql !lJ + v. (Figs. 5, 7) 
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Finally, the region T in the qO = -v plane is 
T = T' - T' n Q, where Q is bounded by the 
surfaces Q= 

Q~ : q? + «T or M)2 = (v + h)2. 

The region T contains no characteristics which can 
reach (w, 0) provided that we can choose wand v 
(subject to our initial conditions on w) so that 
all points {EI in the intersection of the cone V"(w.Q) 
with the plane qO = - v which lie in T' are in Q, 
and thus not in T. This requirement will be satisfied 
provided Q contains the extreme points of lEI, i.e., 
points with the largest (T coordinate, which we call 
E±. The points E~ have coordinates 

E±{q(T == qo = [h - (v/wO)(lwl - h)Jw 
±(To = ±(l + v/WO)[W02 

- (lwl 2 
- h)2r 12 

where w is a unit vector in the direction of w. The 
condition that E± E Q is 

q~ + «To + M)2 ~ (v + h)2, 

and is satisfied in the large [w[ limit for a range of 
WO connecting a and 'Y provided v > (2M~2)/~, which 
can always be satisfied by proper choice of v. Thus, 
a and 'Yare connected by a region of vanishing, 
and use of principle 1 shows that Gp(q, (T) vanishes 
identically. This concludes the proof that A (x) 
is a generalized free field for case e. 

(f) Heuristic Remarks 

If we consider that X(p), for p off the mass shell, 
can be measured in some kind of "impulsive probe" 
experiment, then we might represent a matrix 
element in which X(p) has space-like momentum, 
i.e., produces momentum transfer in interacting 
with some" B" particle, by a diagram like Fig. 8Ca). 
A corresponding crossed matrix element where X(p) 
carries time-like momentum would be represented 
by the diagram in Fig. 8(b). Case a states that if 
all diagrams which correspond to X (p) carrying 
momentum transfer have an infinite zero at some 
_p2 = A2 > 0, then the crossed diagrams which 
correspond to X (p) carrying mass also vanish; and 
in fact X (p) leads to no physical effects at all. 
Similar remarks hold for case CE. For case e, by 
virtue of Borchers' result2 that p(p2) = 0, p2 > M2 
suffices, the absence of high mass intermediate 
states in the propagator implies the absence of all 
physical effects. Note that the matrix element 
in(2 I A(O) I 0) can contribute to p(p2) for arbi­
trarily high masses, so that no conclusion can be 
drawn (on the basis of the present arguments) from 

'1'°'0 PLANE 

D 

/ 
/ 

/ 

w 

SEE DETAIL A 

/ 
/ 

/ WO 

s' 

S I 

;"-D 

I 
I 

I DETAIL A 

FIG. 6. Regions of interest for case e in the qO = 0 plane. 
The figure shows the intersection of the regions of interest 
with the two-dimensional plane containing q = wand <T. 
Formulas for the various regions are given in the text. 8' is 
bounded by the circle B. 8 is bounded by an arc of Band 
a segment of the straight line D, whose end points D± are 
given by q = !pw, <T = ±<TD (see Fig. 5 for <TD)' 

the requirement in(n [ A(O) 10) = 0, n > 2, which is 
weaker than that of case e. 

4. COROLLARY FOR CASES ct, CB, AND e 

Next we consider two fields A(x) and B(x) which 
(a) describe theories which have properties I through 
IV above, (b) are in the same Borchers class .IB, 

w 

8 

FIG. 7. Regions of interest for case e in the three-dimen­
sional subspace spanned by the <T axis, the qO axis, and the 
vector q = W. The circle e" and the objects associated with 
it are in the qO = -v plane; see the caption of Fig. 5 for a 
detailed description of these objects. The circle B and the 
objects associated with it are in the qO = 0 plane; see the 
caption of Fig. 6 for a detailed description of these objects. 
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-~~~---1 :' 
• 

la) 

FIG. 8. (a) fIei­
senberg field A(p) 
as a probe carrying 
space-like momen­
tum, _p2 = t.,2 = 

I 
I 

A(P) : 
I 
I 

(k - k')2 > O. (b) 
Crossed diagram: 
Heisenberg field 
carrying time-like 
momentum p2 = 
p.2 = (k + k')2 > O. 

and (c) have Fourier transforms which agree17 on 
the domains (1., ill, or e. For case e, vanishing of the 
Kallen-Lehmann weight of A - B suffices; however, 
equality of the weights of A and B in e does not 
suffice. Since A(x) - B(x) satisfies the hypotheses 
of the discussion above, we conclude that A and B 
differ at most by a generalized free field in their 
Borchers class m. 

5. COUNTER EXAMPLES FOR CASES :0, AND e 

Finally, we discuss cases :0, 0 :::; 1II~ < p2 < M;, 

_ 17 By agree, we mean A(p) = B(p) on open sets; A(p) = 
B(p), and 

(a/ap2tA(p) = (a/ap2tB(p) 
n integral, on single hyperboloids; and A(p) B( p), and 

r9(a/ap#)A(p) = r9(a/ap#)B(p) 
at the origin. 

p ~ 0, the region between two double-sheeted 
hyperboloids excluding the origin; and 8, p = 0, 
the origin, and exhibit counter-examples to show 
that A(p) = 0 in :0 or 8 does not imply that A(x) 
is a generalized free field. The counter example for 
case :0 is the Wightman polynomial18 A(x) = 
<Po(x) + g : <PO(X)2: where <Po(x) is a free field of mass 
m. This example satisfies properties I through IV, 
and is not a generalized free field. However, the 
momentum space formula 

A(k) = 1>o(k) B(e - m2) 

+ g J d4
p : 1>o(~k + p) B[(~lc + p? - m

2
] 

X 1>o(~k - p) O[(~lc - p)2 - m2
] 

shows that A(k) = 0, 0 :::; k2 < m2
, and m2 < 

e < (2m)2, which finishes the discussion of this 
counter example. We conclude this note by re­
marking that the Wightman polynomial A(x) = 
<Po (x) + g : <Po(X)3 has support everywhere in mo­
mentum space except at the origin and thus can 
serve as a counter-example for case 8. 
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Regge's introduction of complex angular momenta is studied in more detail. The shape and number 
of trajectories of S-matrix poles as functions of the energy is investigated, with particular attention 
to the way they leave the real axis, and to their ends at E ~ ± 00. The conditions are found under 
which the S matrix is merom orphic even in Re I < -1/2. Some properties of the S matrix in the 
left half-plane are discussed and so are its symmetry between left and right half-planes, its branch 
point at E = 0, and the residues at its poles. 

1. INTRODUCTION 

I T is one of the important consequences of quantum 
mechanics that the angular momentum of all 

particles must be an integral or half-integral mul­
tiple of h. Nevertheless, lately it has become interest­
ing in elementary particle physics to relax the 
quantum nature of the angular momentum mathe­
matically and to consider it not only as a continuous, 
but even as a complex variable. In so doing, one 
makes use of the fact that nonrelativistic scattering 
theory may be formulated in terms of differential 
equations which, if analyzed by means of partial 
waves, contain the angular momentum merely as 
a parameter. The elimination of the angular aspects 
removes the necessity for the angular momentum 
to be quantized, and it is free to assume arbitrary 
values. 

That such a relaxation of the discreteness of the 
angular momentum is interesting can be seen in 
various ways. For example, it is well known that if 
the nonrelativistic spherically symmetric potential 
between two particles goes down exponentially at 
infinity, then the individual S-matrix elements may 
have singularities in the complex plane beyond a 
certain distance from the real axis. However, if 
these elements are summed up to the forward 
scattering amplitude, then the result no longer con­
tains any singularities in the upper half of the com­
plex k plane, a fact which is commonly expressed as a 
dispersion relation. There must, therefore, be strong 
correlations between the singularities of various S­
matrix elements in the complex k plane that assure 
that in the sum making up the forward amplitude 
(or even some nonforward amplitudes), the singulari­
ties all manage to cancel. These correlations should 
in principle be comprehensible by considering the 
various S-matrix elements as special values of a 
continuous function of the angular momentum. 

* Supported in part by the National Science Foundation. 

Another reason, and one which induces the con­
sideration not only of continuous real but even of 
complex angular momenta, is the one that led Regge1 

when he first proposed it. 
The scattering amplitude of two spinless particles 

interacting via a spherically symmetric potential, 

f(8) = (2ik)-1 L: (2l + l)(ew , - l)Pz(cos 8), (1.1) 
z 

may be written formally as a Watson1a contour 
integral 

f(8) = (27rk)-1 

X fe dA.A.P)._ll2(-COS 8)(S, - l)/cos7rA., (1.2) 

provided that exp (2io z) can be considered the value 
of an analytic function 8-). at h = l + t. The con­
tour C is indicated in Fig. 1. Further, assuming 
that S, is regular in the right-hand half-plane 

X PLANE 

112 5/2 

FIG. 1. The contour C. 

1 T. Regge, Nuovo cimento 14, 951 (1959). 
I> Added in proof. In view of some confusion in the refer­

ences to the historical origin of the replacement of this series 
by a contour integral it may be well to straighten out the 
record. The method is based on those introduced in the con­
text of bending of electromagnetic waves by a sphere bv H. 
Poincare [Rendiconti Circolo Mat. Palermo 29, 169 (linD)] 
and J. W. Nicholson [Phil. Mag. 19, 516 (1910); 20, 157 
(1910); Messenger Math. 37, 84 (1907)]. However, the exact 
form of the general method as it is used at present first ap­
peared in the work of G. N. Watson [Proc. Roy. Soc. (Lon­
don) 95, 83 (1918)]. A. Sommerfeld [Partial Differential Equa­
tions in Physics (Academic Press Inc., New York, 1949), 
pp. 282 ff.] deserves credit for resurrecting it. I am indebted 
to Dr. E. Guth for bringing the Poincare reference to my 
attention. 

867 
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Re X ;::: 0, except for isolated poles at X = an + !. 
and that (S~ - 1) vanishes sufficiently rapidly at 
infinity, the contour can be shifted to the imaginary 
axis and we get 

f( 0) = (27rk)-1 

X ["'", dX'X'[S(iX') - 1]P'~'-1/2( -cos O)/cosh 7rX' 

- ik- 1 L (an + t)S"p",.(-cos O)/sin7ran • (1.3) 

The necessary convergence conditions for large /X/ 
have been proved by Regge et al. I

-
3 

The virtues of the representation (1.3) are the 
following. For the purpose of double dispersion 
relations one must know the behavior of f(O) at 
fixed energy and large momentum transfer ~. Since 
the latter is related to the scattering angle by 

cos 0 = 1 - ~ 2 /2e , 

letting ~ go to infinity leads to the unphysical 
"angle" /cos 0/---* co. Now Bottino et al.3 have shown 
that the integral in (1.3) vanishes in the limit as 
Icos 01 ---* co. Since for large leos 01. POI. (cos 0) 
goes as Icos OIRe "", the behavior of' f(O) is thus 
determined by the pole term with the largest Re an, 
which in turn fixes the number of subtractions neces­
sary in the Mandelstam representation. It is im­
portant, therefore, to establish that the poles don't 
diffuse on the right all the way to infinity. Further­
more, since their positions are functions of the 
energy, it becomes of interest to study the tra­
jectories described by the poles of S in the complex 
X plane as a function of the energy. 

The pole terms in (1.3) can be thought of in 
specific physical terms. We may recover the physical 
S-matrix elements from f( 0) by 

(Sl - l)/ik = LI dcosOf(0)P1(cos 0). (1.4) 

If we insert (1.3) in this then the contribution from 
the nth pole term in (1.3) is4 

Sin)(bj = (2/7r)(an + t)Sn ., (1.5) 
(l - a,,)(l + an + 1) 

because4 

/

1 2 sin 7ra 
I dzPI(z)P "'( -z) = ;: (l - a)(l + a + 1) 

2 T. Regge, Nuovo cimento 18, 947 (1960). 
3 A. Bottino, A. M. Longoni, and T. Regge, Nuovo 

cimento 23, 954 (1962). 
4 G. F. Chew, S. C. Frautschi, and S. Mandelstam, 

Phys. Rev. 126, 1202 (1962). 

This will be the most strongly varying contribution 
to S near an energy Eo, where Re an = 1 and 1m an 
is small. There is a resonance. We may describe it 
in terms of a Breit-Wigner formula by expanding 
an(E) about E = Eo. Then 

1 1 1 (1.6) 
l - an(E) ~ a~(Eo) E - Eo + ~E + (i/2)r ' 

where 

, 1m an 1m a~ 
~E = (Re a~)2 + (Im a~)2 , (1.7) 

2 1m an Re a~ 
r = (Re a~)2 + (Im a~)2 , (1.8) 

everything being evaluated at E = Eo, and the 
prime indicating differentiation with respect at E.5 

The picture that emerges from a consideration 
of the pole trajectories as functions of E in the 
complex X (or l) plane is this: For negative E, the 
pole moves along the real axis to the right. When 
it goes through an integral 1 value it causes a 
physical bound state. Depending on the strength 
of the interparticle force, it may go through one or 
several integral values of l, or it may never even 
reach l = 0 before, at E = 0, it turns away from 
the real axis into the upper half of the complex l 
plane. If it leaves at a point 1 ;::: t, then it does so 
in the forward direction with zero slope and can 
therefore be expected to cause a resonance as its 
projection onto the real axis passes an integral 
1 value. Under certain conditions on the potential 
it will eventually turn around and pass back into 
the region Re 1 < -to Thus, one has the physically 
very appealing view in which several bound states 
and possibly resonances are different manifestations 
of the same fundamental cause. They originate from 
the "same" pole of the S matrix. 

Section 2 is concerned with preparatory defini­
tions of wavefunctions and the S matrix. Section 3 
contains a discussion of the physical consequences 
of inequality (3.4) for successive phase shifts at 
the same energy, first derived by Regge.1 In Sec. 4 
some details of the shape of a pole trajectory in 
the region Re 1 ;::: - t are discussed. One of the 

S The width of the resonance thus depends not only on 
the nearness of the pole to the real axis but also on its energy 
dependence. Equation (1.8) differs from (1.6) of referenge 4 
which failed to take the energy dependence of 1m a mto 
account. It should be remembered in addition, as in all 
resonance theories, that to speak of a "resonance" is observa­
tionally meanil!gful only if i~ is sharp relat~ve to other energy 
dependencies m the amphtude. qtherwIse. the resonapce 
denominator need not lead to a maxImal partIal cross sectIOn. 
Furthermore the energy shift !:;.E must also be small in order 
for the result to be meaningful. If !:;.E is not small then no 
resonance occurs near Eo, and near Eo - t;.E the neglected 
terms in the expansion of aCe) become important. 
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results is the angle under which a pole leaves the 
real axis at E = 0, given by (4.8) and the subsequent 
discussion. Section 5 deals with the number of pole 
trajectories. The main result is embodied in the 
inequality (5.9) for the number of pole trajectories 
that enter the complex l plane at l ;::: -i. 

Up to this point all considerations were limited 
to the region Re l ;::: -!; i.e., Re A ;::: O. From the 
point of view of direct solution of the integral 
equation for the regular wave function, the left-hand 
half of the A plane is quite inaccessible. The "regular" 
solution there becomes "irregular" at r = 0 and the 
integrals no longer converge absolutely. In order to 
say anything about the S matrix in this region, 
an analytic continuation of the wave function is 
necessary. The possibility of doing that depends 
only on the behavior of the potential at r = 0, and 
it is shown in Sec. 6 that if r V and its first m deriva­
tives are finite at r = 0, then the S matrix is mero­
morphic for Re l ;::: -m/2 - 1. In Sec. 7 the analytic 
continuation to the left-hand A plane is exploited 
for a discussion of certain symmetries that exist 
between poles on the left and on the right. In Sec. 8 it 
is shown that for Re A < 0, also, the first Born ap­
proximation is good at E --7 ± en • As one of the conse­
quences, it is proved that as E --7 ± en , a trajectory 
can end only either at infinity or else on a negative 
integral value of l (if r V and all its derivatives exist 
at r = 0). There are two Appendices; Appendix A 
is concerned with the branch point of S at E = 0; 
Appendix B, with the residue of S at a pole. 

2. PRELIMINARIES 

We want to consider the radial Schrodinger 
equation6 

- if/' + (A2 
- t)r-2 lf + Vlf = elf (2.1) 

where A = l + !. An irregular solution teA, k, r) 
is defined by the boundary condition 

lim t(A, k, r)eikr = 1. (2.2) 

It follows that 

t( -A, k, r) = teA, k, r) (2.3) 

and in any region of analyticity connected with the 
real A and k axes, 

t*(A*, -k*,r) = teA, k-r). (2.4) 

In the absence of a potential, f reduces to 

1o(A, k, r) = e'("/2)(X+1/2)(7rkr/2)1/2H~2)(kr), (2.5) 

6 The following is entirely analogous to what is done 
for integral values of l and closely follows the procedure of 
reference 7. 

H~2) being the Hankel function of the second kind. 
With the potential V present, t satisfies the integral 
equation 

teA, le, r) = 1o(A, k, r) 

-100 

dr' gx(k; r, r') V(r')t(A, k, r') (2.6) 

with 

g,(k; r, r') !7r(rr,)1/2[Jx(kr') Yx(kr) 

- Jx(kr) Yx(kr')] , (2.7) 

where J, and Y, are the Bessel functions of the 
first and second kind. The standard proof of the 
convergence of the series of successive approxi­
mations to (2.6) goes through irrespective of whether 
A is a positive half-integer or not, provided that the 
first and second absolute moments of V are finite. 
Everything that is known of t as a function of k 
depending on various assumptions about the poten­
tial can be easily extended to arbitrary complex 
values of A. For fixed r ~ 0 and k ~ 0, t is, by similar 
arguments, seen to be an entire function of A. 

A regular function tp is defined for Re A ;::: 0 
by the boundary condition 

lim r- 1I2-'tp(A, k, r) 

= 2'-1/2 r (! + A)/r(1 + 2A). (2.8) 

In the absence of a potential we have 

tpo(A, k, r) = (!7rr)1/2k-'J,(1cr) , (2.9) 

while in the presence of V, tp obeys the integral 
equation 

tp(A, k, r) = tpo(A, k, r) 

+ { dr' gx(k; r, r') V(r')tp(A, k, r'). (2.10) 

Clearly tp satisfies 

cp(A, -k, r) = cp(A, k, r) (2.11) 

and 

CP*(A*, k*, r) = cp(A, k, r) (2.12) 

in any region in the complex A and k planes con­
nected with the real axes. Again, the proof of the 
convergence of the series of successive approxima­
tions goes through as in the case of integral l, 
and the analyticity properties of cP as a function of 
k are the same. Furthermore, for each fixed k and r, 
cP is an analytic function of A regular in Re A ;::: O. 

7 R. G. Newton, J. Math. Phys. 1, 319 (1960). 



                                                                                                                                    

870 ROGER G. NEWTON 

The integral equation as it stands breaks down for 
Re X < O. Its analytic continuations to that region 
will be discussed in Sec. 6. 

d (acp' , acp) 2' -2 2 - cp--cp - = Ar cpo 
dr ax ax 

Integration from zero to infinity gives for real k 
and X> 0 We next express cp in terms of the two linearly 

independent solutions f(X, k, r) and f(X, -k, r): 

-k- I jFj2 at:.jax = 2X f" drr-2l > o. 

(2.13) We conclude that for k > 0 

cp(X, k, r) = [F(X, k)f(X, -k, r) 

- P(X, -k)f(X, k, r)]/2ik, 

where F is the Wronskian a~/ax > 0 

F(X, k) = fcp' - f'cp. (2.14) and hence by (3.2),8 

For large r, therefore, 

2ikcp "-' F(X, k)e ikr 
- F(X, _k)e- ikr 

and hence we define the S matrix as 

SeX, k) = ei 1()H/2)P(X, k)/F(X, -k). (2.15) 

The function F is a generalization of the Jost func­
tion, the simplest one for the present purpose. In 
Sec. 8 and the Appendix we shall define another 
possible generalization that is more suitable for 
other occasions. The definition (2.15), which for 
integral l goes over into the customary one, is 
shown in the Appendix to be natural, the exponential 
factor being necessary in order that S be unitary 
and tend to unity at E ~ CD even for nonintegral 
l values. 

As a function of k, F and S have all the essential 
properties known for integral l values, so long as 
Re X 2:: O. The region Re X < 0 is not accessible 
until the existence of cp has been proved there. In 
addition, F and S are, for fixed k ~ 0 in the region 
of regularity, analytic functions of X regular for 
Re X 2:: o. We also have in any region of analyticity 
connected with the real axes of X and k, 

F*(X*, -k*) = F(X, k) (2.16) 

as well as 

S*(X*, -k*) = SeX, k). (2.17) 

3. THE PHASE-SHIFT DERIVATIVE 

We want to discuss briefly a simple result first 
obtained by Regge. 1 If we define 

~ = arg F, 2 0 = arg S, (3.1) 

then by (2.15) 

o = ~ + (i7r/2)(X - !). (3.2) 

Differentiation of (2.1) with respect to X, multiplica­
tion by cp and subsequent subtraction of (2.1) 
mUltiplied by acp/ ax yields 

aD/ax < 7r/2, (3.3) 

which implies that 

01+1 - 01 < 7r/2. (3.4) 

We first observe that,D being defined only modulo 
7r, the inequality (3.4) imposes no restriction what­
ever on the values of successive phase shifts at a 
fixed energy. The restriction becomes operative only 
when put together with a demand of continuity 
of the phase shifts as functions of k and with their 
behavior at k = 0 and k = CD. 

The first question to which (3.4) gives a partial 
answer is this. For individual phase shifts (assumed 
continuous as functions of k for k > 0) it is custo­
mary to define Ol( CD) = 0 and then to let 0/(0) 
be determined by the Levinson theorem9

: 

Oz(0) = n l 7r, 

where 11.1 is the number of bound states of angular 
momentum l. Alternatively, one could define 
0/(0) = 0 in order to make it continuous across 
k = O. Now that we demand a continuous connection 
between phase shifts of different l values a question 
of consistency arises. If we define oo( CD) = 0, then 
we are no longer free to dispose of the other phase 
shifts. 

Suppose we were to define 00(0) = 0 and let the 
Levinson theorem determine oo( CD); and suppose 
there is an s-wave bound state and none for the 
p wave. Then we would have oo( CD) = -7r and 
hence, by (3.4), 0,(0) = 0,( CD) < -7r/2. Since 
this entails 0, (0) ~ -7r, (3.4) also shows that 
152 (0) ~ -7r, etc. As a result, the s-wave bound 
state would force all other phase shifts to be at most 

8 From a semi-classical point of view the inequality (3.3) 
is well known. Since the classical deflection function e is 
connected with the WKB phase shift by e = 2do/dl, (3.3) 
merely states the fact that e < 1r. ("Orbiting" implies a 
large negative e.) I am indebted to Dr. Joseph W. Weinberg 
for calling the connection with the classical result to my 
attention. 

9 N. Levinson, Kg!. Danske Videnskab. Selskab, MatAya. 
Medd. 25, No.9 (1949). 
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-7r at E = 0, which makes no sense. On the other 
hand, if we define oo( OJ) = 0, then an s-wave bound 
state means that 00(0) = 7r, and (3.4) is compatible 
with all Ole OJ) = 0. We conclude from this that 
oo( OJ) = ° is the most natural choice and that it 
may be expected that Ole OJ) = ° follows for all 
other l, although a proof of this is still missing. 

Consider now a case in which the p wave has a 
sharp resonance at some energy Eo in the vicinity 
of which the s and the d waves are smoothly varying 
functions of E, and below which the p phase shift 
is positive but less than 7r/2. '0 The p-wave phase 
shift then looks as indicated in Fig. 2 near E = Eo. 
Applying (3.4) to l = ° just above Eo, we find that 
oo(Eo) > A > 7r/2. Consequently, either there is an 
s-wave bound state, or else the s wave must have had 
a resonance at some lower energy. This physically 
quite plausible result is a simple extension of the 
well-known fact that the p wave cannot have a 
bound state unless the s wave has one of lower 
energy.ll 

We may also use (3.4) for l = 1 under the stated 
resonance assumptions, and we then take E just 
below Eo. That shows that at E ~ Eo, O2 < A. 
These two inequalities, for l = ° and l = 2, may 
serve to determine whether an experimentally given 
resonance is described by a local, single-channel 
potential or not. 

4. THE POLE TRAJECTORIES 

We are now going to investigate the poles of S 
for k either real or positive imaginary. Assuming 
that the potential is of such a nature that F can be 
analytically continued into the relevant region in 
the upper half of the complex k plane, the poles 
of S are due to zeros of F. An acceptable class of 
potentials would be those that vanish beyond 
some finite distance; another would be a (continuous) 
superposition of Yukawa potentials, for which F 
is regular in the entire k plane cut along the positive 
imaginary axis from some p. to infinity. 

What we are after is the motion of the zeros of 
F(A, k) in the complex A plane as a function of k. 
The energy is kept real and hence for E > 0, k 
is real, and for E < 0, k is purely imaginary. The 
"physical sheet" of the Riemann surface of S as a 
function of E corresponds to the upper half of the 
k plane. In vicw of (3.14), this means that for E < ° 

10 In other words sin2 0, = 1 before sin2 01 = o. 
11 It should be noticed that the foregoing result refers 

directly to observable resonances in the sense that sin2 0 = 1, 
and not merely to S-matrix poles, which mayor may not 
entail observable resonances. 

8.~ 

£
------'r 

A -----T '1:; 

+-------'1:--i 
E. 

FIG. 2. The p-wave phase shift. 

we are looking for the zero of F on the negative 
imaginary axis, where for integral l, they denote 
bound states; for E > ° we take the upper rim of 
the cut, i.e., k > 0, and hence in F, k < 0. 

Taking the complex conjugate of (2.1) for cp, 
multiplying by cp, and subtracting (2.1) for cp mul­
tiplied by cp* we obtain for real k 2 

(d/dr)(cp*cp' - cp'*cp) = 2i 1m A2r- 2 Icpl2 

and by integration 

2i 1m A21'" drr- 2 Icpl2 = lim (cp*cp' - cp'*cp). (4.1) 
o r_~ 

First consider the case of purely negative imaginary 
k and assume that for k = ko, A = Ao, F(Ao, ko) = 0. 
Then cp is a mUltiple of f and thus vanishes ex­
ponentially at infinity. Consequently (4.1) reads 

1m A2 10'" drr-2 Icpl2 = 0. (4.2) 

This means that for E < 0, a zero of F can occur 
only on the imaginary, or on the real A axis. It will 
be shown in Sec. 7 that it cannot occur on the 
imaginary A axis (except at A = 0). Hence for 
E < ° an S-matrix pole in the region Re A 2:: ° 
must lie on the real A axis. When it goes through a 
half-integer (integral l), then it means there is a 
bound state. 

A little more may be said about the motion of a 
zero of F along the real positive A axis by differentiat­
ing (2.1) with respect to k, assuming k2 and A real 
and all along F(Ao, ko) = ° so that Ao becomes a 
function of ko• In the standard way we then get 

(d/dr)(cp'CPk - cp{cp) = [1 - (A~hr-2]cp2, 

where the subscript k indicates differentiation with 
respect to ko. Since cp vanishes both at r = ° (as 

1/2+}.) d t t b' . r an a r ~ OJ, we ge y mtegratmg 
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(4.3) 

It wiII be of special use to us later to know how 
(4.3) behaves as E ~ 0_. For that purpose it is 
simplest to assume that V has a finite range. 13 

The relevant contribution to be investigated is that 
of the "outside" wave function to the normalization 
integral in (4.3). The appropriate normalization that 
assures that the (unnormalized) matrix element of r- 2 

remains finite and different from zero as k ~ 0, 
is e/2

+
xfoCX, k, r) for the outside wave function. 

Then for 1m k < 0, as k ~ 0, 

{

O(l) for l > ! 
Loo 

dr[kI/2
+
xfo(X, k, r)]2 = O(ln Ikl) for l = ! 

OWl-I) for l < ! 

This is, therefore, the behavior of dA~/dEo as 
E ---+ 0_: 

{

O(l) for lo > ! (Ao > 1) 

dA~ 1 I) f l 1 ( 1) (4.4) dE
o 

= O(ln Eo or 0 = z Ao = 

O(E~-1/2) for -! < lo <! (0 < Ao < 1) 

Let us now consider k real ~ O. Then F(X, k) 
cannot vanish on the real positive X axis. That is 
because (2.14) shows that if F(X, k) = 0 for real 
positive A and k, then F(X, -k) = 0 too; but (2.13) 
implies that then q; == 0, which contradicts the 
boundary conditions (2.8). As a result the zero 
must get off the real X axis for E > O. Where it 
goes can be seen from (4.1) for real k. In that case 
use of (2.13) and of the boundary condition (2.2) 
lead to 

8k Re X 1m X 10
00 

drr- 2 1q;12 

= W(X, k)1 2 
- W(X, -kW· (4.5) 

The implication is that for k < 0 and 1m X < 0 

IF(A, k) 12 > IF(X, -kW = W(X*, k) 12 

and so F(X, k) cannot vanish. For k negative, F 
can vanish only in the upper half of the X plane, 

12 Since the right-hand side is positive, this p~o:ves t~e 
physically obvious fact that a zero on the real posItlVe aXIS 
always moves to the right as the energy increases. The 
expectation value of r-2 depends, of course, both on k and 
on h, and (4.3) must l!-ot be mistaken for a cOllf!tant. This 
equation was first obtamed by Regge.2 However, m contrast 
to his use of (5.1) in reference 2, it should be remembered 
that (4.3) cannot be used when E > 0, since then '" is not 
normalizable. 

13 The result will hold under much more general conditions, 
but for a potential that vanishes asymptotically as It power 
of r, it breaks down if at Eo = 0, hO is too large. 

and for k positive, in the 10wer.14 In terms of the 
S matrix this means that on the upper rim of the 
cut along the positive E axis the poles of S are in 
the upper half of the X plane, on the lower rim they 
are in the lower half. 

It should now be remembered that where F(X, k) 
is an analytic function of X and k and where its 
derivative with respect to A is different from zero, 
there F(X, k) = 0 defines A as an analytic function 
of k. Consequently, X(k) is a mapping of the k to 
the X plane which preserves angles in the small. 
So as we let k approach zero along the negative 
imaginary axis and then move on along the real 
axis, if F were an analytic function of k at k = 0 
and if aF / ax ~ 0, the trajectory of the zero of F 
would have to leave the real axis at right angles. 
As it is, this is generally not so. 

Indeed, let us assume F(Ao, ko) = O. Then (4.5) 
together with (2.13) shows that 

2 Re Xo 1m Xo fooo drr- 2 Ifl2 = -ko. (4.6) 

The integral exists since now f is proportional to q;. 

In order to learn how 1m Xo approaches zero as 
ko ---+ 0 we assume again that V = 0 for r > R.ls 
Just as in the discussion of (4.3), the appropriate 
wave function which remains finite in the outside 
region as k ~ 0 differs from f by a factor of kl. So 

10
00 

drr-2 Ifl2 = e-n 10
00 

drr-2 Ikx-1/2f12 

= OW-2X
) as k ~ 0, 

since the integral remains finite. Division of (4.6) 
by k~ therefore tells us that 

d 1m Ao/dko = O(lc~l.) as ko ---+ o. (4.7) 

In order to obtain the angle 'Yo in the A plane at 
which the zero trajectory leaves the real axis at 
E = 0, we use (4.7) together with (4.4) in 

t 1· aRe Xo/ako co 'Yo = un . 
E.~O+ a 1m Ao/ako 

Now (4.4) was derived for ko on the negative 
imaginary axis. However, it will hold for ko approach­
ing zero along any path in the lower half of the 
k plane, and specifically just below the real axis. 
Since 1m Ao ~ 0 we conclude that (4.4) holds for 

14 These restrictions do not hold for Re A < 0, though. 
Added in proof: Numerical work was meanwhile shown that 
for a Yukawa potential, zeros occur both in the third and in 
the fourth quadrant; see A. Ahmadzadeh, P. G. Burke, and 
C. Tat (to be published). 

15 Again the result holds under much more general condi­
tions. 
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the derivative of Re Ao as ko ~ 0 along the real 
axis. Thus we get 

rk~-".) ~ co for lo > ! (Ao> 1) 

cot 'Yo = O(1n Iko \) = co for lo = i (Ao = 1) (4.8) 

0(1) for 10 < i (Ao < 1). 

When lo < i we may learn more by looking at (4.3) 
and (4.4) in more detail. Near ko = 0 we have 

where a is positive so that the left-hand side is 
positive when ko is on the negative imaginary axis. 
Hence, when ko is on the real axis, then 

d Re Ao/dko ~ ak~l cos 7r(l - i). 

This is positive for l > 0 and negative for l < 0; 
for l = 0 it vanishes. Thus we have the following 
result. 

If the trajectory meets the real axis at a point 
- i < l < 0 then it does so at a finite angle pointing 
backwards; if it meets it at l = 0, it does so at right 
angles; if it meets it at 0 < l < i, it does so at a 
finite angle pointing forward; if it meets it at l > i, 
it does so at a zero angle, i.e., it osculates it and it 
hugs the real axis more and more closely the higher 
the angular momentum at which it leaves.16 That 
for l < 0 the trajectory leaves the real axis in the 
backward direction explains, from the present point 
of view, the well-known fact that an "almost bound" 
s state causes no low energy resonance, while 
"almost bound" states of higher angular momentum 
do. 

The observable effect of the trajectory is of course 
.the resonance, and specifically its width, produced 
when the pole projection on the real axis passes an 
integer. If this happens at small energy then (4.4), 
(4.7), and (1.8) imply the well-known fact that 
r = 0(EI+l/2).17 

What happens to a trajectory after it leaves the 
real axis? We may use (4.5) to get a rough limitation 
on the position of a zero in the complex A plane. 
If the potential vanishes for r > R then for T > R 
we have f = fo; hence, 

16 After this work was finished, the author learned that 
Barut and Zwanziger have come to similar conclusions; 
A. O. Barut and D. E. Zwanziger (to be published). 

17 The present derivation of this result implies that the 
I value in it is not that of the resonance but that at which 
the trajectory meets the real axis at E = O. If that happens 
at 0 < I < !. then r = 0 (E); but it is then quite unlikely 
that the trajectory causes a p-wave resonance at sufficiently 
low energy for the formula to be applicable. In general it 
is not likely to be applicable unless the I values of the resonance 
and of the point E = 0 are nearly equal. 

The boundary condition (2.2) implies that as r ~ co, 

If I ~ 1 (k is real now). A closer examination of f 
shows that for real A it approaches 1 from above; for 
complex A it dips below 1 for large r, but not below 
i after the last trip below 1. As a result one may 
expect, at least if 1m A is not too large, that Ifl2 
is on the average of the order of magnitude 1 for 
T > R. Therefore, 

L'" drr- 2 Ifl2 ~ L" drr- 2 = R- l 
, 

and thus from (4.5) 

2Re Ao 1m Ao,$ R Ikol. (4.9) 

This inequality is to be considered at best a rough 
estimate. But so long as 1m Ao is not too large it 
ought to be reasonably reliable. It should be noticed 
that it is independent of the potential strength. 

A more exact limit on the trajectory was derived 
by Regge under the assumption that the potential 
can be analytically continued into the complex T 

plane, to the whole imaginary T axis. In that case 
the zero trajectory must, for sufficiently large E, 
cross the straight line 1m A = Re A and remain 
above.2 Furthermore, if everywhere on the imaginary 
r axis 

11m V(iy) I < M/y2 

Re Ao 1m Ao < M /2 

so that the zero trajectory must always remain be­
tween the real axis and the hyperbola Re A 1m A = 
M /2. Thus, it is forced to turn around eventually 
and move toward the imaginary A axis. The same 
was shown under somewhat weaker conditions 
applicable to the Yukawa potentia1.2 The important 
implication of this is, of course, that there exists 
for each trajectory a value X beyond which Re Ao 
cannot go. This is what limits the asymptotic be­
havior of the scattering amplitude as a function 
of the momentum transfer or angle, as seen in (1.3). 

What happens at the turning point of a tra­
jectory? Equation (1.8) shows that the effective 
width of the corresponding resonance (if the turning 
point happens to occur sufficiently close to the real 
axis, and at a half integral values of Re Ao so that 
it really corresponds to a resonance) then goes 
through zero and changes sign. Any apparent reso­
nance caused by the trajectory on the return 
journey is thus not a resonance at all because it 



                                                                                                                                    

874 ROGER G. NEWTON 

corresponds to a downward passage of the phase 
shift through 7r/2 and thus is associated not with 
a delayed outgoing signal, but with an advanced 
one. It is at best associated with the downward 
passage through 7r/2 that a phase shift must experi­
ence if it ever goes through 7r/2 upwards (if it is 
caused by a suitably well-behaved local one-channel 
potential).' 

One may like to associate a zero of F(A, k) for 
real k and complex A with one for real A and complex 
k. This could be done, for example, by keeping the 
real parts of k and A fixed but allowing the imaginary 
part of k to vary while taking the imaginary part 
of A to zero. We then have a one-to-one corre­
spondence of zeros with positive A in the upper 
half of the k plane and zeros with negative k in the 
upper half of the A plane. The fact that a zero cannot 
get beyond a certain value of Re A presumably 
means that for that value of A the corresponding 
zero in the complex k plane has moved to infinity 
in the imaginary direction.18 

After the trajectory has turned back it mayor 
may not cross the imaginary A axis and pass into 
the left-hand half plane. Equation (4.6) must not 
be mistaken for a stricture against Re Ao = O. 
When the real part of A vanishes then If I goes as 
r1!2 at the origin and the integral diverges. On the 
other hand, there appears to be no general reason 
why the trajectory must always cross back beyond 
Re l = -V8

• In the special case of a Yukawa poten­
tial it is explicitly known to do SO.19-21 In the 
Coulomb case it crosses over at infinity (at E = 0).22 
N or is there any known general reason why a tra­
jectory cannot oscillate or spiral, thereby causing 
several resonances of the same angular momentum. 

5. THE NUMBER OF TRAJECTORIES 

It is of obvious interest to raise the question: 
How many zero trajectories are there? Since we 
are presently concerned with Re A 2: 0 only, we 

IS This suggestion appears to be contradicted by the fact 
that as Re a/dE --> 0, r --> O. The resolution of this quandary 
is presumably that the turning point of a trajectory cannot 
have a small imaginary part. If it does not, then the shift 
term tJ.E is not small and the resonance formula has no 
significance. See footnote 5. 

IS. Added in proof. In the square well case it is now known 
not to do so; see A. D. Barut and F. Colagero (to be pub­
lished). 

19 R. Blankenbecler and M. L. Goldberger (to be pub­
lished). 

20 M. Froissart, private communication from M. L. 
Goldberger. 

21 A. Ahmadzadeh, P. G. Burke, and C. Tate (to be pub­
lished). 

22 V. Singh (preprint). 

first ask the more restricted question: How many 
are there in the right-hand half plane? 

Considering the fact that as we increase the 
strength of an attractive potential,23 an unlimited 
number of bound states are newly introduced, and 
there must be at least as many trajectories as there 
are s-wave bound states, we conclude that there 
must (at least for a somewhere attractive potential) 
be an unlimited supply of zeros somewhere in the 
A plane. We may fix our attention on the zeros at 
E = 0; according to the results of Sec. 4 they must 
for Re A 2: 0 be on the real or on the imaginary A 
axis; for E > 0 they then enter the upper right­
hand quarter plane. Since increase of the potential 
strength moves more and more such zeros past any 
fixed point A > 0, there are only three alternatives 
for the location of the supply of zeros at E = 0: 
(1) They all lie on the imaginary axis and as the 
potential strength is increased, they move down 
and onto the real axis; (2) there are infinitely many 
of them on the positive real axis, with an accumula­
tion point at A = 0; (3) there are infinitely many of 
them in the left-hand half of the A plane (or they 
are "generated" there) and as the potential strength 
increases they move through A = 0 onto the positive 
real axis. 

If we were to think about these matters in 
"physical" terms we would be led to believe in 
alternative (1). The reason is that if the centrifugal 
r-2 term is cut off at small distances we may think 
of the centrifugal barrier as another potential. For 
A2 < i that "barrier" becomes attractive. The more 
imaginary we take A, the deeper that attractive 
potential becomes and the more bound states it 
produces. Hence, with the cutoff present there must 
be infinitely many zeros of F (which then is an even 
function of A) on the imaginary A axis for any 
negative energy. Such reasoning, however, is entirely 
misleading. It will be proved in Sec. 7 that there 
can in fact be no E :::; 0 zeros on the imaginary A 
axis. In other words, the analytic structure of 
FCA, k) is changed so violently by the cutoff that 
even such gross features as zero distributions are 
changed radically. 

Alternative (2) can be eliminated if we can esti­
mate the number of zeros of F at E = 0 on the 
positive real A axis, and we find that it is finite. The 
appropriate means for that is Bargmann's in­
equality24 for the number of bound states of angular 
momentum l: 

23 For the purpose of this argument, it is sufficient that 
the potential be negative somewhere. We may then multiply 
the attractive piece by a positive parameter and increase it. 

24 V. Bargmann, Proc. Nat!. Acad. Sci. U. S. 38, 961 (1952). 
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nl < fooo drr I VCr) 1/(2l + 1). (5.1) 

Since the number of trajectories that enter the 
complex plane to the right of l is equal to the number 
that has passed through l at some negative energy 
and hence is equal to the number of bound states 
of angular momentum l, (5.1) is the kind of esti­
mate we want. However, as l ---7 - t, i.e., }.. ---7 0, 
(5.1) diverges and hence tells us nothing. We must 
sharpen it expecially to get near}.. = 0.25 

Following Schwinger's derivation26 of (5.1), we 
increase the number of bound states at }.. = l + ! 
by replacing V by - '0, where 

'0 == {- V where 

o where 

V < 0, 

V ~ o. 
The number of bound states of - '0 is equal to the 
number of E = 0 bound states that are introduced 
when - '0 is replaced by - (T'U and (T is increased 
from zero to one. Thus, we are looking for the 
number of values that allow us to solve 

(5.2) 

with 0 ~ (Tx ~ 1, where Gx is the symmetric Green's 
function of (2.1) at E = 0: 

But n, is given by the requirement that (T~i) ~ 1 
for i ~ n, and (Tiil > 1 for i > n,; consequently 

and a slightly strengthened version of (5.1) follows 
from (5.5): 

(5.1') 

In order to understand what happens at }.. ~ 0 
we stop before the last step and write instead 

00 n, 
L: cri il - 1 ~ L: (T~i)-1 ~ (T~I)-1 + n, - 1, (5.6) 
i=-l 1 

so that (5.5) yields 

n, ~ (2}..)-1 fooo drr'U(r) + 1 {l)-1 - (T, (5.7) 

We now want to find an estimate of (T~I), the least 
strength that introduces a bound state for}.. « 1. 

We define 

m, == 2}..Kx, 

so that (5.4) reads 

'Yiilif;,(r) = fooo dr'm,(r, r')if;,(r'). (5.8) 

2}"Gx(r, r') = r~2+Xr;:'2-X 

Since '0 ~ 0 we may define 

(5.3) As}.. ---70 we have 

if;x == 'U
1

/
2
cfJx 

Kx(r, r') == ['0 (r)'U(r,)]1/2 gx(r, r') 

so that 

Hence, the strengths (T~i) at which new bound states 
appear are the inverses of the eigenvalues of the 
real, symmetric, positive semi-definite kernel K,. 
Therefore, 

2}..Gx(r, r') ---7 (rr,)1/2 

so that in the limit as }.. ---7 0 (5.8) approaches 

'Y~ i) if;o(r) = [r'Ur)]1/2 fooo dr' [r''U (r')] 112 if;o(r'). 

The kernel now being separable this equation has 
a single nonzero eigenvalue obtained by multiplying 
by ['U(r) r]I/2 and integrating: 

'Y~I) = ioo drr'U(r). 

The normalized eigenfunction is 

if;~l)(r) = [r'U(r)]1/2/ [foOO dr'r''U(r') J/2 
= i oo 

drr'U(r)/2}... (5.5) In order to find 'Yil) for}.. « 1 we now calculate it 
from 'Y6l) by perturbation theory, using 

2. Bargmann haB shown that for fi..xed I, (5.1) cannot be 
improved without special restrictions on the potential. 
For given I there always exists a potential that causes (5.1) 
to be aB near to equality aB one pleaBes. Here, however, we are 
interested in improving (5.1) if we fix the potential and 
let I approach -i. There is no contradiction. 

21 J. Schwinger, Proc. Natl. Acad. Sci. U. S. 47,122 (1961). 

2}..G,(r, r') = (rr,)1/2 + (rr,)1/2[(r jr»' - 1] 

~ (rr,)1/2 - XCrr')1/2 In (r>/r <) 

to first order in }... The perturbation of the eigen­
value is therefore given by 
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foOO drr'O(r) A'Y~]) 

-A fooo dr i oo 
dr'rr''O(r)'O(r') In (r>/r<) 

-2A i oo 
dr L dr'rr''O(r)'O(r') In (r/r') 

and thus the lowest eigenvalue is to first order in A 

'Y~!) = fooo drr<O(r) 

100 dr f dr'rr''O(r)'O(r') In (r /r') 
_ 2A 0 0 • 

fooo drr'O(r) 

Insertion of this result in (5.7) yields the desired 
estimate for A = 0, in which limit the perturbation 
theory becomes exact 

100 

dr [ dr'rr''O(r)'O(r') In (r/r') 
no ~ 1 + 0 0 • (5.9) 

fooo drr'O(r) 

The zero-order term in O"~!)-] has canceled the first 
term in (5.7). In other words, the reason why the 
estimate (5.1') fails to tell us anything as A ~ 0 
is not that there are in fact infinitely many eigen­
values, but that, no matter how weakly attractive 
the potential is, there is always at least one eigen­
value near A = 0.27

•
27

& Indeed there is one at A = 0 
for V = 0 since in that case (for E = 0) the solution 
r lf2 which is more "regular" at r = 0 (the other 
one is r lf2 In r) is also more "regular" at infinity.2s 

As a result of (5.9), alternative (2) for the dis­
tribution of the zeros of F at E = 0 is eliminated 
for a wide class of potentials. Since alternative (1) 
will be eliminated later, we are left with (3). The 
zeros come from the left-hand half plane. We now 
want to investigate that region of the complex A 
plane. 

6. THE LEFT-HAND HALF PLANE 

Let us first consider for orientation purposes what 

27 It must be remembered that for E = 0 and small X 
the eigenvalue criterion is quite weak. The demand is merely 
that the solution which is dominant ("irregular") at r -> 0 
also be dominant at r -> co. That implies that the solution 
which is more "regular" at the origin is also more "regular" 
at infinity. "More regular" here simply means "asymptotically 
smaller." 

27. Added in proof. S. C. Frautschi, M. Gell-Mann, and 
F. Zachariasen, Phys. Rev. 126, 2204 (1962) have come to 
the same conclusion. 

28 It can be shown directly for an attractive square well 
potential that, as the depth tends to naught, the angular 
momentum of the E = 0 eigenvalue tends to I = -!. 

region of the potential may determine the analytic­
ity of F for Re A < O. The Wronskian (2.14) may 
be evaluated for any r value you please; f(A, k, r) 
is, for fixed k rf 0 and r rf 0, an entire function 
of A. Since !peA, k, r) depends on the potential only 
in the region less than r, we may expect t.hat evalua­
tion of (2.14) near r = 0 leads to a criterion of 
analyticity in Re A < 0 that depends critically on the 
behavior of V near r = 0.29 That expectation will 
be borne out.. 

The crucial tool for the analytic continuation of 
!P into the region Re A < 0 will be the following 
lemma: 

Let f(x) and its first m derivatives exist for 0 ~ 
x ~ Xo. Then, 

and its first m derivatives with respect to yare 
analytic functions of a for 0 ~ y ~ Xo, regular in 
the region Re a > -m - 1, except for simple 
poles at a = -1, -2, .... Furthermore, the 
residue of the pole at30 

a = - N is proportional 
to yN-l. 

Proof: The existence of f and of its first m deri­
vaties implies that for 0 ~ x ~ Xo it can be written 

m-] 

f(x) = L CNXN + x"'J(x) , 
N-O 

where 

xm](x) = { dX1 iX' dX2 ... {m-, dxmtm)(xm), 
and hence lex) is bounded in 0 ::; x ::; Xo. Insertion 
in g yields 

m-I C N 1Y 

g(a, y) = L + i!+ 1 + y-a-l dxxm+a](x). 
N~O a 0 

The first terms and all its y derivatives are analytic 
functions of a everywhere, except for simple poles 
at the negative integers; furthermore, the residues 
there are proportional to yN. The second term and 
its first my-derivatives are analytic functions of a 

regular for Re a > -m - 1 and for all y in 0 ~ 
y ::; XO. Q.E.D. 

We now want to prove that !p(A, k, r) may be 
analytically continued to Re A < O. We assume 
that r V == U is m times differentiable in 0 ::; r ::; ro 
for some ro > O. In the integral equation (2.10) 

29 In addition, of course, to the general assumptions that 
are necessary for the considerations of Re X > O. 

30 In the following N always stands for a positive integer 
unless otherwise indicated. ' 
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for cp, let us write (not explicitly indicating the k 
dependence) 

1/;xCr) == r-1I2- xcpCA, k, r), 

hxCr, r') == r -1I2-Xr,-I/2+X gx(k; r, r') 

= (r' /r) 2x'Ux(kr')'Ox(kr) - 'Ux(kr)'Ox(kr') , 

'Ux(kr) == (!7r)1I2(kr)-x J x(kr) , 

'Ox(kr) == (!7r)I/2(kr)x Yx(kr) , 

so that all the r dependence near r = 0 is explicitly 
visible. The functions 'U~ and '01. are now finite 
at r = 0 for all A and can be expanded in a power 
series in r. They are entire function of A for all r. 

if;x satisfies the integral equation 

if;x(r) = 'Ux(kr) + L dr'U(r')hx(r, r')if;A(r') (6.1) 

which we solve by successive approximations: 

if;x = 1: 1/;~n) 
n 

if;~O)(r) = 'Ux(kr) 

if;~n+I)(r) = L dr'V(r')hA(r, r')if;~n>Cr'). 

So for 0 ::::; r ::::; ro according to our lemma, 

iI~t)(r) == r-lif;~l)(r) 

= r -1 f dr' VCr') [(r' /r) 2x'Ux(kr')'Ox(kr) 

- 'U,(kr)'Ox(kr')]'U,(kr') 

and its first m r-derivatives, are analytic functions 
of A regular for Re A > -!m - !, except possibly 
for poles at A = -!, -1, -!, .... However, as A 
approaches a negative integer -N, the first 2N 
terms in the expansion of 'U). in powers of (kr') 
have simple zeros as functions of A, and at A = -N, 
'U,(kr') is of order r2N as r ~ O. Consequently, 
iI~l) has no poles at A = -1, -2, .... Moreover, 
owing to the presence of two factors of 'U, in the 
troublesome term, iI~I) (r) is of order3I r2N. The 
residue of the pole of iI~1) at A = - N - ! is pro­
portional to r2N. 

We proceed by induction. Assume that iI~n) == 
r-nif;~n) and its first m r-derivatives are analytic 
functions on for Re A > -!m - !, (for 0 ::::; r ::::; ro) 
except for simple poles at A = -N - i, N = 0, 
1, 2, ... , where the residue of iI~n) is proportional 

31 Strictly speaking, 'O-N contains a logarithmic term 
so that 1/;). (I) appears to be of order r2N In r. The In term 
generally cancels, though. Whether it is there or not is of no 
consequence in the following. 

to r2N; and that at A = -N iI~n) is of order r2N. 
Then for n ~ 1 

iI~n+I)(r) == r-n- I if;~n+I)(r) 

= r-n- I iT dr' U(r')r,n[(r' /r) 2). 'U).(kr')'Ox(kr) 

- 'U,(kr)'O).(kr')] iI~n) (r') 

and its first m r-derivatives are analytic functions 
of A regular for Re A > - tm - t except for poles 
at A = -!, -!, .... The poles for -A ::::; in are 
simple because they come from iI~n) only; those for 
- A > !n appear to be double, coming as they do 
both from iI~n) and from the integral. But since the 
residue of iI~n) at A = -N - i, N = 0, 1, 2, .,. , 
is proportional to r,2N, the integration does not 
introduce a further divergence as A ~ -N - !. 
The poles are thus all simple. Moreover, the residue 
of iI~n+1) at the pole at A = -N - i is proportional 
to r2N. There are no poles at A = - N because the 
first 2N terms of 'U, have simple zeros there as 
functions of A. Since furthermore iI~n) is of order 
r2N at A = -N, iI~n+I) is of order r2N there. 

This proves that each term in the series of suc­
cessive approximations to cp is an analytic function 
of A for Re A > - im - t except for simple poles 
at A = -!, -!, .... We must now consider the 
convergence of the series. 

We keep if;~O) + '" + if;~m) explicitly and start 
summing the series for n > m. Then for n > m 

w~n+l)(r) == r-m-lif;~n+I)(r) 

= f drnU(rn)(rn/r)m+I[(rn/r)2''U,(krn)'t\(kr) 

- 'U,(kr)'O,(krn)]w~n) (r n) 

and therefore for Re 2A > -m - 1, 

Iw~n+l)Cr)l::::; C f drn IU(rn)llw~nJ(rn)l::::; 

Iw~m+l+p)(r) I ::::; C· f drI f' dr2 .,. 

f'-' drp I U(rI) I ... I U(rp) I Iw~m+l)(rp) I 

::::; c[ c f dr' IU(r')I]"r(t + X)/p! 

since w(m+IJ(r)/r(t + A) is bounded in 0 ::::; r ::::; ro. 
It follows that the series converges absolutely. Thus, 
cp(A, k, r) is for each k and r ::::; ro an analytic function 
of X regular for Re A > -tm - t, except for simple 
poles at negative half integral values of X (negative 
integrall). 
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In order to eliminate the poles of ({' we define a 
new function 

ip(X, k, r) == ({,(X, k, r)/r(t + X) (6.2) 

which has no singularities for Re X > -tm - t. 
However, at X = -i, -1, -J, ... ip(X, k, r) 
is linearly related to ip( -X, k, r). We see this from 
the discussion of the expansion of ({' as well as from 
the value of the Wronskian 

ip(X, k, r)ip'( -X, k, r) - ip'(X, Ie, r)ip( -X, Ie, r) 

= - sin (27rX)/27r (6.3) 

which is obtained from the boundary condition (2.8) 
and (6.2). So we have 

ip( -tN, k, r) = CNW)ip(tN, k, r). (6.4) 

For special values of Ie, however, CN(e) may vanish. 
In other words, in contrast to ip(X, k, r) for X ~ - iN, 
ip( -iN, Ie, r) is not guaranteed by any boundary 
condition not to vanish identically in r. 

We may cite two examples in which the above 
behavior is well known. One is ({'o, i.e., the Bessel 
function. In that case, ({'( -N, k, r) is a multiple 
of ({'(N, Ie, r), but there happen to be no poles at 
X = -N + t; hence ip(-N + t, Ie, r) = 0. The 
other example is that of the Coulomb potential. Then 

ip(X, Ie, r) = 2).-1/2r I/2+).e ikr 

F(! + X + iT/, 1 + 2X, -2ikr)/r(1 + 2X), 

where T/ = e2/21e and F is the confluent hyper­
geometric function. F has simple poles at 2X = - N, 
and for 2X ~ -N, F/r is a multiple of its value 
at 2X = +N. However, if t + X + iT/ assumes a 
negative integral value too, then F /r vanishes, 
i.e., CN = 0. 

The analytic continuation of ({' to the left-hand X 
plane allows us now to perform the same con­
tinuation for the Jost function F(X, k) via (2.14). 
The function f(X, k, r), being even in X, offers no 
difficulty; it is everywhere regular as a function of X. 
As a result, if U = r V is m times differentiable at 
r = 0, then F(X, k) for fixed k ~ 0, 1m k ~ 0, 
is an analytic function of X, regular for Re X > 
-im - i except for simple poles at X -t, 
- J, .,. .32 The function 

P(X, k) == F(X, k)/r(! + X) = fip' - f'ip (6.5) 

then contains none of these poles. It serves as well 
as F for the S matrix. By (2.15) 

82 Some or all of these poles may be absent in special cases. 
For example, if V remains bounded as r --> 0 then there is no 
pole at A = -!. For a square well potential of radius R, 
'P has no pole for r < R; it is essentially a Bessel function. 

SeX, k) = eirC
A-1/2) P(X, k)/P(X, -k). (6.6) 

Some remarks are in order concerning the con­
ditions under which the analytic continuation of ({" 
F, and S to the left-hand X plane has been proved. 
If the potential is a superposition of Yukawa 
potentials, 

v = La> dJ.l.'u(J.I.')e-P.'r /r 

then the existence of r V and of its first m derivatives 
at r = ° follows from the existence of the first 
m + 1 absolute moments of u: 

ia> dJ.l.' J.I.'v lu(J.I.') I < 00, ° ~ p ~ m. 

The important criterion is therefore the behavior 
of u for large J.I.'. 

At the same time it should be realized that while 
the criterion of differentiability is sufficient, it is 
not necessary. Indeed, the same type of proof would 
clearly be applicable if r V near the origin, say, went 
like r m

+!3, where ° < {3 < 1. Then the (m + l)st 
derivative would fail to exist at r = 0, but the effect 
would merely be to introduce additional fixed poles 
on the negative X axis, not at the integers or half 
integers. Such reasoning can then be extended to 
a very much larger class of potentials. The general 
conclusion, at any rate, that emerges from this is 
that the continuability of the S matrix to the left­
hand X plane depends primarily on the detailed 
behavior of the interaction at small distances. 

7. CONSEQUENCES OF THE 
ANALYTIC CONTINUATION 

We may insert (2.13) with (6.2) and (6.5) in (6.3). 
The result is 

F(X, k)P( -X, -k) - F(X, -k)F( -X, k) 

= -i(k/7r) sin 27rX. (7.1) 

For k real and X = iX' imaginary this says by (2.16) 

IF(zA', k)1 2 
- !F(-iX', k)1 2 = (k/7r) sinh 27rX', 

which merely corroborates the previous finding that 
F cannot vanish for positive (negative) k on the 
positive (negative) imaginary axis. 

For X = iX' and k = ik' both imaginary, (7.1) 
implies by (2.16) that 

1 [P(X, k) F(X, -k) ] ik' sinh 27rX' 
2 F*(X, k) - F*(X, -k) = 27rP*(X, k)F*(X, -I.) 

Since the magnitude of the left-hand side cannot 
exceed unity, we must have 
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!F(A, k)F(A, -k)! ~ !(k'/2'1l-) sinh 21TA'!. (7.2) 

This implies that for negative energy F cannot 
vanish on the imaginary A axis (except at A = 0) 
thus eliminating alternative (1) of Sec. 5 and the pos­
sibility, still left open in Sec. 4, that as E decreases 
a zero of F moves down or up the imaginary axis: 
There are then two alternatives for the motion of a 
zero at E < 0 in Re A > 0 as the energy decreases. 
Either it approaches A = 0 as E ~ - ro or else it 
passes into the left-hand half plane. The first alterna­
tive will be eliminated in Sec. 8. 

Once a zero of F moves into the region Re A < 0 
for negative E, it is no longer constrained by the 
previous reason to remain on the real axis; Eq. 
(4.2) cannot be analytically continued, !1P!2 not 
being an analytic function. However, (2.16) still 
being valid, if F(A, -ik') = 0 for real k then 
F(A*, -ik') = 0 too. That implies that if a zero were 
to pass into the complex plane then it would have 
to split in two, one passing into the upper, the other, 
into the lower half plane. Such a situation is unlikely 
to occur, but there appears to be no reason why 
it couldn't. We shall assume that it is at worst an 
exceptional possibility; that for E < 0 a zero in 
the left half of the A plane remains generally on the 
real axis. 32a 

Suppose that a zero of F(A, k) for E < 0 lands 
on a positive integral or half integral value A = !N. 
Then (7.1) shows that 

FaN, -k)J?( -!N, k) = O. 

But F(A, k) and F(A, -k) cannot both vanish for 
the same k and A, because otherwise (2.13) would 
imply that II' == ~, contradicting (2.8). Consequently 
we must have F( -!N, k) = O. If a zero passes 
through an integral or half integral value of A then 
there must be a zero on the left passing at the same 
energy through the symmetrical point. This con­
clusion, however, cannot be inverted. If F vanishes 
at A = -!N then (7.1) says that 

F(!N, k)F(-!N, -le) = 0 

for the same le. But now we don't know that 
F( -!N, -lc) ~ 0, because A = -!N are just the 
val~es at which iP may vanish identically in r. 
If F( -!N, -k) = 0 then there need be no zero 
at A = !N. Such a situation means that S has a 
pole and a zero which meet at A = -!N and 

3'" Added in proof. Meanwhile, numerical work by A. O. 
Barut and F. Calogero (to be published) indicates that for 
repulsive square-~ell. poten~ials, co.mplex negative energy 
zeros do occur. ThIS wlll be dIscu8sed In more detail in a forth­
coming publication with B. R. Desai. 

they annihilate one another. Thus there is neither 
a pole nor a zero of S at A = -!N, although there 
are both nearby at neighboring energies. S then 
need not have a pole at A = !N. 

An example of such a situation is the Coulomb 
potential. In the attractive case we have for le = i !lel 

S = r(! + A - 11)i)/I'(! + A + !111). 

The poles occur at ! + A - 11)1 = -N; if that 
happens when A = ~m, m = 1, 2, '" , then ~ -
A - 11)! = -N - m is a negative integer too and 
S has a pole also at A = -!m. Vice versa, if the 
poleoccursatA = -!mthen~ - A - 1111 = -N +m 
is a nonpositive integer only if N ~ m. Hence, for 
m > N there is no pole on the right corresponding 
to the one on the left. Instead! + A + 11)1 = 
N + 1 - m is a non positive integer and a zero of 
S coincides with the pole. Similarlv for the re-
pulsive Coulomb case: v 

S = r(! + A + 11)i)/r(! + A - 11)1) 

for lc = illel. There are, of course, no poles for 
A > O. For 11)1 = -N - A - ~ there are poles' if 
such a pole occurs at A = -!m, then m > 2N +' 1, 
and ~ + A - !11! = N + 1 - m is a negative in­
teger too and a zero and a pole of S coincide.33 

It i.s worthwhile to rewrite (7.1) directly as an 
equatIOn for the S matrix. It then reads 

e-i~~S(A, k) - ei~~S( -A, k) 

le sin 21TA 
- -; F(A, -lc)F( -A, -le)' (7.3) 

From this one may conclude that usually 

S( -!N, k) = (- )NS(!N, k) (7.4) 

except when F(-tN, -le) = OorP(+~N, -le) = O. 
The exceptional cases are just the ones in which 
a pole and a zero of S coincide. S then has poles 
neither at A = tN nor at A = -tN, and in addition 
(7.4) breaks down. On the other hand, if S does 
have a pole at A = tN, then (7.4) holds for the 
residues. 

8. HIGH-ENERGY BEHAVIOR 

For integral values of l it is a well-established 
fact that II' and t approach their "unperturbed" 
values as E ~ ro (for t, with k in the lower half 
plane or real). The proof is obviously extended 
easily to all A with Re A > O. In the left half plane, 

33 It would be a mistake to believe that such a coincidence of 
ze!'os and poles at X = -!N may be a result of the anomalous 
tall of the Coul?mb field. It m,!st happen, for example, fdr the 
Y~awa potential ~oo. OtherwIse there would be a prohibition 
agaInst a pole mOVIng through X = -!N for large enough N. 
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the extension for 1 is also immediate since 1 is an 
even function of X. For rp, however, the proof needs 
a little elaboration because of the need to continue 
the integral equation (2.10) analytically. 

If we define 

reX, x) == IklI/2 k"rp(X, k, x/lki) 

then r satisfies the integral equation 

rcX, x) = ro(X, x) 

+ f dx'g~(x, x') Ikl- z V(x'/lk!)r(X, x'), 

where 

g~(x, x') = !'IT(XX,)1/2 

(8.1) 

[J;,(x,ei'l') Y).(xei'l') - J,,(xe;'I') Y).(x'ei'l')] , 

k = Ik! ei'l'. 

We have seen in Sec. 6 that (2.10) and therefore 
(8.1) can be solved by successive approximations 
and each term can be analytically continued to 
Re X > -!m - ! under appropriate assumptions 
on the potential, which include existence of r V (r) = 
Ikl-1xV(xllkl) at r -+ O. It is clear then from (8.1) 
that as Ikl -+ ro 

r(X, x) -+ ro(X, x) 

for Re X > -!m - !. 
It follows from the fact that rp and 1 approach 

10 and rpo, respectively, as Ikl-+ ro, that S approaches 
unity. Since, for large k, F does not go to unity, 
it is more convenient to discuss the function 

fCX, le) == eU1r12
) ().-l/Z)e-

1
/

2F(X, k) (8.2) 

which is treated in more detail in Appendix A. In 
terms of it we have directly 

SeX, le) = f(X, k)/f(X, -le) (8.3) 

and it has the integral representation34 

fCX ,k) = 1 - i(!'lT)lIZk" 

foro drr1l2 V(r)H~2)(kr)rp(X, le, r) 

= 1 - i(!'lT)'/2 f" dXXl/Z Ikl- z V(xl IleDH~2)(x)r(X, x). 

(8.4) 

Divide the integral into two pieces 

1'" dx = 1x 
dx + f" dx. 

o 0 x 

34 This is Eq. (4.4) of reference 7. 

The second piece requires no analytic continuation 
to Re X < 0; it can be handled directly and for 
fixed X its contribution vanishes as Ikl -+ ro. In 
the first integral we insert the series of successive 
approximations to r and analytically continue each 
term to Re X < O. We then keep X r!= -N + ! 
fixed and let Ikl -+ ro. Clearly all the integrals tend 
to naught provided that Ikl-ZV(xllkl) -+ 0, i.e., 
rZY(r) -+ 0 as r ~ 0.35 As a result we find that for 
each fixed X r!= - N + t in Re X > -!m - ! 

fCX, k) -+ 1 as Ikl -+ ro (8.5) 

with 1m k :::; 0 (because of the H~2). 
If (8.5) holds for each fixed X r!= - N + ! in the 

region Re X > -!m - t, then it must hold uni­
formly in any closed region in the X plane whose 
outer boundary is to the right of Re X = -!m -!, 
but which is otherwise as large as you please, and 
which excludes small circles around the points 
X = -N + !. That implies that there exists a 
number K so that for Ikl > K, f(X, k) can have no 
more zeros in that region. The same then holds 
for F(>., k). As E -+ ± ro all the zeros of F must 
move out of the region stated. That implies that 
a zero must move either to Re X :::; -!m - t, or 
to infinity, or else to X = -N + t. If all the deriv­
aties of Yr exist at r = 0, then a zero trajectory 
of F can end (at lEI = ro) only on the negative 
integral values of l, or else at III = ro .36.37 (That 
disposes of the possibility of ending at X = 0, 
mentioned in Sec. 7.) 

An example in which the trajectories all end on 
negative integral values of l is the Coulomb field. 
Another example in which this is known to happen 
is the Yukawa potential.19

•
2o On the other hand, 

for the square well potential all trajectories must 
lead to III = ro. That follows from the fact that rp 
has no poles in that case.32

,3S 

35 The integral in (8.4) does not diverge as A ~ -N 
because we have seen that there the first 2N terms in ",(or i) 
have simple zeros and I goes as X N +1I2• 

36 Nothing is known that would prohibit one end of a 
trajectory from being at 1 = -N and the other at I = -N', 
N' r6 N, or at III = "". 

37 It was noted at the end of Sec. 6 that the proof of the 
meromorphic character of S can be extended to cases in 
which rV goes as r a, say, near the origin. It is clear in view 
of the foregoing considerations that in such a case the ends 
of trajectories may lie at nonintegral values of -l. The 
possible end points of trajectories are the poles of "', i.e., of F. 
These are easily obtainable from a. 

38 This was also shown directly by B. R. Desai (private 
communication). It is clear from our general reason that 
this is not due to the sharp cutoff at R. For any potential 
that is constant over a finite region starting at T = 0, the 
trajectories must end at infinity in the >. plane. In that case 
'" has no poles. 
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APPENDIX A. THE BRANCH POINT AT k = 0 

The Bessel function J x(z) has a branch point of 
a simple nature at z = 0; z-x J,(z) is analytic there. 
The Hankel function, on the other hand, does not 
have such a simple property. The function ZXH~2) (z) 
is finite at z = 0, yet there is still a branch point. 
It is readily shown from 

that 

SeA, k) tend to unity as k -t ± 00 and that S be 
unitary. 

The function f still has a branch point at k = 0, 
even though it is finite there. From (A4) and (AS) 
we find 

f(A, ke-2ri
) = _e-

2riXf(A, k) 

+ (1 + e-
2rix)f(A, -k). (A8) 

Consequently the S matrix has a branch point at 
k = O. From (A7) and (A8) we get39 

SeA, ke-''') == seA, -k) 

= e2""/[1 + e2
"" - seA, k)], (A9) 

which for half integral A (integral l) goes over into 
the usual 

H~2\ze-hi) = _H~2\Z) + 2 cos7rAH~2)(ze-i~). (AI) SeA, -k) = 1jS(A, k). 

As a result, we have by (2.5t9 

fo(A, ke- 2Ki
, r) 

= MA, k, r) - 2i cos 7rAfo(A, -k, r) 

since we want to mean f(A, -k, r) = f(A, ke-;", r) 
so that the connection from the positive to the 
negative k axis goes via the lower half plane. The 
Green's function in (2.6) being analytic at k = 0, 
we get the same result for f: 

f(A, ke-hi, r) 

= f(A, k,r) - 2i cOS7rAf(A, -k,r), (A3) 

and similarly, for F, 

peA, ke- 2
"') = F(A, k) - 2i cos 7rAF(A, -k). (A4) 

Since at k ~ 0 and Re A > 0, f is of order e/2
-

A
, F 

is also of the same order there and it is convenient 
to define 

f(A, k) == e(i~/2)(X-l/2)kX-1/2F(A, k). (AS) 

The exponential factor assures that for real k and A 

f(A, -k) == f(A, ke-i~) = f*(A, k). (A6) 

Insertion in the definition (2.15) of the S matrix 
then gives 

SeA, k) = fCA, k)/f(A, -k). (A7) 

The function f is the direct extension of the Jost 
function, as a comparison with (4.3) and (3.4) of 
reference 7 shows. It tends to unity as Ikl -t 00 in 
1m k ~ 0 and it has the integral representation (8.4). 
The exponential factor in (2.15) is therefore neces­
sary in order that even for nonintegral l values 

39 This was shown also in reference 3. 

Repetition of (A9) yields39 

SeA, ke-2ri
) 

Therefore, when seA, k) has a pole then 

(AlO) 

seA, lee-hi) = (1 + e-2"iX)-1. (All) 

The direction of the branch cut from k = 0 is 
arbitrary. We may take it along the negative real 
k axis, so that both the upper and the lower half 
plane are directly accessible from the positive k 
axis. As a function of E, S of course always has a 
cut along the positive axis. So long as we stay on the 
"physical sheet," the additional cut along the lower 
edge of the positive E axis never comes into play. 

The equation FCA, k) = 0 defines A as an analytic 
function of k. Since F has a branch cut along the 
negative k axis and a zero of F on one sheet is by 
(A4) not in general also a zero of F on another sheet, 
A(k) also has a branch cut along the negative k 
axis. The same remark as for SeA, k) applies. Re­
garding A as a function of E, if we stay on the 
"physical sheet," the additional cut never matters. 

Added in proof. It has become customary to follow 
Bottino et al.3 and to place the "kinematic" branch 
cut of F(A, k) along the positive imaginary k axis, 
where, starting at some finite value, the "Yukawa 
cut" lies. The corresponding cut of S in the E plane 
then runs along the negative real axis (on both sheets) 
and is referred to as the "left-hand cut." Since the 
pole position a(k) = A(k) - ! is defined by 
F(A, -k) = 0 and F(A, -k) has its left-hand 
cut on the second sheet as a function of E, aCE) 
has no left-hand cut on the first sheet, but only 
on the second. 
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APPENDIX B. THE RESIDUES OF S 

The residue of the S matrix at a point Ao, ko 
where F(Ao, -ko) = 0 (as a function of A) is by (2.15) 

Sn = eir (A-l/2)F(Ao, ko)/[aF(Ao, - ko)/aAo]. (B1) 

By the same technique used in Sec. 3, we get when 
F(Ao, -ko) = 0 

8F(Ao, - ko)/aAo = 4iAoko 10''' drr- 2(l(Ao, ko, r)/F(Ao, ko). 

But by (2.13) we then have 

cp(Ao, ko, r) = (2iko)-lF(Ao, ko)t(Ao, -kG, r). (B2) 

As a result 

10'" drr-
2rO,o, -ko, r) 

When ko ~ 0 we find that 

(B3) 

(B4) 

Added in proof. It follows from (B2) and from the 
fact that neither cp(A, k, r), nor teA, -k, r), nor 
a(k) has a cut along the positive imaginary k-axis, 
that F[Ao(k) , k] has no such cut either. Consequently 
the residue Sn(k) by (B1) has no "left-hand cut." 
This fact was explicitly pointed out by J. R. Taylor 
(to be published). 
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The analytical methods developed by Weyl and Titchmarsh for the study of the Sturm-Liouville 
equation are extended to the investigation of the spectral properties of the Dirac radial wave equation. 
It is shown how Weyl's limit-point, limit-circle theorem may be generalized to include the singular 
cases of a system of two first-order differential equations. A transformation is introduced and order 
properties are established for the solution of the corresponding integral equations. The nature of the 
spectrum is discussed for specific singular potentials. 

I. INTRODUCTION 

T HE analytic methods developed by Weyl/ 
Titchmarsh,2 and many others for the solution 

of the Sturm-Liouville equation 

x"(r) + [A - V(r)Jx(r) = 0 (' == d/dr) (1.1) 

have proven to be powerful tools for the study of 
the spectral properties of the singular cases of the 
second-order differential equations of mathematical 
physics. For example, since Eq. (1.1) corresponds 
to the radial wave equation of a nonrelativistic 
particle in a central field, the methods referred 
to may be advantageously applied to determine the 
spectral properties of the Schrodinger operator for 

* Present address: Computer Applications, Inc., San 
Diego, California. 

1 H. Weyl, Math. Annal. 68, 220 (1910). 
2 E. C. Titchmarsh, Eigenfunction Expansions Associated 

with Second-Order Differential Equations (Clarendon Press, 
Oxford, England, 1946). 

singular potentials. In the case of the Schrodinger 
equation such potentials behave near the origin 
as r-2 or, in general as r-n with n 2: 2. The spectral 
properties and the solutions of wave equations with 
singular potentials of this type and of a more general 
character have been studied by Case.3 

It is the purpose of this paper to generalize the 
methods of Weyl and Titchmarsh in order to in­
vestigate the spectral behavior of the system of 
two first-order differential equations, 

xi(r) - [AaCr) + bCr)]x2Cr) = 0 

x~Cr) + [AcCr) + dCr)]xICr) = 0, 

with singular coefficients. 

(1.2) 

Because the system (1.2) corresponds to Dirac's 
radial relativistic wave equation for a particle in a 
central field, these generalizations enable us to 

3 K. Case, Phys. Rev. 80, 797 (1950). 
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investigate the asymptotic behavior of the solutions 
of this equation and the spectral properties of its 
operator. Consequently, system (1.2) is discussed 
here for the case that the coefficients a, b, c, and d 
take the form required in the Dirac equation. 

For additional information about system (1.2), 
the reader is referred to some other papers and 
reports by the authors.4

-
6 

II. THE DIRAC EQUATION FOR A PARTICLE IN A 
CENTRAL FIELD 

The relativistic wave equation as proposed by 
Dirac may be written in the Hamiltonian form 

ih(ajat)if;(r, t) = Hif;(r, t). (2.1) 

[E + mc2 - F(r)Jfl(r) 

- lic[dMr)jdrJ - (lickjr)Mr) = 0 

[E - mc2 - V(r)]Mr) 

+ lic[dMr)jdrJ - (ftclcjr)fl(r) = o. 

(2.3) 

Here the parameter k can take the values ±1, 
±2, ... . At this point it is convenient to adopt 
the system of rational relativistic units in which 
Ii = m = c = 1. In order to have the system of 
Eqs. (2.3) conform with the system (1.2), we make 
the substitution x1 (r) = f2(r)rk and x2(r) = f2(r)r- k. 
Hence, 

x~(r) - r2k [E + 1 - V(r)Jxir) = 0 
(2.4) 

For the wave equation of a Dirac particle in the or as given in Eqs. (1.2) 
central field of a fictitious nucleus, the Hamiltonian 
takes the form x~(r) - [Aa(r) + b(r)]x2(r) = 0 

(1.2) 

H = -ca·p - /3mc2 + V(r). (2.2) 

The solution of the system of four simultaneous 
linear differential equations of the first order (2.1) 
is a column vector with four components. The 
coefficients /3, a, are anticommutative 4 X 4 Hermi­
tian matrices which find their ultimate form in the 
well-known Pauli spin matrices. 

Since the potential function VCr) in (2.2) is 
spherically symmetric, the Dirac equation for a 
particle in a central field can be separated in spherical 
coordinates. We will not go into the details of the 
separation process, but will instead refer to the 
many excellent references. 7

•
s It may be shown thai 

the reSUlting radial part of the solution of the wavE.­
equation has two components, fer) = [r- 1fl(r), 
r-1Ur)], and that the investigation of the radial 
part is sufficient for the determination of the spectral 
properties of the equations. Separating out the 
angular dependence, the equations for the radial 
wave functions may be written in the form given 
by Bethe9

: 

• B. W. Roos and W. C. Sangren, Proc. Am. Math. Soc. 12, 
468 (1961). 

• B. W. Roos and W. C. Sangren, Pacific J. Math. (to be 
published). 

8 B. W. Roos and W. C. Sangren, "Asymptotic Solutions 
and an Equiconvergence Theorem for a Pair of First-Order 
Differential Equations," presented at the 586th Meeting of 
the American Mathematical Society (unpublished). 

7 L. 1. Schiff, Quantum Mechanics (McGraw-Hill Book 
Company, Inc., 1950). 

8 P. A. M. Dirac, Principles of Quantum Mechanics 
(Oxford University Press, New York, 1935). 

9 H. A. Bethe, Handbuch der Physik, edited by Geiger 
Steele (Verlag Julius Springer, Berlin, 1933), p. 1,313. 

x~(r) + [AC(r) + d(r)JxI(r) = 0, 

where 

A = E, a(r) = r2k, b(r) = r2<[1 - VCr)], 

c(r) = r- 2k , d(r) = -r-2!"[1 + V(r)1. 
(2.5) 

In the following sections we investigate the 
spectral properties of system (1.2) for the coefficients 
(2.5). After making some preliminary information 
available in Sec. 3, we discuss the analog of Weyl's 
limit-point, limit-circle theorem in Sec. 4. Section 5 
introduces a transformation of the basic equations 
and in Secs. 5 through 9 the asymptotic properties 
of the relevant parameters and the solutions of the 
transformed equations are investigated. In Sec. 10 
the spectral properties of the Dirac equations are 
discussed. 

III. PRELIMINARIES 

On the finite interval (ro, rO) let vCr, A) = [v 1(r, A), 
v2(r, A)], w(r, A) = [WIer, A), w2(r, A)] be two vector 
solutions of (1.2) that satisfy the conditions 

-sin /3, 

- cos /3, 

+cos (3, 

-sin /3. 

The Wronskian of v and w is defined by 

Wr(v, w) = v1(r)w2(r) - v2(r)w 1(r). 

Since Wr(v, w) is independent of rand Wo(v, w) = 1, 
Wr(v, w) = 1 and v and ware linearly independent 
solutions. The general solution of (1.2) may be 
written as 

wet, A) + l(A)V(t, A). 
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It is known10
•
ll that if the general solution satisfies 

Sturmian boundary conditions at r = r" the eigen­
values will be real, nondegenerate, discrete, and 
extend from A = - ro to A = + ro. The corre­
sponding eigenfunctions are real functions of r. 
For the singular case the spectrum can be investi­
gated by taking the limit of the general solution 
as rO ~ ro. As in the case of singular second-order 
differential equations, it can be shown (Sec. 4) by 
a limit-point, limit-circle argument that for 1m A ~ 0 
the system (1.2) will have a vector solution: 

z(r, A) = w(r, A) + m(A)v(r, A) 

belonging to the class of square integrable functions 
L2(ro, ro). The function meA) depends upon the 
limit of circles in the complex A plane and, for 
rO ~ ro, is either a limit-point or a point on a limit­
circle. In the limit-circle case all solutions are in 
the class L 2 (ro, ro). Furthermore, meA) is analytic 
for 1m A ~ 0 and m(~) = meA). 

The spectral distribution function 10.11 is deter­
mined by the imaginary part of meA) and the 
spectrum associated with a problem for which the 
spectral distribution function is uniquely determined 
is the set of non constancy points of this distribution 
function. It may be shown that this spectrum is a 
closed set. The set of all discontinuity points of the 
spectral distribution function comprises the point 
spectrum. The points in the point spectrum are 
better known as the eigenvalues and the solutions 
of the differential equations corresponding to such 
points as the eigenfunctions. The continuous spec­
trum is the set of continuity points of the spectral 
distribution function which are in the spectrum. 
In the case where the spectrum corresponds to the 
energy states of a physical system, the continuous 
states of the system are to be found in the corre­
sponding continuous spectrum of the differential 
equations describing the system. In the meA) 
language the point spectrum is the set of the poles 
of meA) if meA) is a meromorphic function. 

IV. LIMIT-POINT AND LIMIT-CIRCLE THEOREM 

Before turning specifically to the singular cases, 
a theorem which is similar to that originally given 
by Weyll is developed. This theorem deals with 
the solutions of Eqs. (1.2) in the interval (ro, rO). 
The coefficients a(r), b(r), (J(r) , d(r) are assumed 

10 E. A. Coddington and N. Levinson, Theory of Ordinary 
Differential Equations (McGraw-Hill Book Company, Inc., 
New York, 1955). 

11 E. L. Ince, Ordinary Differential Equations (Longmans 
Green, London, 1927). 

to satisfy the conditions 

a(r), b(r), oCr), and d(r) are real-valued 
functions and a(r) > 0, oCr) > 0, 

aCr), b(r), oCr), and dCr) are sectionally 
continuous functions. 

(4.1.a) 

(4.1.b) 

Let r' be an interior point of the interval (ro, rO). 
Consider two solutions vCr) = [VI (r), v2(r)] and 
w(r) = [WIer), w2 (r)] of Eqs. (1.2), such that 

V,er') = -sin {3, 

wI(r') = - cos {3, 

v2(r') = + cos (3, 

w2(r') = -sin f3, 

where (3 is real. Because the Wronskian 

W.(v, w) = W •. (v, w) = 1, 

the two solutions are linearly independent. The 
general solution of the system (1.2) has the form 

z(r) = w(r) + m(A)v(r) , 

where meA) is a complex number. By means of 
elementary operations and the assumption that z(r) 
is a solution of (1.2) and z(r) is a solution of the 
system 

z~(r) - [~a(r) + b(r)]z2(r) = 0 

z~(r) + [~c(r) + d(r)]zl(r) = 0, 

one obtains 

Z2(r)z~(r) - z2(r)z[(r) 

= (A - ~)a(r)z2(r)z2(r) = 2iTo.(r) 1z2(r) 1
2

, 

-zl(r)z~(r) + zl(r)z~(r) 
= (A - ~)c(r)zl(r)zl(r) = 2iTc(r) 1zk) /2, 

where it is assumed that A is a fixed number, such 
that T = 1m A ~ O. The result of adding first and 
then integrating from r' to r yields 

2iT L [c(s) IZI (s) 12 + a(s) IZ2(s) n ds 

[z,(r)z2(r) - z2(r)z!(r)]~. 

W,(z, z) - W •. (z, z). 

For convenience, we now introduce the quantity 

2idF,(f, g) = W'(f, g) 

and we obtain 

t [c(s) Iz! (s) 12 + o.(s) IZ2(S) /2] ds 

= Vr(z, z) - V •. (z, z). (4.2) 

The integral on the left-hand side must now be 
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investigated for r tending to ro or rO. However, 
since these two cases are similar it will only be 
necessary to consider the case that r tends to rO. 
First, consider Vr,(z, z). We have 

Vr,(v, v) = 0, Vr,(w, w) = 0, and Vr,(w, v) = l/2ir 

and, consequently, 

V ( -) - meA) - ;;:;w _ 1m {m(A)} 
r' Z, Z - 2ir - r 

will be a real number. If it would be possible to 
choose meA) in such a way that Vr(z, z) ~ 0 for 
all r in (ro, rO), then 

and, therefore, 

r [e(s) Iz! (s) 12 + a(s) Iz! (s) n ds < co. 

Now, since z(r) = w(r) + m(A)v(r), 

Vr(z, z) = m(A)m(A) Vr(v, v) + m(A)Wr(v, w) 

+ m(A)W.(w, v) + Wr(w, w). 

Consequently, 

V.(z,z) = Vr(v,v) 

X {[meA) + V:r(V, ~)][m(A) + V:r(W,_V)] 
Vr~,0 Vr~,0 

_ Vr(v, w) Vr(w, v) - Vr(v, v) Vr(w, W)} (4.3) 
[Vr(V, V)]2 

and from this relation it follows that for fixed r 
the set of points in the meA) plane which satisfies 
the equation 

Vr(Z, z) = 0 

will be a circle with center 

C(r) = - Vr(v, w)/Vr(v, v) 

provided 

V == Vr(v, w) Vr(w, v) - Vr(v, v) Vr(w, w) 

is a positive number. Now, 

V = Vr(v, 'II) Vr(w, v) - Vr(v, v) Vr(w, w) 

= r-2 IWr(w, vW = -2 r . , 
therefore V is a positive quantity. The radius of 
the circle is therefore 

R(r) = 1/lrl Vr(v, v). (4.4) 

follows that the set of points meA) interior to this 
circle corresponds to Vr(z, z) < O. If we now fix 
a point meA) in (4.2) and allow r to increase (r' ~ 
r ~ rO), it follows that Vr(z, z) is an increasing 
function of r. 

Consider next the family of circles in· the meA) 
plane, which are represented by Vr(z, z) ~ 0 
when r' ~ r < rO. Let r' ~ 'r" < r" < rO, then let 
Vr,(z, z) ~ 0 for some point meA). It then follows 
that Vr,,(z, z) ~ 0 for this same meA), since Vr(z, z) 
is an increasing function of r. Geometrically, this 
means that the circle corresponding to r" is con­
tained in the circle corresponding to r,.. Conse­
quently, there exist two possibilities as r tends to rO. 
Either the circles Vr(z, z) = 0 converge to a point, 
called the limit-point, or they converge to a circle, 
called the limit-circle. The limit-point case occurs 
when 

lim Vr(v, v) 

This follows immediately from the defining relation 
for the radius R(r) of the circle (4.4). Let this limit­
point be denoted by m(rO, A) and let z(r) = w(r) + 
m(rO, A)v(r). Since this point m(rO, A) is contained 
in all the circles Vr(z, z) ~ 0, we obtain the im­
portant result that 

[' [e(s) Iz! (s) 12 + a(s) IZ2(s) n ds < co. 

Furthermore, from Eq. (4.3) it follows that 

Now, since limr~r' Vr(v, v) = co, Vr(z, z) 2:: o. 
However, we also have Vr(z, z) ~ 0 and therefore 

lim Vr(z, z) = 0 
r-+r O 

or 

lim [z!(r)z2(r) - z2(r)z!(r)] = O. 
r_rO 

The limit-circle case occurs when 

~~~ Vr(v, v) = r [e(s) Iv! (s) 12 + a(s) JVzCS) 1
2J ds < CO. 

The radius of this circle, using relation (4.4) is 
given by 

lim R(r) = lim, 1 
r~r' r~r,1ri Vr(v, v) 

When meA) = C(r), Vr(z, z) is negative and it Now, consider any meA) contained in the limit-circle. 
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For such an m(X), Vr(z, z) ~ 0 for all r in [r', rO] 
and, consequently, 

[0 [e(s) IZt(S) 12 + a(s) IZ2(S) 12] ds < 00. 

It also follows then, in this case, that every solution 
x(r) = [xt(r), x2(r)] of the system (1.2) is such that 

[0 [e(s) Ixt(s) 12 + a(s) Ix2(s) 12] ds < 00. 

Equation (4.3) has the form 

Vr(z, z) = Vr(v, v) [im(X) - C(r) 12 - R 2(r)], 

where C(r) and R(r) are the center and radius of 
the circle, respectively, corresponding to Vr(z, z) = o. 
If r tends to rO, then 

in the complex plane, such that 

lim [zl(r)z2(r) - zz(r)Mr)] = 0 
1'_1'0 

for z(r) = w(r) + m(A)v(r) when meA) = C(rO) + 
R(rO)eia . 

It may be shown that the system (1.2) is uniquely 
in the limit-point or limit-circle situation.12 

v. THE GENERAL TRANSFORMATION OF 
THE BASIC EQUATIONS 

The asymptotic behavior of the solutions of 
system (1.2) for large X and for large values of a 
coefficient when the independent variable ap­
proaches a singular point can be conveniently ob­
tained by first using the following transformation. 
Let the independent variable r be replaced by 

lim Vr(z, z) = lim Vr(v, v)[im(X) - C(rO) 12 - R2(rO)] , 
r~rO r-rO a(r) = r {[Xa(s) + b(s)][Xe(s) + d(s)]}1/2 ds 
where C(rO) and R(rO) are now the center and radius 
of the limit-circle, respectively. Now for a point 

(5.1) 

on the limit-circle, 

m(X) = C(rO) + R(rO)eia , 

where 0 ~ a :s; 271", and hence, 

The results may be summarized in the following 
theorem: 

Theorem 1. (a) For every value A other than real 
values, there exists a solution z(r) of the system (1.2) 
such that 

[0 [e(s) IZI(S) 12 + a(s) IZ2(s) n ds < 00 

for some r' in (ro, rO). 

(b) If there exists at least one solution x(r) 
her), x2(r)] such that 

LO [e(s) IXt(s) IZ + a(s) IX2(s) IZ] ds = 00, 

then for any solution y, suoh that 

[0 [e(s) IYl (s) 12 + a(s) IY2(S) 12] ds < 00 

lim [Yl(r)lMr) - Y2(r)Yl(r)] = O. 

(0) If for all solutions x(r) = [xl(r), x2(r)] suoh that 

L [e(s) IXI (r) 12 + a(s) IX2(s) n ds < 00, 

then there exist two linearly independent solutions vCr) 
and w(r) and a circle m(rO, A) = C(rO) + R(rO)e,a 

and the dependent functions xl(r) and x2 (r) by 

ul(r) = F(r)x2(r) 
and 

where 

F(r, X) = [Xa(r) + b(r)]l[Xe(r) + d(r)r 1
/

4 

G(r, X) = F'(a,)-l. 

This transformation gives formally 

dut/da = U2, 

dU2/da = -711 + R(X, a, b, e, d)ul , 

where 

R(X, a, b,e,d) = G'(a,)-IF-1. 

(5.2) 

(5.3) 

Although the transformed equations are similar in 
form to Eqs. (1.2), the coefficients on the right­
hand side remain bounded for large A and for 
certain important cases when a, b, c, or d become 
large. 

Now consider the following integral equations 

U1(r, A) = U2(rO) sin a(r) + U1(rO) cos a(r) 

+ r U1(s)8(s) sin [a(r) - a(s)] ds 

U2(r, A) = - Utero) sin a(r) + U.(ro) cos a(r) 

+ r U1(s)8(s) cos [a(r) - a(s)] ds, 

(5.4) 

12 B. W. Roos and W. C. Sangren, "Spectral Theory of a 
Pair of First Order Differential Operators," presented at the 
574th Meeting of the American Mathematical Society (un­
published). 
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where S(r) = G'(r)r1(r). It is easily verified by 
differentiation of U I and U2 with respect to a(r) 
that a solution of Eqs. (5.3) satisfies the Eqs. (5.4). 

VI. THE S(1) FUNCTION FOR THE DIRAC EQUATION 

It is important for later use to determine the 
order properties of the S(r) function. In particular, 
we will have to determine whether or not the 
function S(r) is integrable. S(r) can be written as 

S(r) = (1/4)[(Aa" + b")(Aa + b)-3/2(\C + d)-I12 

- (AC" + d")(Aa + bfl/2(AC + d)-a/2 

- (5/4)(Aa' + b,)2(Aa + b)-S/2(AC + d)-1/2 

+ (7/4)(AC' + d,)2(Aa + bfl/2(AC + dfa12 

- (1/2)(Aa' + b')(\c' + d')(Aa + b)-a/2(AC + d)-a/2], 
(6.1) 

where 

A = E, a(r) = r2k, 

c(r) = r-2k , 

b(r) = [1 - V(r)]r2k 

d(r) = - [1 + V(r)]r2k . 

Case 1. Let r ~ ex:>. Various behaviors of the 
potential function VCr) may be assumed when 
r ~ ex:>. Consider, for example, the potential 

VCr) = O(r-I) for r ~ ex:>. 

It is not difficult to verify by (6.1) that in this case 

for 0 ~ 0 and r ~ ex:> 

S(r) = 0(r-2
+

1
) for 0:::; 0 and r ~ ex:> 

and that S(r) is integrable L(rn • ex:». In the same 
fashion, when VCr) ~ 0 for r ~ ex:> , S(r) = 0(r-2

) 

and is again integrable L(ro, ex:». In numerous cases 
it can also be shown that S(r) is integrable L(ro, ex:» 

when W(r) I ~ ex:> for r ~ ex:>. 

Case 2. Let r ~ 0, and let it be assumed that 
VCr) behaves like r- Y for r ~ O. It may now be 
shown that 

S(r) = 0(r-2
+ Y

) for 'Y ~ 0 and r ~ 0 

S(r) = 0(r-2) for 'Y:::; 0 and r ~ O. 

Similarly, if VCr) ~ 0 for r ~ 0, S(r) = 0(r-2
). 

S(r) is therefore only integrable L(O, ro) when 
i' > 1. Again, it may be expected that S(r) is 
integrable L(O, ro) for many situations in which 
WCr) I ~ ex:>. 

VII. THE CHARACTER OF a(1) FOR THE RADIAL DIRAC 
EQUATIONS 

The character of a(r) for large values of the 
parameter A and at a singularity of the potential 

function must be investigated before determining 
the corresponding order properties of the solutions 
of the integral Eqs. (5.4). In the integral Eqs. (5.4), 
aCr) is present explicitly in the terms exp [ia(r)] 
and exp [-ia(r)], which consitute the functions 
sin a(r) and cos a(r), and is present implicity in the 
function S(r). By definition, and hecause a(r) and 
c(r) are real and positive, 

a(r, A) = r [a(s)c(s)]11
2
{[ A + !~:n[ A + ~~:nr2 ds. 

First, consider the character of a(r) for large A. 
For any fixed r interior to the interval under con­
sideration, it may be shown by using the binomial 
expansion that 

a(r, A) = \her) + g(r) + O(A -1) , 

where 

her) = r [a(s)c(s)r/2 ds, 

() _ ! fr b(s)c(s) + a(s)d(s) d 
g r - 2 r. [a(s)c(s)]1/2 s. 

Next, consider the behavior of a(r) near either of 
the end points of the interval, for example, near 
r = ex:>. It is assumed that A is fixed and is given 
by A = (J + iT, where T > O. The behavior of a(r) 
near r = ex:> is necessarily quite varied because it 
depends strongly on the behavior of the four func­
tions a(r), b(r), c(r), and d(r) in the neighborhood 
of r = ex:>. We will not attempt to present a com­
prehensive discussion of the varied behavior here.4 

However, the following general comments can be 
made. 

When S(r) is integrable and 1m a(r) tends to 
plus or minus infinity, the limit-point case can be 
expected. If S(r) is integrable, but 1m a(r) is 
bounded, then the limit-circle case can be expected. 
In the limit-circle case the spectrum is discrete 
whereas in the limit-point case the spectrum may 
be either continuous or discrete or both. 

Let us now return to the Dirac equations. Here 

a(r) = r {[A + 1 - V(S)][A - 1 - VCs)]} 1/2 ds 

and it may be noted that this a(r) is a particular 
case of the one discussed in a previous paper.4 

Here, 1 - VCr) and -[1 + VCr)] correspond, 
respectively, to the ql(r) and q2(r) of that paper. 
The results of that study can therefore be used 
immediately at r = ex:>. Specifically, consider the 
situation where VCr) ~ 0 for r ~ ex:> , as in the case 
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when VCr) O(r-a) and 0 > ° for r ~ 0:>. This is 
an example of case 9 of the previous paper and it 
was shown, for real A and when A2 > 1, that a(r) 
is real and a(r) ~ + 0:>, whereas if A2 < 1, a(r) 
will be imaginary and 1m a(r) ~ + 0:>. For 0 < 0, 
or more generally, if IV (r) I ~ 0:>, either case 3 
or case 4, of the paper mentioned, hold. In either 
case, for real A, a(r) is real and la(r) I ~ 0:>. 

When r ~ ° and VCr) behaves like r--', where 
'Y > 0, it is not difficult to show for real A, that 
a(r) = 0(1) and is real when ° < 'Y < 1, and that 
la(r) I ~ 0:> when'Y > 1. This last behavior can be 
expected whenever IrV(r)1 ~ 0:>. Since S(r) does 
not satisfy the crucial condition for our study that 
it is integrable L(O, ro) when VCr) ~ 0, we will 
not consider this situation here. 

Uiro) = - F-I(ro)x l (ro) + G(ro)x2(rO). 

The associated initial conditions for U(r, A), cor­
responding to the two linear independent solutions 
w(r, A) and vCr, A) of the system (1.2), are 

U2 ,(rO) = p-l (ro) 

X sin (3 + G(ro) cos (3 

Ulw(rO) = -F(ro) sin (3, Uzw(ro) = p-l(ro) 

X cos (3 - G(ro) sin (3. 

From the definition of FCro), GCro), it follows that 
Uh(rO), U2 ,(rO), UIW(rO), Uzw(ro) are bounded pro­
vided A is such that 

Consider those cases where A is real and a(r) is 
VIII. THE ORDER PROPERTIES OF Uir,')..) IN THE real; UI(r) and U 2 (r) are therefore bounded. Further-

NEIGHBORHOOD OF SINGULAR POINTS more, from Eqs. (5.4) it follows that 

In the case of the Dirac radial wave equations, 
the order properties of the solutions of the integral 
Eqs. (5.4) are directly obtained from the results 
of cases 3, 4, and 9 of reference 4. When 1m a(r) ~ 0:>, 

it was shown that 

where 

UI(r, A) = e-iaC')[M+(A) + o(1)J, 

U2(r, A) = e-iaCc)[N+(A) + o(1)J, 

M+(A) = -(l/2i)U2(ro) + tUI(rO) 

- 2
1.1'" ei a C,) S(s) UI (s) ds 

'1, r, 

N+(A) = Cl/2i)UI(ro) + tU2(rO) 

+ ~ 1'" eiaC,)S(s)UI(s) ds. 

Similarly, when 1m a(r) ~ - 0:> , 

where 

UI(r, A) = eiacr)[M-(A) + o(l)J, 

Uz(r, A) = eiacr)[N-(A) + o(1)J, 

M-(A) = (I/2i)U2(rO) + tUI(rO) 

UI(r, A) = /-I(A) sin aCr) + peA) cos a(r) + 0(1) 

U2 (r, A) = -peA) sin a(r) + /-leA) cos a(r) + 0(1), 

where 

/-I(A) = U2(rO) + J~ UI(s)S(s) cos a(s) ds 

peA) = UI(rO) - J~ UI(s)S(s) sin a(s) ds. 

The integrals in the last two relations converge 
uniformly in A, and hence, /-I(A) and PCA) are con­
tinuous and bounded functions of A. It was assumed 
here that S(r) is integrable L(ro, 0:». It may now 
be verified that when A is real and r ~ 0:>, 

and it follows that neither /-Iw, P w nor /-I" P, can both 
vanish simultaneously for the same A. 

For r ~ 0, UI(r, A) and U 2 (r, A) are bounded 
functions in the Dirac case. It was noted in the 
previous section that 1m a(r) is 0(1) for complex 
A when r ~ 0. Consequently, from Eqs. (5.4) it 
follows for small ro that 

+ ~ 1'" e-iaC,)S(s)UI(s) ds IU(r, A)I ::; K + [' IUI(S, A)//S(S)/ ds 
2'1, ro 

and by a lemma in a previous paper,4 U(r, A) is 
N-(A) = - (I/2i) UI(rO) + tU2(rO) bounded provided that S(r) is integrable L(O, ro). 

+ ~ J~ e-iaC,)S(S)UI(s) ds. 

From the basic transformations it follows that 

IX. THE CHARACTER OF m(')..) 

It was noted in Sec. 5, that system (1.2) has a 
solution z(r) = w(r) + meA) VCr) which for nonreal 
values of A is Lebesgue integrable square at each 
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end of the interval. Therefore, there exists a solution 

zo(r, X) = w(r) + mo(X) VCr) 

belonging to L2(0, ro) and a solution 

zoo(r, X) = w(r) + moo(X) VCr) 

belonging to VCro, co). First consider the solution 
zoo(r, X). The functions w(r) and VCr) do not belong 
to L2(ro, co). This nonintegrability can be verified 
by observing that 

rl(r) = [Xa(r) + b(r)]t[Ac(r) + d(r)rl/4 

does not vanish for any general behavior of VCr) 
in a manner that will compensate for the growth 
in the term exp [-ia(r)] when 1m a(r) -7 + co or 
the term exp [ia(r)] when 1m a(r) -7 - co. Con­
sequently,4 

w~(r, X) = [r\r)M:'(X) + o(l)]e- iarr ), 

w;(r, X) = [r'(r)M:(X) + o(l)]eia(r) , 

v~(r, A) = [r\r)M:(X) + o(l)]e- ia ' r
) , 

v;(r, X) = [F-l(r)M~(X) + o(1)]eia
(r). 

The right-hand boundary point at co is thus seen 
to give rise to the limit-point situation. It may be 
verified that if zoo(r, X) is to be in L2(ro, co) then 

m:(X) = -A£:(X)/M~(A) = -N:(X)/N:(X) 

and it is well to remember that the quantities M(X) 
and N(X), which constitute m:(A), contain the 
quantities S(r), Ul(rO)' U2(rO)' In turn, Ul(rO) and 
U2(rO) are composed of the quantities F(ro), F-(ro), 
and G(ro). From the definitions of F(r) and G(r) 
fEqs. (5.3)], it is not difficult to verify that when X 
is real and [Aa(ro) + b(ro)][Xc(ro) + d(ro)] > 0, 
F(ro), F-(ro) , and G(ro) are real. When A is real 
and [Aa(ro) + b(ra)][ACCro) + d(ro)] < 0, it is ap­
parent that F(ro) , r(ro), and G(ro) are complex with 
argument 7r/4 or -7r/4. Similarly, S(ro) is real 
provided [Xa(ro) + b(ro)][Xc(ro) + d(ro)] > ° and 
is imaginary if [Aa(ro) + b(ro)][Ac(ro) + d(ro)] < 0. 

In the Dirac case, [Aa(r) + b(r)][Ac(r) + d(r)] = 

[X + 1 - VCr)] [X - 1 - VCr)]. If VCr) -7 ° for 
r -7 co, then [X + 1 - V(r)][X - 1 - VCr)] be­
haves like A2 - 1. Consequently, for A2 - 1 > ° 
it is possible to choose an ra such that S(r), a(r), 
F(r), and G(r) are simultaneously real for r > ro 
and for real A. It follows from the definitions that 

[J.Lw(A)U,,(A) + Pw(X)P,,(A)] + i 
J.L:(A) + P:(A) 

= m:(A). 

Consequently, 1m m+(A) and 1m m-(A) are non­
vanishing. If VCr) -7 ° for r -7 co and X2 < 1, 
S(r) and a(r) are imaginary and F(r) and G(r) are 
complex with argument 7r/4 or -7r/4. The M's 
and N's which constitute moo(A) can, when mul­
tiplied by ei

..-/
4 or e- i

,,-/\ be shown to be real, and 
since the M's and N's are holomorphic in the whole 
X plane, the m+(A) and the m-(X) are meromorphic 
functions of X. 

If VCr) behaves like r-'Y when r -7 ° and 'Y > ° 
then U(r, X) was seen to be bounded for complex X 
and S(r) integrable L(O, ro). However, S(r) is 
L(O, ro) only when 'Y > 1. By the transformation 
(5.2) we have x2 (r) = F-1(r)U1(r, X) and xl(r) = 
-F(r)U2(r, X) + G(r)U1 (r, A). Therefore, as r -70, 
F(r) = O(rk) and G(r) = 0(r'Y+k- 1). Consequently, 
xl(r) = O(rk) + O(r'Y+k-l) and x2 (r) = O(r-k). 
Although for an integer k either xl(r, X) or x2 (r, A) 
is not integrable, the limit-point, limit-circle theory 
indicates that the relevant issue is whether 
J laCs) !x 2 (s)j" + c(s) !X l (S)!2] ds exists. Now 

a (x) !x2(rW = 0(1) and c(r) !x,(r)!2 

= 0(1) + 0(r2
('Y-

l
) 

and, consequently, for 'Y > 1, all solutions of the 
system (1.2) satisfy the integrability requirements 
and the limit-circle case is present. 

It is not proved here, but it can be shown in a 
straightforward manner, that if any point in the 
limit-circle is selected, the associated mo(A) is a 
meromorphic function of X, is real for real A, and 
has poles and zeros which are real and simple.2 

X. SPECTRA FOR THE DIRAC CASE 

In the Dirac case, where singUlarities exist at 
both ends of the interval, the spectra is determined 
by the three functions2 

1 mo(X) 
mo(A) - moo(X) , 

d mo(X)moo(X) 
an maCA) - moo(X) 

In a given X interval of the real axis, three situations 
need to be considered. First, maCA) and moo(A) may 
be meromorphic functions. Second, the imaginary 
parts of mo(A) and moo(A) may be nonvanishing. 
Third, only one of the mo(A) and moo(A) is mero­
morphic whereas the other one has a nonvanishing 
imaginary part. 

In the first situation where maCA) and moo(X) are 
meromorphic it is apparent that the three functions 
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are also meromorphic. It then would follow that 
the spectrum is discrete for the associated A interval. 

For the second situation it is easily shown that 
the imaginary part of maCA) - m",CA) does not 
vanish. Consequently, since maCA) and m",CA) are 
bounded, it follows that the spectrum is continuous 
for the associated A interval. 

In the third situation, where either maCA) or m",CA) 
is meromorphic, 1m [maCA) - m",CA)] tends to a 
finite limit in the whole interval except at certain 
discrete points. Therefore, the imaginary parts of 
the three functions tend to finite limits which can 
vanish at most at discrete points. The associated 
spectrum is therefore continuous. 

The situation where VCr) ~ 0 as x ~ 00 and 
VCr) behaves like r-'Y for I' > 1 results in the 
interesting spectral properties from a physical 
standpoint. In this situation maCA) and m",(A) are 
meromorphic for A2 < 1 and mo(A) is meromorphic, 
but 1m m",CA) is nonvanishing for A 2 > 1. Con-

sequently, the spectrum is discrete for A2 < 1 and 
continuous for A2 > 1. This result could likewise 
be expected for numerous other cases when WCr) I ~ 
00 as r --> 0 and VCr) ~ 0 as r --> 00. If, however, 
WCr)1 ~ 00 as r ~ 00, only a continuous spectrum 
can be expected. 

We have seen that with the formalism described 
above, the well-known result that the discrete levels 
are restricted to a region between ±mc2 is repro­
ducible. However, we required the potential VCr) 
to behave better than r-'Y near the origin so that a 
Coulomb field, for example, was excluded. However, 
the Coulomb field is just the case that is amenable 
to a rigorous analysis by series expansion methods 
and the spectrum is easily determined. 
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The asymptotic behavior of the Weyl tensor and metric tensor is investigated for probably all 
as~~ptotically flat solutions of the empty space Einstein field equations. The systematic investigation 
utilizes a set of first order differential equations which are equivalent to the empty space Einstein 
equations. These are solved asymptotically, subject to a condition imposed on a tetrad component 
of the Riemann tensor \[fo which ensures the approach to flatness at spatial infinity of the space-time. 
If \[fo. is assumed to be an analytic function of a suitably defined radial coordinate, uniqueness of the 
s?lutlOns can be proved. However, this paper makes considerable progress toward establishing a 
ngorous proof of uniqueness in the nonanalytic case. A brief discussion of the remaining coordinate 
freedom, with certain topological aspects, is also included. 

I. INTRODUCTION 

THE problem of the behavior of the metric 
tensor and Riemann tensor at spatial infinity 

in an asymptotically flat space-time has recently 
received considerable attention for a variety of 
reasons. For example, Trautman and othersl have 
used the as~mptotic behavior to study conservation 
of energy and momentum as well as gravitational 
radiation. Bergmann2 has been interested in the 
group properties of the transformation at spatial 
infinity in order to shed light on quantization 
problems. 

Until recently, most of these approaches were 
based on reasonable guesses for the behavior of 
gIl' at infinity. Bondi3 and Bondi and Sachs4 have 
improved this situation with some beautiful theorems 
on the asymptotic behavior of the metric. Their 
work, however, contained several restrictive as­
sumptions; the analytic behavior of all expressions 
as functions of r- l (r is a suitably defined radial 
coordinate), and certain simplifying topological re­
strictions. 

In the present paper, these assumptions are 
dropped, and the techniques developed by Newman 
and Penrose5 (this reference will be denoted by 
NP) are applied to the general problem of the asymp­
totic behavior of the Weyl tensor and metric tensor 
for probably all asymptotically flat solutions to the 
empty space Einstein field equations. 

In a hyperbolic Riemannian manifold a family of 

* This work has been supported by the Office of Aerospace 
Research, U.S. Air Force. 

1 A. Trautman, "Conservation Laws in General Relativity" 
(to be published); This is also an excellent source of references 
to recent works on conservation laws. 

2 P. Bergmann, Phys. Rev. 124,274 (1961). 
8 H. Bondi, Proc. Roy. Soc. (London) (to be published). 
4 H. Bondi and R. Sachs (private communication). 
6 E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962). 

null hypersurfaces may always be introduced. This 
being done, in Sec. II a coordinate system and 
tetrad are associated with the given surfaces, 
bringing the metric into a certain canonical form. 
Then a set of equations equivalent to the empty 
space Einstein field equations is shown, and the 
variables occurring in these equations are defined. 
From these equations the asymptotic behavior of 
the field can be investigated, systematically and in 
detail, subject to a condition of approach to flatness 
at infinity on the space-time. This condition of 
asymptotic flatness is not imposed on the metric, 
as is usually done, but is instead imposed on the 
empty-space Riemann tensor. More explicitly, 
using the orthonormal tetrad defined in Sec. II, 
there are only five independent (complex) tetrad 
components of the Weyl tensor, which we denote by 
\{I A' One of these components 'ltD, is specified asymp­
totically as O(r-5),6 which guarantees the asymptotic 
flatness of the space. 

In Sec. III the field equations are solved asymp­
totically, with the above condition on \lIo. In order 
to do this, the field equations are divided into three 
groups. The first group is integrated to find the 
radial dependence of all the variables, up to an 
appropriate order of magnitude. Each integration 
produces an arbitrary function of the remaining 
three (nonradial) coordinates. The second group of 
equations sets up relations among these" constants" 
of integration, which allow most of the functions 
to be expressed in terms of two basic functions. 
The third group of equations, part of the Bianchi 
identities, determines the propagation of com­
ponents of the Weyl tensor off the hypersurface. 

6 fer, u, Xk). = O~g(r)) means If(r, u, xk)1 < g(r)F(u, x k ) 

for some functIOn F mdependent of r and for all r, sufficiently 
large. 

891 
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In Sec. IV the general class of coordinate trans­
formations which preserves the form of the metric 
is found. Some of the coordinate transformations 
change the system of hypersurfaces, others do not. 
Most of this coordinate freedom is eliminated in 
achieving a simplification of one of the basic 
variables. 

In Sec. V we summarize the results already ob­
tained and discuss the independent data that can be 
specified to determine a solution of the field equa­
tions. These data consist of a complex function 
defined from the shear of a null congruence (Bondi3 

calls it the "news function"), a two-dimensional 
metric tensor for the surface r = const (Bondi 
chooses this surface to be a sphere), and certain 
Weyl tensor parts, including \fro. In order to obtain 
explicit information from the third group of equa­
tions (the equations which propagate the Weyl 
tensor off the hypersurface), one must specify in 
more detail the dependence of \fro on r- l

, other than 
\fro = O(r- 5

). For example, if one writes 

then the propagation of \fr~ off the surface can be 
explicitly worked out. 

If one assumes that 'l'o is an analytic function 
of r-'\ it can be shown that the solution of the field 
equations is uniquely determined by the data that 
have been set and the field equations themselves. 4 

However, it now seems to be generally agreed that 
the assumption of analyticity is probably not 
essential in showing that the solution is unique. It 
would be very desirable to have a rigorous proof of 
uniqueness in the nonanalytic case. Our work carries 
this proof almost to completeness; the final step 
would be to show that the propagation of the non­
analytic \fro off the surface is unique. Finally, the 
remaining coordinate freedom is discussed. 

In a recent paper, Sachs7 discusses the geometric 
interpretation of several of the terms and first order 
differential equations listed in Sec. II of this paper. 

The range and summation conventions used here 
are: lower case Greek indices 1, 2, 3, 4; lower case 
Latin indices 3, 4. 

II. THE FIELD EQUATIONS 

In this section a special coordinate system, with 
an associated tetrad, is constructed as in Robinson­
Trautman8 and NP. The pertinent results of NP are 
presented, including a set of equations which are 

7 R. Sachs, Proc. Roy. Soc. (London) 264, 309 (1961). 
8 1. Robinson and A. Trautman, Proc. Roy. Soc. (London) 

265, 463 (1962). 

equivalent to the Einstein empty space field equa­
tions. 

We begin by introducing a family of null hyper­
surfaces, which is always possible in a normal hyper­
bolic Riemannian space. (In flat space-time a 
particular family might be the null cones emanating 
from a timelike world line.) They may be desig­
nated by a parameter u = const, so that 

g"'u,"U" = o. (1) 

The first tetrad vector will be chosen to be orthogonal 
to the hypersurfaces, 

(2) 

Since the hypersurfaces are null, the vectors Z" 
will also be tangent to a family of curves that lie 
within the surfaces. These curves are null geodesics; 
their tangent vectors Za satisfy 

Z";,l' = O. 

Using this geometric approach, it is convenient 
to take u as coordinate Xl. Then Eq, (2) becomes 

la = o~. 

An affine parameter, defined up to a linear trans­
formation, can be associated with the null geodesics 
lying in the hypersurfaces. This affine parameter r 
will be the coordinate x2

• The two remaining co­
ordinates Xk will label the geodesics on each hyper­
surface u = const. 

The tangents to the geodesics are given by 

l" = dx" jdr = g"'u" = g"l. (3) 

With our choice of coordinates, r being the affine 
parameter x 2

, Eq. (3) becomes 

Z" = o~ = g"l. 

Hence, the metric assumes the form 

0: 1 :0 0 
__ 1 ___ 1 ____ 

1 
1 g"2 1 2k 

g"' 
1 1 g 

(4) __ 1---1----

0 
1 1 
1 1 
1 g2k 1 gm" 1 1 

0 
I 1 
1 1 

In addition to the vector Z", we define another 
null vector n" normalized by Z"n" = 1, and two 
unit spacelike vectors S-" and p" orthogonal to Z", 
n", and each other. Instead of the real spacelike 
vectors p" and S-" it is convenient to use the following 
complex vectors 

m" = W - ip")/V'2 

iii" = W + ip")jV2. 
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The four tetrad vectors l", n", m", and iii" are null 
and satisfy the following orthonormality relations 

l"n" = -m"iii" = 1, 

l"l" = n"n" = m"m" = m"iii" = l"m" = l"m" (5) 

In order to satisfy Eqs. (5), the vectors m" and n" 
must have the form 

m" = wo~ + ~kO~ 
n" = 0'; + Uo~ + XkO~, 

where w, ~\ [7, and X" are arbitrary functions of 
the coordinates. The completeness relation 

g"' = l"n' + n"l' - m"iii' - iii"m' 

is a consequence of the orthonormality relations 
Eqs. (5). It permits us to express the metric in 
terms of the tetrad components; 

9"2 = 2(U - ww) 

g"k = X k _ (~kW + ~kW) 
gmn = _(c~n + ~T). 

(6) 

There remains the following freedom in the choice 
of the tetrad; the spatial rotation 

r' = l", 

which depends on one parameter, and a 2-param­
eter group, the so-called null rotations 

r' = l" , n"' = n" + Em" + Bm" + BEl" 

m'" = m" + Br, 

(B complex). 

(8) 

These tetrad transformations leave the direction 
of l" fixed. Later (Sec. IV) we will be interested in 
coordinate transformations which necessitate the 
choice of an entirely new family of hypersurfaces 
and tetrad system. But at this point the restricted 
3-parameter group Eqs. (7) and (8) can be used to 
simplify some of the calculations. We will demand 
parallel propagation of the tetrad along the geodesics, 
restricting the functions C and B to be independent 
of r. 

With the above preparations, we are in a position 
to derive the asymptotic behavior of the metric 
and Riemann tensors for empty space. In NP a set 
of equations was developed which are equivalent to 
the Einstein empty space field equationii. Although 
many more in number, these equations are of first 
order, most of them being linear. They are es­
sentially linear combinations of the equations for 

the Riemann tensor expressed in terms of either 
Ricci rotation coefficients, or in terms of the spinor 
affine connection, many of the equations having 
straightforward geometric interpretations.7 

The field equations [using our coordinate con­
ditions, Eq. (4)] may be divided into three groups. 
The first group iii distinguished by a simple D == a / ar 
derivative. Integration of these equations yields the 
r dependence of the variables, with (in general) a 
"constant" of integration, a function of u, x3

, x\ 
for each variable. 

I. Radial equations: 

D\fI 1 -

D\f!2-

D\fI3-

D\fI.-

D~i = p~' + at, 
Dw = pw + aw - (IX + (3), 

DX' = (IX + (3)~' + (a + i3)r, 

(9a) 

(9 b) 

(9c) 

1)U = (IX + (3)w + (a + i3)w - (oy + '9), (9d) 

Dp = / + aiJ, (ge) 

Da = 2pa + \flo, (9f) 

DT = Tp + Ta + \fIl' (9g) 

Da = ap + {3iJ, (9h) 

D{3 = (3p + aa + \fIl, (9i) 

D'Y = m + T,B + \fI2, (9j) 

DA = Ap + J.l.iJ, (9k) 

DJ.I. = J.l.p + Aa + \fI2' (91) 

Dv = TA + TJ.I. + \fI3, (9m) 

Wro = 4p\fl 1 - 4a\flo, (9n) 

Wrl = 3p\fl2 - 2a\fl 1 - A\fIo, (90) 

Wr2 = 2p\fl3 - 2A\fIl, (9p) 

Wr3 = p\fl. + 2a\fl" - 3A\fI2, (9q) 

The second group have more complicated deriva­
tives, 

~ = U(a/ar) + (a/au) + Xk(a/axk) 

o = w(a/ar) + ~k(a/axk). 
From this group we obtain relations between the 
integration "constants" found above. 

II. N onradial equations: 

oX' - ~~; (J.I. + '9 - 'Y)( + xt, (lOa) 

o~' - b~' = (i3 - a)~i + (IX - mt, (lOb) 

ow - bw = Ci3 - a)w + (IX - (3)w + (J.I. - jl), (lOc) 

oU - ~w = (J.I. + '9 - 'Y)w + };.w - v, (lOd) 
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.1X - Bv = 2001 + (1 - 31' - f.J. - il)X - '1'4, (lOe) 

op - Bu = ({3 + ii) P + (~ - 3a)u - 'lrI' (lOf) 

oa - B{3 = f.J.p - Xu - 2a{3 + aii + {3~ - 'lr2' (lOg) 

oX - Bf.J. = (a + ~)f.J. + (ii - 3{3)X - 'lra, (10 h) 

OV - .1f.J. = I'f.J. - 2,,{3 + 1f.J. + f.J.2 + AX, (lOi) 

01' - .1{3 = Tf.J. - UV + (f.J. - I' + 1){3 + Xa, (lOj) 

OT - .1u = 2T{3 + (1 + f.J. - 31')u + Xp, (1 Ok) 

.1p - BT = (y + 1 - il)P - 2aT - AU - 'lr2 (101) 

.1a - BI' = pv - TA - AfJ + (1 - I' - il)a - 'lra, 
(10m) 

The third group, derived from the Bianchi 
identities, determines the propagation of the tetrad 
components of the Weyl tensor in the u-direction, 
from null surface to null surface. 

III. The u-derillative equations: 

.1'lro - o'lr l = [41' - f.J.]'lro - [4T + 2,8]'1'1 + 3u'lr2 

(11 a) 

.1'lrl - 0'lr2 = V\[rn + [21' - 2f.J.N'1 - 3T'I'2 + 2u'lra 
(11 b) 

.1'lr2 - o'lra = 2,,'lr1 - 3f.J.'lr2 + [ -2T + 2,6]'lra + u'lr4 

(l1c) 

.1'lra - 0'lr4 = 3,,'lr2 - [21' + 4f.J.]'lra + [ - T + 4,6J'lr4 

(lId) 

The complex functions p, u, a, .. , are defined 
either in terms of the Ricci rotation coefficients, or 
the spinor affine connection. In NP they are named 
"spin-coefficients." Their definitions in terms of the 
tetrad are: 

p = Z";pm"iii:, 

u = Z":,m"m', 

T = Z":,m"n', 

a = t(l""n"iii: - m":,iii"iii') , 

{3 = t(l""n·mP - m.:piii"m·) , 

I' = tCZ.:pn"n' - m.:,iii"nP) , 

A = -n." iii" iii: , 

f.J. = n.:piii·m', 

v = -n""iii·n". 

(12a) 

(l2b) 

(12c) 

(l2d) 

(12 e) 

(12f) 

(12g) 

(12 h) 

(12i) 

In NP it is shown that, in this coordinate system, 
T = ii + ,6. 

As mentioned above, many of the spin-coefficients 
have simple geometric meanings, such as the shear 
and divergence of the null geodesic congruence, etc. 
(See reference 7 and NP, Sec. IV). 

The 'lr A are the tetrad components of the Weyl 
tensor (or empty space Riemann tensor); 

'lro = -Ca{3'Yozam{3Fmo, (12j) 

'lr l = -Ca{3'Yazan{3Fmo, (12k) 

'lr2= -tca{3'Yo(zan{3Pn° + zan{3m'YiiiO), (121) 

'lra = C a{3'Ya zan{3n 'Y iii ° , (12m) 

'lr4 = - C a{3'Y an aiii{3n 'Y iii!. (12n) 

We wish to solve the field equations with the 
condition that all the 'lr A approach zero as r ap­
proaches infinity. It was shown in NP that an 
extremely weak (if not the weakest) assumption to 
ensure this boundary condition is 'lro = 0(r- 6

). 

Here we will adopt the slightly stronger condition 9 

'lro = 'lr~r-5 + 0(r- 6
). (13) 

(In the remainder of the paper, a zero superscript 
indicates the variable is independent of r). It will 
also be necessary to make assumptions on the 
derivatives of 'lro; 

lJiJt 0 = a'lr 0/ ar = - 5'lr~r -6 + OCr -7) , (14) 

and "uniform smoothness," 

di'lrO = (di'lr~)r-5 + o (r- 6
) , .,. , 

did;dmdn'lro = (d;d;dmdn'lr~)r-5 + 0 (r-6) , 

d;D'lro = -5(di'lr~)r-6 + 0(r- 7
), ••• , 

did;dkD'lro = - 5(d;d;dk'l'~)r-6 + OCr -7), 

where (i, j, k, m, n = 3,4) d; ~ a/ax
i

• 

(15) 

Needed in the next section is the asymptotic 
behavior of each of the spin-coefficients, tetrad 
components, and remaining Weyl tensor com­
ponents. This information was derived in NP, using 
some powerful theorems of· Levinson and Cotting­
ton. JO 

p = -r-I + 0(r- 2
) 

u = 0(r- 2
) 

a, ,6, X, f.J., T = OCr-I) 

II, I' = 0(1) 

~k = OCr-I) 

X·, w = O(l) 

U = OCr) 

'lrI = 0(r-4
) 

'1'2 = OVa) 

'lra = 0(r- 2
) 

'lr4 = O(r-I) 

(16) 

(17) 

9 We wish to study the propagation of 'fro in the u "direc­
tion." Such a study would be more difficult under the general 
assumption 'fro = O(r-6 ). 

10 E. Coddington and N. Levinson, Theory of Ordinary 
Differential Equations (McGraw-Hill Book Company, Inc., 
New York, 1955), p. 103. 
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m. SOLUTIONS 

This section outlines the method of solving the 
empty space field equations listed in Sec. II. The 
first-order radial differential equations [all of which 
are linear except Eqs. (ge, f), and these can be 
made linear by increasing the order of differentia­
tion] fall naturally into certain subgroups, which 
are solved simultaneously. All the theorems on 
linear differential equations, existence, uniqueness, 
etc., thus apply. By integrating these equations, 
the r dependence of all the variables is easily ob­
tained. In general there is a "constant" of integra­
tion, a function of the remaining coordinates, u, 
x3

, x\ in the solution of each of these differential 
equations. Relations between these integration 
"constants" are obtained from the equations having 
compound derivatives 0 = w(alar) + ~k(alaxk), 
~ = U(alar) + (alau) + Xk(alaxk) , by setting 
the coefficients of powers of r- I independently equal 
to zero. 

The pair of equations (ge, f) 

Dp = / + ujj, 

Du = 2prJ + '1'0 

with the asymptotic behavior, Eqs. (16), p = _r-
1 + 

0(r-2
), u = 0(r-2

), can be integrated for the com­
plete r dependence of p and u, up to 0(r-5

). The 
method of solution uses formal integration of the 
order of magnitude symbols (which is permissable), 
but not differentiation of them.ll 

In the following, g(r) and her) will be used generi­
cally. We have 

p = _r- 1 + g(r), 

u = her), where g, h = 0(r-2
). 

By Eqs. (ge, f), 

Dg + 2r-1 g = l + hii = 0(r-4) 

Dh + 2r- 1h = 2hg + '1'0 = 0(r-4). 

The solution will be determined in steps. The first 
step is to find p and u up to O(r-a). Hence, the 
equations to be solved at this stage are 

Dg + 2r-'g = 0(r-4) 

Dh + 2r-'h = 0(r-4
) 

with the immediate solution,12 

11 A. Erdelyi, Asymptotic Expansions (Dover Publications, 
Inc., New York, 1956), p. 7. The theorem is 

1~ O(f(r'» ar' = 0(1~ If(r') I ar') , as r ~ co. 

'2 H. Margenau and G. Murphy, The Mathematics of 
Physics and Chemistry (D. Van Nostrand Oompany, Inc., 
Princeton, New Jersey, 1943), p. 42, Eq. (2-6). 

g = e-J2drlr{J eJ2drlrO(r-4) ar + po} , 

= r- 2{J 0(r-2
) dr + po} = pOr-2 + 0(r-3

), 

and with a similar solution for her). Therefore 

p = -r-' + p"r-2 + 0(r-3) , p" = pO(u, Xk) 

By a coordinate transformation r' = r - pO(u, Xk), 

the po 1,,2 term is eliminated. Dropping primes, we 
have 

Again letting 

where this time 

p = _r- 1 + OVa) 

rJ = uOr- 2 + OV3). 

p = -r- I + g(r) 

u = uOr- 2 + h(r) , 

g(r) , her) = 0 (r-3) , (18) 

and grouping all terms of 0(r-5
) under the order 

symbol, we have, 

Dg + 2r-1 g = uOjjOr-4 + 0(r-5
) 

Dh + 2r- 1h = 0(r-5
) 

with solutions 

g = r- 2{J r2[uOjjOr-4 + 0(r-5)J dr + CI} 

h = r-2{J r
2
0(r-

5
) dr + C2} , 

g = ('\r- 2 
_ uOjjOr-a + 0(r-4) 

h = C2r-
2 + 0(r-4

). 

The conditions (18), g, h = 0(r-3
), imply that 

C, = C2 = o. Hence 

p = -r-' - uOjjOr-~ + 0(r-4) 
(19) 

u = uOr-2 + 0(r- 4
). 

Repeating the process, it is found that 

p = _r-1 _ uOijor-3 + 0(r- 5) 

(20) 
u = uOr-2 + (jjOuo' - !'1'~)r-4 + 0(r- 5

), 

which are the desired asymptotic expressions for 
p, rJ. At this point it should be observed that, had 
the more general assumption '1'0 = 0(r-5

) been 
made, we would have obtained explicitly the forms 
(19) but not the extra term in Eq. (20). It is evident 
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that this extra term results from the specialization 
'lro = 'lr~r-5 + 0(1'-6). On the other hand, the 
general term" 0(1'-6)" of 'lro prevents us from ob­
taining forms more explicit than Eqs. (20), as 
follows: In accordance with Eqs. (20) let 

p = _1'-1 _ (]'0ijor-3 + g(r) 

(]' = (]'°r- 2 + Qr-4 + h(r) , 

where 

g(r) , her) = 0(1'-5), 

and 

By Eq. (9f) 

Dh + ~ h = 2(]':g _ 2(]'o~oQ _ 2(]'o~oh + 2g.Q 
l' l' l' l' l' 

where the final term 0(1'--6) comes from 'lro. How­
ever, the five preceding terms are seen to be ab­
sorbed into 0(1'-6), so that 

Dh + (2/r)h = 0(1'-6). 

Integration gives (the integration constant is zero), 

and no new information is obtained. Similarly Eq. 
(ge) fails to produce further explicit terms. 

Equation (9a) is solved in the same manner as 
Eqs. (ge, f). The condition (16), ~k = 0(1'-1) is 
translated into 

~k = g(r) , 

Putting this into Eq. (9a) yields 

Dg + r-Ig = 0(1'-3) 

~k = g = r-I{rk + J 1'0(1'-3) dr} = rkr- I + 0(1'-2). 

The higher order terms of ~k are obtained similarly. 
The next group of related equations involve a, (3, w, 

and 'lr l • They are Eqs. (9h, i), Eq. (9b), and Eq. 
(9n). 'lr I is known to be 0(1'-4) by Eqs. (17), which 
allows the solutions of a and (3 from Eqs. (9h, i) up 
to 0(1'-3). Upon performing these integrations using 
the techniques shown above, it is found that 

a = aOr-1 + ijor:/r-2 + 0(1'-3) 

(3 = {3°r-1 + (]'°iJor-2 + o (r-3) • 

By use of the null rotation Eq. (8), we may set 

TO = aO + (30 = O. (21) 

Therefore, T = a + (3 = 0(1'-3), which is used in the 
integration of 

Dw = pw + (]'w - T. 

Here the l' dependence is found by considering the 
coupled equations, 

Dw = pw + (]'w - T 

Dw = pw + ijw - T. 

Inserting orders of magnitude we get 

Dw + r-Iw = (]'°r- 2w + 0(1'-3), 

Dw + r-Iw = ijor-2w + 0(1'-3). 

Formal integrations give 

w = r-I{J (]'°r-Iw dr + 0(1'-1) + KI} 

w = r-I{J ijor-Iw dr + 0(1'-1) + KI}' 

(22) 

Using the information w = 0(1), w = 0(1), it is 
seen that 

w = Klr- I + 0(1'-2) + (]'°r- I J 0(1'-1) dr 

= K,r-' + 0(1'-2) + O(ln 1'11') = O(1n 1'11') 

and 

w = O(1n 1'11'). 

When these orders are again inserted in Eq. (22), 
the results are 

w = K,r- I + 0(1'-2) + O(ln 1'11'2) = 0(1'-1) 

w = O(r-I). 

Finally, when this information is fed into Eq. (22) 
for the third time, we arrive at the desired result, 

w = wOr-' + 0(r-2). 

This is sufficient to derive the r dependence of 'lrl 

from Eq. (9n). We have 

Wro = w'lrO.2 + ~k'lrO.k = ~okqr~.kr-6 + 0(r-7
) 

by the initial assumptions on 'lro, Eqs. (14) and 
(15). Equation (9n) becomes 

D'lr l + 4'lr,r-1 = ~ok'lr~.kr-6 - 4a°'lr~r-6 + 0(r-7
) 

where 'lrl = 0(1'-4) has been used. Integration 
immediately gives 
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q,l = r-4{J r4[( -4aNf~ + ~Ok'lr~,k)r-6 

+ 0(r-7)] dr + 'lr~} 

q,l = 'r:~ + 4a°'lr~ ~ ~Ok'lr~.k + 0(r-6). 

r r 

This information is sufficient to complete the inte­
grations of Eqs. (9h, i) and Eq. (9b). 

The asymptotic r dependence of all the variables 
may be calculated by this method. The results are 
as follows: 

'lr 0 = 'lr~r-5 + o (r- 6
) , (23a) 

'lrl = 'lr~r-4 + (4a°'lr~ - ~ok'lr~,k)r-5 + 0(r-6
), (23 b) 

'lr2 = 'lr~r-a + (2ao1i~ - ~ok'lr~,k)r-4 + 0(r- 5
), (23c) 

'lra = 1i;r-2 - ~Ok1i;,kr-a + 0(r-4), (23 d) 

'lr4 = 'lr:r-1 - (2a°'lr; + ~Ok'lr;.k)r-2 + O(r-a). (23e) 

p = _r-1 - u"a-°r-3 + 0(r-5), (24a) 

u = uOr-2 + (a-°uo' - !'lr~)r-4 + 0(r-5
), (24 b) 

a = aOr-1 + a-°cr."r-2 + u°a-°aor-a + 0(r-4), (24 c) 

(3= 
_0 -1 0 0 -2 -a r - u ar 

- (u°a-°ao + !'lr~)r-3 + O(r-·), (24 d) 

T = -(1/2ra)'lr~ + (l/6r4)(2~Ok'lr~,k 
- 8a°'lr~ + UO~~) + o (r- 5

) , (24 e) 

A = AOr-1 - a-°fJ.°r-2 + (1/r3)(uOuOAO + !a-0'lr;) 

+ OCr -4) , (24f) 

fJ. = fJ.°r-1 - (UOAO + 'lr;)r- 2 + (u°a-°fJ.° 

- a°'lr; + Wk'lr~,k)r-a + 0(r-4), (24g) 

'Y = 'Y. - (l/2r2)'lr; + (l/ra)(t~ok'lr~ ,k 

- iao~~ - !ao1i~) + 0(r-4), (24h) 

p = pO _ (l/r)'lr; + (l/2r2)~ok'lr;,k + 0(r-3). (24i) 

U = -('YO + yO)r + UO - (l/2r)('lr~ + ~;) 
+ (l/6r2)[(~ok'lr~,k + rk~~.k) 
- 2(aO~~ + ao~m + 0(r-3) , 

X k = (1/6r3)('lr~~ok + ~~rk) + 0(r-4) , 

(25a) 

(25 b) 

~k = rkr -1 _ uO~Okr -2 + UO a-°rkr -3 + OCr -4) , (25c) 

w = wOr-1 - (l/r2)(uOwO + !'lr~) + 0(r-3) , (25 d) 

Further terms of most of these functions can be 
easily calculated. 

In the above we have tacitly used a coordinate 
transformation (which will be discussed) to elimi­
nate the" constant" XOk. 

Another coordinate transformation can be made 
at this point to simplify the remaining calculations. 
The metric is in the form Eq. (4), with 

g"'" = _ (~m~n + ~mt) 
= _ (rm~on + ~oTn)r -2 + '" 

Under the remaining coordinate transformations, 
the leading term of gm" transforms as a 2 X 2 
metric, hence it may be reduced to a conformally 
flat metric. 13 (Robinson and Trautman8 make gm" 
conformally flat. We can only do this for the leading 
term of gmn). Up to 0(r-3), g33 = l4, and g34 = 

g43 = O. However, since 

g33 _ 2~03~03r -2 + OCr -3) , 

g34 (~03~04 + ~03~04)r-2 + 0er-3) , 

g44 = _2r4~J4r-2 + 0(r-3) , 

we have r 3 = -ir4 = P(u, Xk). 
At this point the remaining coordinate freedom 

for the variables x3 and X4 is, 14 

(26) 

The next step is to solve the nonradial equations, 
which allow us to express most of the" constants" 
of integration aD, WO, AO, '" as functions of u' and P. 

Equation (10 1) will be done as an example of the 
procedure. Explicitly it takes the form, 

P,I + Up,2 + Xkp,k - WT,2 - ~kT,k + (jZ - 'Y -y)p 

+ 2ar + AU + 'lr2 = O. 

When the differentiations with respect to rare 
performed and the coefficients of the various powers 
of l/r set equal to zero/5 we find 

(1) the coefficient of l/r is identically zero, 
(2) the coefficient of 1/r2 is (UO - jZO), implying 

U' = jZo, 

(3) the coefficient of 1/r3 is 

(U°a-°),1 + 2u'a-°('Y' + yO) - (U·A' + a-0~O) = O. 

This defines either 'Y' or A' if the other is known. 

13 L. Eisenhart, Riemannian Geometry (Princeton Uni­
versity Press, Princeton, New Jersey, 1960), p. 90. 

I. L. Eisenhart, A Treatise on the Differential Geometry 
of Curves and Surfaces (Ginn and Company, Boston, Massa­
chusetts 1949), Chap, 2, Sec. 40. 

15 For example, if given the asymptotic expression 
Ar-I + Br-'l + Cr-3 + O(r-4) = 0 (A, B, C independent of r), 
multiplying through by r and taking the limit as r -+ co 
implies A = 0; similarly multiplying by r2 implies B = 0, etc. 
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I t turns out that both 'Yo and A ° can be obtained more 
easily from the other nonradial equations. 

(4) the coefficient of l/r4 is identically zero by 
virtue of information from the other nonradial 
equations. 

In general it was found the lowest nontrivial 
powers of l/r yielded all necessary information. 
Coefficients of the higher powers duplicated this 
information, but in a rather complicated form; 
for example a coefficient of l/r4 would generally 
involve the sums and products of several l/r and 
l/r2 coefficients. A few of the higher powers of l/r 
gave the same information as group III, the 1t­

derivative equations. Due to the tediousness of the 
calculations, we did not carry the computation of 
the coefficients of some higher powers in l/r to 
completion. Partial cheeks were made however, 
where undefined variables appeared. When the 
coefficients of these undefined variables (namely, 
'Ir~, 'Ir~, and 'Ir; + \fr;) were collected, they were 
found to vanish identically. For this reason it 
appeared that no new information was forthcoming. 

The nonradial equations yield the following 
relationsl6

; let 'V == alax3 + i (l/ax4
, then 

'Yo = -HlnP),I, 

aO = t.P'V(ln P), 

VO = -t.PV(ln P.P),I, 

WO = .P['Vr/ - 20'°V(lnP)], 

AO = o-°[ln (ti°PI/2IF3/2)L, 

fJ.0 = Vo = -tP.P 'VV In (PF). 

'Ir; - \fr; = (.P'Vwo + 2aowo + o-°XO) 

- (PVw" + 2a"wo + O'°AO), 

'Ir; = .PVfJ.° - P'VAo + 4aoAo, 

(27) 

(28) 

The only functions left undefined are 0'0 and P, 
chosen to be the basic functions, and 'Ir~, 'Ir;, and 
('Ir; + \fr;). (The significance of these quuntities is 
explained in Sec. V). However, the propagation of 
'Ir~, 'Ir;, and 'Ir; in the 1t direction is determined by 
group III, the u-derivative equations. Equation 
(lIa) is worked out as as an example. 

16 Actually the intelljrations of group I give a more com­
plicated set of expresslOns than Eqs. (23), (24), and (25), 
involving the integration "constant" Xok in several places. 
However, one of the nonradial equations, Eq. (lOa), indicates 
that Xoa + iX04 is an analytic function of X S + ix', and 
may be transformed away by Eq, (26). 

Here again the explicit powers of l/r are limited by 
assumption (13). Hence 

'ltg. 1 - PV'Ir~ + ('Yo + 51")'Ir~ 
- 2a°'lr; - 30'°'lr; = O. (29) 

Similarly the next two equations of group III, 
Eqs. (lIb, c), yield 

'It;,1 - PV'lt; + 2('Y" + 2,t)'Ir~ - 20'°'lt; = 0 (30) 
'It;,1 + 3(-1'° + "y")\[!; 

- PV'lt; + 2a°'lr; - O'0'lt: = O. 

The final equation of group III, Eq. (lId), yielded 
identities, as far as we had carried it. 

IV. COORDINATE TRANSFORMATIONS 

At this point the explicit r dependence of the 
metric, Eqs. (4) and (6), is 

2k 
g b~r-2 + b;r-a + ... , 

-2P-P omy2 + d;"r-3 

where 

a-I == (In PPL, 
al == - ('Ir; + \fr;), 

b~ == - (~OkWO + ~Okwo), .•. , 

d;n == 2(iTTmrn + O'0~om~""), ... 

(32) 

It is of interest to find the most general coordinate 
transformation which preserves every relation de­
termined up to this point. We can introduce a new 
system of hypersurfaces u' and a new tetrad exactly 
as before, and arrive at all the previous results. 
Moreover, this coordinate freedom can be used to 
specify the u dependence of, P, and in particular 
can be used to set p. I = O. 

These coordinate transformations may be arrived 
at more simply by first considering the analogous 
infinitesimal transformations, x P

' = x P + rp(x'), 
and using 

'8gP' == gP" (x") - g·'(x") 
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In order to preserve the form of the metric Eq. 
(31), it is necessary that 

~gll = '8g12 = ~glk = 0, 

~lk = (b~' - b~)r-2 + (b~' - b~)r-3 + ... , 
'8g33 = -2(P'P' _ PP)r-2 + (d~3' _ d~3y3 

- 6(c/i/P'P' - O'OijOPP)r-4 + 
~g34 = (d~4' _ d~4)r-3 + ... , 
~g44 = -2(P'P' _ PP)r-2 _ (d~3' _ d~3)r-3 

_ 6(O'o'ijo'P'P' _ O'OijOPP)r-4 + 
Under the above restrictions, the infinitesimal 

transformations reduce to 

51 = 5°\U, Xk), 

t 2 = - t~:r + t02(U, Xk) 

- t~ab~r-l + !b~r-2 + ... ], 
t k = rk(x") + t:~[-2PP o"'kr-l 

+ ! d;kr-2 _ 2O'oijoPP O",kr-3 + ... ], 
where 

t~~ = S-~:, 

S-~! = - S-~:, 

t02 = pp(r~3 + t:!.). 

The restrictions on r k result from the conformal 
form of the leading term of g",n', whereas the last 
equation reflects the fact that when the hyper­
surfaces u' are chosen, there is no freedom in the 
choice of r'. As yet no restrictions exist on rl(u, Xk). 
If this is chosen to satisfy a certain differential 
equation, the coefficient of r' in g22', namely, 
(In P' P').1> vanishes. 

The finite transformations built up from the 
infinitesimal ones take the form, 

u' = Vo + V_lr-l + V_ 2r- 2 + 
r' = R1r + Ro + R_1r-l + ... , 

x'" = Y~ + Y:\r- 1 + ... , 

(33a) 

(33 b) 

(33c) 

where the upper case letters are funct.ions of u, Xk. 

The condition gl1' = 0 leaves Vo unspecified but 
determines the remaining V's; 

(34) 

and V -2 etc. as functions of the Vo, 'P, and 0'0. 

The condition l2' = 0 leaves Ro unspecified but 
yields the remaining R's; 

the R-l' R-2 etc. being functions of Vo, R o, P, and (To. 
Setting glk' = 0 determines Y~1 as 

Y:l = -2PP(VO•l)-I[VO•3 Y~.3 + V O•4 Y~.4], (36) 

the Y: 2, Y: 3 , etc. also being determined. 
Prescribing the form g2k' and grnn' as in Eqs. (31) 

determines Ro as a function of the remaining free 
variables, and imposes relations on Y~, 

Finally, choosing 

Y~ = Y~(xm) 

Y~.3 = ± Y~.4 

Y~.4 = =t= Y~.3' 

(37) 

Vo = J(x3
, X

4
) J (Pp)1I2 du + K(x3

, ;r4), (38) 

where J and K are arbitrary functions of x3 and X4, 

eliminates the coefficient of r' in g22' 

(In P'P').l = O. 

The tetrad transformation Eq. (7) can be used to 
make P == IPieilf> real as follows, 

Since mk = fkr-lo~ + O(r-2), f3 
by choosing C = -cp, we have 

P' = IPi. 
This, together with (In pi PI).1 = 0, yields 

P' = P'(x"''). 

P, 

(39) 

This has the effect of immensely simplifying most 
of the previous relations. Equations (27) and (28) 
become (dropping primes) 

",0 = 0, 

c! = !VP, 

pO = 0, 

}.L0 = -p2VV In P, 

('It; - 1f~) = p 2 [V(WO/P) - V(wo/P)l 

'It; = -PV(p2 VV in P) 

_ p3(ij~dP2), 

(40a) 

(40 b) 

(40 c) 

(40 d) 

(40 e) 

(40£) 

(40g) 

(40 h) 

(40i) 

(35) The u-derivative equations (29) and (30) become 
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'l';.1 - P'V'l'; - 20'°'l'; = 0 

'l';.1 - p 2'V('l';/P) + 0'°a-~11 = O. 

V. RESULTS AND DISCUSSION 

The metric has the form 

0: 1 : 0 0 __ 1 ___ 1 ____ _ 

1 1 22 1 2k 
1 gig 

--1---1-----

0: : 
1 2k 1 mn 
1 gig 

0: : 
with the coordinate dependence, 

22 g 

+ ipf 'V(~~) + 'V(~~) 

_ 6P4'V(~;)'V(ffi;)} -2 + o (r- 3
) , 

l3 _r-2 Re {f} + r- 3 Re Ih} + O(r-4
), 

l4 = r-2 1m 111 + r- 3 1m Ih} + O(r-4), 
where 

p = P(x3
, X4), 

f == 2p4'V(a-o/p2), 

h == 4P[i'l'~ + p 30'0'V(a-o/p2)J, 
l3 _2p2r-2 + 2P2(O'o + a-°)r- 3 

(40j) 

(40k) 

(401) 

(41a) 

(41 b) 

(41c) 

(41 d) 

(41 e) 

- 60'°a-°p2r-4 + O(r-S
), (4lf) 

(41g) 

l4 _2p2r-2 _ 2P2(O'o + a-°)r- 3 

- 60'"a-°p2r-4 + O(r-S
). (41 h) 

More terms could easily have been calculated; l2 
to O(r-4) and g"k to O(r-S

). 

The u-derivative equations (40j,k,l), derived from 
the Bianchi identities, give the propagation of the 
tetrad components of the Weyl tensor as follows, 

'l'~.1 - 'V(P\f/~) - 30'"'l'; = 0 (42a) 

'l'~.1 - P'V'l'; - 20''''Ir; = 0 (42 b) 

'l';.1 + 0'°a-~11 - p 2'V('l';/P) = 0 (42c) 

where 

With these results (also considering the higher order 
terms not explicitly written out) the solution of the 
initial value problem can be stated simply. 

The first piece of data that is chosen is 'l' 0 on an 
initial null-surface denoted by Uo subject to the 
condition that limT~"" (r5'l'0) < 00. For convenience, 
we use a slightly stronger condition in the form 
% = 'l'~r-5 + O(r-6

). It should be noted that in 
this paper we do not specify 'l'o in complete detail, 
and hence, the data are correspondingly not com­
pletely specified. The second piece of data is given 
on the timelike world-tube taken at spatial infinity. 
On this tube we choose 0'0 == limr~"" (r20') , as an 
arbitrary function of u, x3

, and X4. The last data 
are given on the two-dimensional surface at infinity 
which is defined by the intersection of the null surface 
Uo and the world-tube. On this two-surface we give 

'l'~ == lim r4'l't, 'l'; + 11; == lim r3 ('l'2 + 112) 
r-~co 

and 

as functions of x3 and X4. 

This information, used with the three differential 
equations (42), completes the solution for the metric 
tensor and Riemann tensor up to the completeness of 
the data on uo. (If, for example, we had taken 

on Uo, there would have been an additional equation 
for the u derivative of each 'l'~.) However, aside 
from the incompleteness of the Uo data and the 
consequent incompleteness of the solution (we could 
give additional data and carry the solution as far as 
desired) the problem of finding the metric tensor 
for empty space, flat at infinity, appears to be 
solved. It should be pointed out that if 'l'o is not 
an analytic function of (l/r), it has not been proven 
that the solution of Eq. (lla), which yields the 
propagation of 'l'o off the hypersurface, is unique, 
(although it is generally believed that the solution 
is unique). 

An interesting special case which we will consider 
is 0'0 initially zero, then varying in an arbitrary 
manner, and eventually becoming zero again. By 
multiplying Eq. (42c) by p-2 and integrating over 
X3 and X4, we obtain after a few operations 

[J ;2 ('l'; + 0'0 a-~t) dx 3 dx
4

] ,I 
J 1 ° - ° d 3 d 4 + J ",('l';) d 3 d 4 = p20'.IO',1 XX V P X X. (43) 
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Remembering that the integral is over the closed 
two-surface with metric 

fli; = lim (r2
g ii ) = p2 aii 

(the element of area is p-2 dx3 dx4), it is easy to see 
that the last term on the right is zero. We 
now integrate over u, and using the fact that 
I p-21T : 1U: 1 dx3 dx4 is positive and that ITo vanishes 
at the two end points, we have 

J p-~; dx3 dX41:: > 0; (44) 

in other words the quantity M == - I p- 2 'Ir; dx3 dx4 

decreases. We can re"Tite this as 

M = - J Re '1'; dS, (45) 

because from Eqs. (40g) and (40d) , 1m 'Ir; = 0 
when ITo = O. In the case of the Schwartzchild solu­
tion M is proportional to the mass, from which 
we generalize and say M is always proportional to 
the mass. s 

The remaining coordinate freedom is given by 
transformations of the form Eqs. (33). As r -7 co, 

the leading terms of these transformations are 

u' = J(x3
, x4)u + K(x3

, X4), 

r' = [l/J(x3
, x4)Jr, (46) 

xk, = yk(X3
, X4), 

where J and K are arbitrary functions of x3
, X4. 

The yk must satisfy 

Y~3 = ± y~4 

Y~4 = =F Y~3 
(47) 

and the yk are otherwise arbitrary functions of 
x3

, X4.17 The transformation law of the basic variable 
P(xk

) is easily obtained by considering the trans­
formation of the 1/r2 term in l3 or l4; 

17 In a recent preprint of R. Sachs, there is a detailed 
discussion of the transformations, Eq. (46). 

p,2 = p 2r 2 det IY'::.I. (48) 

The transformation 

p,2 = p2 det I Y~nl 
represents a two-dimensional conformal coordinate 
transformation of a two-surface, with metric tensor 
gO;; = p 2aii , onto itself. 14 Neglecting this and 
considering only p' = pr\ we see that Eq. (48) 
represents the transformation of one surface into 
another. Equation (46) indicates that J(xa, x4

) 

may have neither zeros nor infinities, hence from 
Eq. (48) we can conclude that p' must have the 
same number of zeros and infinities as P. (We are 
assuming that P, which is part of the initial data, 
is given not in patches but over the entire surface.) 
It thus appears that many topological properties of 
the surface are retained under the transformation 
Eq. (48). This leads to several interesting topological 
questions. For example: What is the simplest surface 
that may be obtained by Eq. (48) from a given 
surface? 

Such difficulties can be avoided by taking as part 
of the initial data a relatively simple surface such 
as a sphere,17 or possibly a torus, and restricting Eq. 
(48) to the identity P' = P; in other words, by 
requiring J2 = det [y.,::[. 

As a closing remark, it may be pointed out that 
Newman and Tamburino18 have found exact solu­
tions corresponding to a special case ('Iro = 0) of the 
asymptotic solutions found here. 
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In this paper we obtain all empty space metrics which possess hypersurface orthogonal geodesic rays 
with nonvanishing shear and divergence. By straightforward integration of the Newman-Penrose 
equations, which are equivalent to the Einstein equations, all solutions are found in closed form 
and are unique up to a few arbitrary constants. The method of integration is illustrated in detail 
for the Robinson-Trautman solutions. 

I. INTRODUCTION 

I N 1960, Robinson and Trautman published the 
general solutions for the class of metrics con­

taining geodesic rays with nonvanishing divergence 
and vanishing shear.1 Geodesic rays are principal 
null directions of the Riemann tensor, sometimes 
called Ruse, Debever, or Penrose vectors which are 
tangent to a congruence of null geodesics. Geo­
metrically, geodesic rays, discussed by Sachs,2 can 
be thought of as propagation vectors for outgoing 
gravitational fields. Because the Robinson-Traut­
man solutions contained the Schwarzchild metric, 
the algebraic generalization of their class (the re­
moval of the condition of vanishing shear) was 
expected to be physically important. 

In this paper we obtain this generalized solution 
for the shearing class of hypersurface orthogonal 
geodesic rays with non vanishing divergence. There 
are two general subcases which we shall designate 
as cyclindrical and spherical. By a straightforward 
integration of the Newman-Penrose equations,3 
which are equivalent to the Einstein equation, all 
solutions are found in closed form and are unique up 
to a few arbitrary constants. The method of inte­
gration is illustrated in detail for the Robinson­
Trautman solutions (see Sec. III). The assumption 
of nonvanishing shear then leads to additional equa­
tions that do not appear in the nonshearing case. 
Subsequently these additional equations severely 
restrict our class of solutions and prohibit the limit 
of vanishing shear, hence the Robinson-Trautman 
metrics are not limiting cases of our solutions. 

II. PRELIMINARY REMARKS 

A vacuum metric contains a geodesic ray if there 
exists a principal null direction of the curvature 
tensor, defined by 

l[#R"J~~[ol'Jl~P = 0, (11.1) 

that is tangent to a congruence of null geodesics2
•
4 

rl# = O. (II.2) 

Throughout this paper we shall further demand 
that the geodesic ray l# be hypersurface orthogonal, 

l# = U,w (II.3) 

From this condition we shall adopt the same co­
ordinate system that was constructed by Robinson 
and Trautman1: 

r, r is the affine parameter along 
the null geodesics. 

Xi, i = 3,4, Xi label the geodesics on each 
hypersurface, u = const. 

(II.4) 

Associaterl with this coordinate system is the follow­
ing tetrad 5 

,6 : 

l# = o~, 

n# = oi + u o~ + Xi o~, 

m# = w o~ + ~i o~, 

f1// = W o~ + t O~. 

real null vectors 

complex vectors 

These vectors satisfy the following orthogonality 
conditions 

* This work has been supported by the Office of Aerospace 
Research, U.S. Air Force. 

I 1. Robinson and A. Trautman, Phys. Rev. Letters 4, • Square brackets on indices denote antisymmetrization. 
431 (1960). 5 See reference 3. Sec. VI, special coordinates. 

2 R. Sachs, Proc. Roy. Soc. (London) 264,309 (1961). 8 E. Newman and T. Unti, preceding paper J. Math. 
3 E. Newman and R. Penrose, J. Math. Phys. 3, 565 (1962). Phys., 3, 891 (1962). 
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(1I.6) (j = l""m~m' complex shear 

All other products vanish; l~m~ = m~m~ = ... = O. 
It follows that 

g~' = l"n' + n~l' - m~ifi: - -~ . mm, (11.7) 

0 0 0 

1 22 23 24 

g~' 
g g g 

(ILS) 
0 23 33 34 g g g 

0 24 34 g44 g g 

The form (II.S) is invariant under the following 
coordinate transformations: 

r' = r + R(I, 3, 4), 

u' = u, 

r' = rh, 

shifts the r origin, 

u' = ')'(u) , 

(1I.9a) 

(11.9 b) 

relabels hypersurfaces, 

r' = r u' = u, 
(1I.9c) 

relabels geodesics. 

The following tetrad transformations do not effect 
l~ or the orthogonality conditions: 

l" = l" 

n~' = n~ + Em~ + Bm~ + BEl~ 
m" = m~ + Bl~ 
'null rotations,' 

(ILlOa) 

where B is a complex scalar independent of r, 

'spatial rotation' 

n~' = n~ (lI.lOb) 

where C is real and independent of r. 
Associated with a null geodesic field l~ are three 

scalars, the divergence, the curl, and the complex 
shear, whose geometrical significance has been 
discussed by Sachs.2 In the Newman-Penrose paper 
Np3 these scalars are related to two of the spin 
coefficients (linear combinations of the Ricci ro­
tation coefficients) p and (j in the following manner: 

p = l~;,m~m' = U -l";~ + i curlr] 

(1I,1l) 

(11.12) 

We now state two pertinent theorems from NP. 
Theorem I. If 'lt~ == - R~,pal~nPlPma = 0 then l~ 

is a geodesic ray; conversely if l" is a geodesic ray, 
then 'lt~ = O. 

Theorem II (Goldberg-Sachs' theorem). If 'lt~ = 0 
and 'lt1 == -R~,pal~n'rna = 0, then there exists 
a geodesic ray with (j = 0; conversely if there exists 
a shear-free null geodesic, then 'lt~ = 'lt1 = O. 

The existence of a hypersurface orthogonal geo­
desic ray is characterized by the following mathe­
matical statements: 

p = p; curll" = O. 

(1I.13) 

(11.14) 

All the general solutions for the class of metrics 
containing hypersurface orthogonal geodesic rays, 
outlined in Table I, have, with our solutions, been 
exhausted. 

The field equations and coordinate system used in 
our calculations are formally the same as those found 
in the preceding Newman-Dnti paper NU6 and 
originally in NP.3 One can utilize everything in 
Sec. II of (NU) up to the paragraph containing Eq. 
(II.13), keeping in mind one important reservation; 
the arbitrary null hypersurfaces employed by 
(NU) are uniquely determined in this paper by the 
curvature tensor from Eqs. (11.1) and (II.3). Since 
our l" is a geodesic ray, Theorem I implies that 'lt~ 

be set equal to zero everywhere. 

III. PROCEDURE: ROBINSON-TRAUTMAN 
SOLUTION AS ILLUSTRATION 

The general procedure used in our lengthy cal­
culations will be illustrated by obtaining the Robin­
son-Trautman solution which is a concise example 
demonstrating the inherent power of the Newman­
Penrose formalism. One can, in general, construct 
a tetrad in which l~ (here l" is not necessarily a 
geodesic ray) has the components l~ = 5; and IS 

TABLE I. 

Calle I. Spherical Rays p',e qU, p ,e 0 
A. q = 0 I. Robinson-A. Trautman (1960) 

(reference 1) 
B. q ,e 0 Sec. IV 

Calle II. Cylindrical Rays p2 = qU ,e 0 Sec. V 
Calle III. Plane Rays p = q = 0 W. Kundt (1961) 

(reference i) 

7 W. Kundt, Z. Physik 163, n (1961). 
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tangent to a congruence of null geodesics and in 
which n!' and m!' are parallel propagated along the 
geodesics. With such a tetrad, the Newman-Penrose 
field equations split evenly into two groups, the 
radial equations and the nonradial equations. 

The radial equations express the partial deriva­
tives, D == (a/ar)(r == x 2

), of unknown functions 
in terms of known functions of r. Since 'Ito is the only 
variable whose partial derivative D'lto does not 
appear anywhere in the equations, '1'0 must be 
given as initial data. If there exists a geodesic ray 
then 'Ito is identically zero. A step by step integra­
tion of the radial equations is straightforward, the 
sequence of integration being more or less dictated 
by the equations. Each step yields the r dependence 
of an unknown and a "constant" of integration 
depending only on u and x'. 

The nonradial equations involve more complicated 
differential operators, 

The r dependence obtained from the radial equations 
is substituted into the nonmdial equations and 
relationships involving the constants of integration 
are obtained essentially by comparing the coefficients 
of like powers of r. These relationships, together 
with the available coordinate freedom, enable one 
to determine the constants of integration in terms 
of the initial data. 

The Robinson-Trautman solution, which contains 
a hypersurface orthogonal geodesic ray with vanish­
ing shear and nonvanishing divergence, is charac­
terized in the (NP) formalism by the following: 

In (NP) it is shown that T = IX + {3 in this coordinate 
system, therefore 

(III.6) 

TO may be set equal to zero by the transformation 
(II 10), hence 

a = -p, T = o. 
)\p = 0 ~ A = 0 

DA = PA, I.S. 

(10k) 

(9k) 

(90) 

(9j) 

M2 = 3p'lt2 ~ 'lt2 = 'It~/r3 

D"( = 'lt2 ~ "( = ,,(0 - 'ltV2r2 

(10f) op == w Dp = 0 ~ w = 0 

(9 b) Dw = pw I.S. 

(9c) DX' = O~Xi = Xoi 

(9d) DU = -("( + -y) ~ U = Uo 

- (,,(0 + -y0)r _ !('It~ + \}~)r-t 
(9a) D~i = p~i ~~' = ~Oir-t. 

Using (II 9c), we may set 

t 3 = P, ~04 = iP. 

The remaining coordinate freedom is 

r' = rh, u' = "(u) , 

(III.7) 

(III.8) 

(III.9) 

(III. 10) 

(III. 11) 

(III.12) 

(III. 13) 

(III. 14) 

(III.I5) 

(III.I6) 

(III.I7) 

(III.I8) 

'Ito = 'Itt = u = p - p = 0, p ~ O. (III. 1) where 

!;' = x 3
, + ix4

, = t(!;, u) 

!; = x3 + iX4, (III.I9) 

(III.20) References to the preceding paper, (NU), will be 
placed to the left of the appropriate equations. 
A degree sign superscript indicates a function is 
independent of r; I.S. will mean an equation is 
identically satisfied or void of any new informa­
tion. Initially the (NU) equations (9f) , (9n) and 
(l1a) are identically satisfied by Eq. (IILl). 

(ge) Dp = / ~ p = -(r + pO)-l 

One can set pO = 0 by means of the coordinate 
transformation (II.9a), hence 

p = -l/r (III.2) 

(9 h) Da = pa ~ a = aO /r (III.3) 

(9i) D{3 = p{3 ~ {3 = {3°/r (IlIA) 

(9g) DT = pT~ T = TO/r. (III.5) 

(1Oc) p, - i1 = 0 ~ p,0 and 'It~ are real. 

Substituting the above results into 

~O;X~;;r + ~Oi/r2[UO - ("(0 + -y°)r - 'It~/r] 

- (l/r)L~~: + ~~:XOi] 

(II I. 26) 

(III.27) 

Equating coefficients of like powers in I/r yields 

l/r ~ ~OiX~; - ~~; - ~~;Xo; = 2-y°~Oi (III.28) 

l/r2 ~ ~OiUO = ~Oip,0 or ° = UO. (III.29) p, 

From (III 28), one obtains 

~O\X~~ + iX~~) == P"v XO = 0 (III.30) 
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where 

v = a/aX3 + i(a/ax4) = 2(a/af) , XO = X03 + iX04. 
Because XO is analytic, XO = Xoa', u), it can be 
shown that by using the coordinate transformation 
(III 19) one can set 

XOi = O. 

The remaining coordinate freedom is now 

r' = r/y, u' = ,},(u), r' = fW· 
Equations (III 28) and (III 31) yield 

2'Y° = - (In P).I' 

(111.31) 

(111.32) 

(111.33) 

From (II 7) and (II 5), the metric becomes 
22 0 0 

g = -gu = 2U - 4,},r - 2'J!Vr 

g"I = gI2 = 1, g'i = g"i = gli = g2i = 0 (111.46) 

gii = (gii) -1 = _ 2(p2/r2
) aii 

where UO= _p2V 21n P, '}'o = -tOn P) .1, V2= VV. 
If 'l' 2 = 0, then (44) becomes 

V2(P2V2 In P) = o. (111.47) 

If 'l12 =;tf 0, thcn by using (II 9b) one can set 'l1~ = 1. 
Hence Eq. (III 44) becomes 

p. I = (P 3/3)V 2(p 2V 2 InP). (111.48) 

(11 b) (111.34) The only remaining coordinate freedom, (III 32), is 

From (34) and (20) we obtain 

V'l1~ = V'l1~ = 0 

'l1~ = 'l1~(u). 

(9p) D'l13 = 2p'l1a ~ 'l13 = 'l1~/r 

(9q) D'l14 = p'l1~ + B'l13 - 20:'l13 ~ 'l14 

= 'l1~r-I - (PV'l1~ + 20:°'l1~)r-2 
(9m) 

(111.35) 

(111.36) 

(111.37) 

(111.38) 

The remaining nonradial equations may be worked 
out in the same manner as (26). 

(lOb) at - B~i = _20:~i + 2a~i ~ 20:° 

= PVln P (111.39) 

(lOd) flU = -ji ~ jio = PV('l + 'YO) 

P' = P IdfW/drl. (111049) 

This completes the Robinson-Trautman solution 
where their p, C, K, m, H are, respectively, our 
V2 P, -2U, -2Uo, _'l10

, -2'}'. 

IV. SPHERICAL RAYS 

The spherical class of metrics containing hyper­
surface orthogonal geodesic rays with nonvanishing 
shear and divergence is charaC'terized in the (NP) 
formalism by the following 

'l10 = p - i5 = 0, / =;tf uif, p =;tf 0, u =;tf O. (IV.1) 

Only the initial radial integrations will be given 
in detail in order to illustrate the technique em­
ployed and to introduce the pertinent "constants" 
of integration. The pair of equations 

= - t PV(ln PP)., (111040) (ge) Dp = / + uif 

Du = 2up 

(IV.2) 

(lOe) Bv = - 20:v + 'l14 ~ 'l1~ (9f) 

= PVvo + 20:0vo (111.41) may be expressed as 

(lOg) flo: + 

(lOh) 

Ba = J.lp + 40:a - 'l12 ~ J.l 

UO = -tPPVV In (PP) 

BJ.l = 'l13 ~ 'l1~ = Pv J.l
0 

° 

(111042) 

(111043) 

Every function is now expressed in terms of P and 
'l1~. The final equation relates P and 'l1~. 

(Uc) .:l'l12 - D'l1a = -3J.l'l12 - 2a'l13 

~ la/au - 3P.I/PI'l1~ 

(lOi), (1Oj), (101), (10m), and (Ud), 1.S. 
Using (II lOb), we can set 

p = P. 

(111.44) 

(111.45) 

DM = M2, or DM-1 
= I, (IV.3) 

where 

M = 11:_ upll v is a nonsingular matrix. (IVA) 

Equation (IV.3) is readily integrated to give 

(IV.5) 

° -r ° p u 

M 
Rz-- Ii" 

(IV.6) = _0 ° u p - r 

Ii" ~ 
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where 

R2 = det (M- I
) = (p02 _ r2) - (J0(j0 ~ O. (IV.7) 

Using coordinate transformation (II 9a), one can 
can set pO = 0, hence 

p = - r/R2 (divergence) 

(J = (J°/R (complex shear) 

where 
R2 2 0_0 =r -(J(J, a = I(J°I. 

(9n) D'YI = 4P'YI ---t \]11 = 'Y~/R4 

(9a) D~' = p~i + (J~i 

(12) is equivalent to 

D~i = M~i, where ~i = 1;:[-

(IV.8) 

(IV.9) 

(IV. 10) 

(IV.1l) 

(IV.12) 

(IV.13) 

If we let ~i = MV', then from (3) and (13) we 
obtain 

DV' = 0, Itil V= . 
~Oi 

Hence 

~. = (r~o, - (J0~Oi)/R2. (IV.14) 

Using (II.9c), we can set 

~03 = pO and t4 = ipo. (IV.15) 

The main features of succeeding calculations 
have been illustrated in Sec. II, however, in this 
case the scalars become increasingly complex and 
the manipulation of them extremely tedious, though 
straightforward. The nonradial equations are com­
plicated by having r dependence appear in varied 
products of R and a logrithmic function L = 
t In (r + a)/(r - a), for example L/R2, Lr/R2, 
L/R4, etc. TheRe products were shown to be linearly 
independent and thus the matching of coefficients 
of like products becomes equivalent to matching 
powers of r. With the exception of P, 'Y3, and 'Y4, 
all scalars, including the metric components, were 
obtained in closed form. To avoid lengthy expressions 
in the final phases of the calculation, we resorted 
to using power series expansions in r for all equa­
tions containing P, 'Y3, and 'Y4• We bplieve that our 
use of a power series yields all obtainable 
information in the lowest powers and that a more 
exhaustive treatment would be fruitless. Up to the 
equations 

(lOa) oX' - t.~' = (J.I. + 'Y - 'Y)~i + X~i, (IV.16) 

the Robinson-Trautman solution is obtainable by 
taking suitable limits as 'Y~ and (J ---t O. However, 
at this point one is confronted with the following 
system of equations: 

\l In ('Y~P 1(J°1-3) = 0, \l In (,¥~(JOp-3) = 0 (IV.17) 

'Y~ = 1(J°12 P\l In (P4/1(J°12 (j02) , 

where \l = 2(a/ag-). 

In the Robinson-Trautman limit, \]I~ and (J ---t 0, 
(IV.17) are identities. On the other hand, if one 
proceeds to solve these equations under the as­
sumption that (J ~ 0 and 'Y~ ~ 0, then these equa­
tions will eventually restrict the solutions to the 
following exact metrics which do not include the 
Robinson-Trautman solution as a limit. 

_ 2r2(g-U /2 + 2rL 
R2 A 

2r3 A(g-2 + f2) 
+ R4 

23 A2( -)3/2 3{ L 1 ( 
(J = 4 n x 2a3 - 2a2R2 r - 2a) 

_ (r - a)} 
R4 , 

24 4A2( -)3/2 4{ L 1 ( g = n x 2a3 - 2a2R2 r + 2a) 

1, 

where 

2(g-D3/2 

(r + a)2 , 

_ (r +~} 
R4 , 

(IV.18) 

aA d
2

A {B ax' = du2 = 0 ---t A = BUB is a real constant 

a = A(g-DI/2 , Xl = U, x2 = r, g- = x3 + ix4 

L = tIn «r + a)/(r - a». 

In the above solutions (IV 18), the limit as 
A ---t 0 yields flat space. Some other pertinent 
variables are 

~. = (rt· - a~Oi) /R2 

1/11 = 2A2(g-f)3/4NR4 
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if;2 = - [4A 2(rf)1I2 r
2L + 2Ar2r + 4A2(rf)3/2J/R4 

if;3 = (l/r2)[2A. I(rU/4 rJ + (1/r
3
)SAr + 

if;4 = -(1/r2)[SA. lrfJ + .... 
V. CYLINDRICAL RAYS 

The cylindrical class of metrics containing hyper­
surface orthogonal geodesic rays with nonvanishing 
shear and divergence is characterized in the (NP) 
formalism by the following 

Wo = p - p = 0 

Initially we have 

/ = O'ii ~ O. 

(ge) Dp = p2 + O'ii ~ P = (RO - 2r)-1 

(V.l) 

(V.2) 

(9f) DO' = 2pO' ~ 0' = O'°(RO - 2r)-I. (V.3) 

One can, using transformations (II.9a) and (II.lOb), 
readily set 

p = 0' = -1/2r. (V.4) 

All the remaining scalars were obtained in closed 
form in a manner analogous to that used in Sees. 
III and IV. 

The solution does not depend on X4 and contains 
two arbitrary constants, a and b. 

Oil = -4a2(cn2ay)(ln r)2 

- [b + a2 In (r2cn
4
ay)J/cn

2
ay, 

012 = 1, 023 = 024 = 0 

013 = -4 Y[r + 4a
2u(cn2

ay) In rJ (V.5) 

014 = -2(cn2ay) In r 

033 = -r2/2 - 4a2u2Y2(cn2
ay) In r 

034 = -SuYcn2
(ay) 

044 = _cn2(ay)/a2 

where 

cn(ay) is an elliptic function with modulus 

k = 1/V2, 

Y 
a(1 - cn4ay)1 

-± 
- 2V2 cn(ay) 

+if y>O 
- if y < O· 

One can obtain Sachs' metric2 by shifting the y 

origin by K/a, y ~ y' - K/a, where 4K is the 
period of cn(ay, 1/ V2), and then taking the 
limit a ~ O. 

1· cn(ay' - K) '/ - ~2 
1m =y V:C 

a-O a (V.6) 
lim Y = _(2y')-I. 
a~O 

Dropping the primes and rescaling rand y, one 
obtains the Sachs' metric directly 

Oil = - [b + In r2y4] 

013 = 2r/y, 

2 -r 

2 -y. 

VI. DISCUSSION-CONCLUSION 

(V.7) 

The metrics obtained in Sees. IV and V (Petrov 
type I nondegenerate) together with those of 
Robinson-Trautman and Kundt (degenerate) ex­
hause all metrics that contain hypersurface orthogo­
nal geodesic rays. 

Since the Robinson-Trautman solution contains 
the Schwarzschild metric as a special case, it was 
anticipated that the solutions to the generalized 
class containing shearing geodesic rays would enable 
one to derive physically interesting relations con­
concerning gravitational radiation and loss of mass. 
To our disappointment we found that this algebraic 
generalization leads to a very restricted class of 
metrics (the solutions do not depend on any ar­
bitrary functions and hence are not suited to de­
scribe a radiation field). Our spherical solutions do 
not yield the Robinson-Trautman metrics in the 
limit of vanishing shear, 0' ~ 0, but in fact as A ~ 0 
the metric degenerates into flat space. 

The application of the Newman-Penrose formu­
lism to the class of metrics containing nonshearing 
geodesic rays with nonvanishing curl will be given 
in another paper. 

N ate added in proof. It now appears as if the non­
existence of physically interesting solutions (in the 
class described in this paper) is related to the 
inability of free particles with no structure to under­
go self-acceleration. 
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The problem of determining a solution of the Einstein field equations for the gravitational field 
from data set on a pair of intersecting characteristic (that is, null) hypersurfaces and on their inter­
section 2: is considered. It is shown that by giving the conformal inner metric of each hypersurface, 
the inner geometry of 2:, the two mean extrinsic curvatures of 2:, and one additional extrinsic quantity 
for 2:, one completely determines a solution in a space-time region. In a suitable coordinate system 
giving the above data amounts to giving four functions of three variables, four functions of two 
variables, and one function of one variable; all these can be given without any constraints. In a given 
space time with given 2: the functions are almost, but not entirely, known functions of their arguments. 
All the derivations and discussions are applicable only in a sufficiently small four-dimensional region. 

INTRODUCTION 

T HE Einstein field equations for the gravitational 
field have various pathological properties 

similar to, but more complicated than the pathol­
ogies that arise in electrodynamics as a result of 
gauge invariance. 1 In particular, if one tries to 
specify some gravitational field by giving informa­
tion about the field and its first time derivatives at 
one time (that is, on a space-like three-dimensional 
hypersurface), then one runs into constraint equa­
tions analogous to the constraint equation div E = 0 
of electrodynamics. These constraint equations are 
not easy to handle, and although various methods 
have been developed for dealing with them,2 it 

FIG. 1. The hypersurfaces U and V. One spatial dimension is 
suppressed. 

1 P. G. Bergmann, Revs. Modern Phys. 33, 510 (1961), 
summarizes the main difficulties and gives further references. 

2 Among the more extensive treatments are those given in 
A Lichnerowicz, Theories relatavistes de gravitation et de 
l'electromagnitsme (Masson et Cie, Paris, 1955); P. A. M. 
Dirac, Phys. Rev. 114, 924 (1959); and the recent series of 
papers in the Physical Review by R. Arnowitt, S. Deser, and 
C. W. Misner, for example, Phys. Rev. 118, 1100 (1960). A 
promising approach has very recently been suggested by A. 
Peres (report to the Stevens conference, December, 1961, 
unpublished). 

would be over optimistic to claim that completely 
satisfactory results have been obtained. A closely 
related problem is the following: By judicious choice 
of the initial surface or of the (otherwise arbitrary) 
coordinates within this initial surface, it may be 
possible to change or even set to zero much of the 
initial data without in any way altering the physical 
meaning of the corresponding gravitational field. It 
is generally agreed that the physically meaningful 
data on an initial hypersurface consist of only four 
functions of the three coordinates within the initial 
hypersurface. But unless one goes through very 
complicated elimination processes, one is forced to 
work instead with 12 functions-the metric of the 
initial hypersurface and the extrinsic curvature3 

(second fundamental form)-subject to four dif­
ferential constraints of the type discussed above 
and subject to change by various coordinate trans­
formations. 

N ow, recent work by Bondi, Penrose, and others' 
has suggested that in some arguments an improve­
ment is obtained by setting some or all of the initial 
data on three-dimensional null hypersurfaces (that 
is, hypersurfaces everywhere tangent to the light 
cone). In this paper we consider the situation where 
data are set on a pair of null hypersurfaces U and 
V, and on their two-dimensional space-like in ter­
section ~ (see Fig. 1). One can then show that the 

• 3 Refere,nce ~ooks for the various .geometrical concepts 
dIScussed III thiS paper are L. P. Eisenhart, Riemannian 
Geometry (Princeton University Press, Princeton, New Jersey 
1949); and J. A. Schouten, Ricci Calculus (Springer-Verlag' 
Berlin 1954). ' 

4 Some, though not all, of R. Penrose's results are con­
tained in the preprint "Null Hypersurface Initial Data for 
Classical Fields of Arbitrary Spin and for General Relativity" 
(1961). H. Bondi, M. van der Burg, and A. Metzner, Proc. 
Roy. Soc. (London), (to be published); R. K. Sachs, ibid. 
(to be published). E. Newman and T. Unti (unpublished)' 
A. Peres (unpublished). ' 
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data needed to determine a field from the field 
equations are quite simple, have direct geometrical 
interpretations, and are not subject to differential 
or algebraic constraints of any kind. Moreover, in a 
given gravitational field the initial data are com­
paratively (though not completely) unique; their 
values in a given field can be computed by com­
paratively, though not completely, straightforward 
manipulations. 

For the two null hypersurfaces U and V one 
must specify the "conformal" inner metric. In 
a conformal geometry one can assign a meaning to 
the angle between two directions at a point and 
also compare two lengths at the same point, but 
one cannot make a meaningful comparison between 
lengths at different points.3 In analytic terms, to 
determine the conformal geometry of any space one 
gives its metric tensor, but only up to a factor that 
is arbitrary and may be position dependent. It 
turns out that to give the inner conformal metric 
of U and V is equivalent, in suitable coordinate 
systems, to giving two functions of three variables 
on each of the hypersurfaces U and V -four func­
tions of three variables in all. In addition to the 
above data one must specify the entire inner 
geometry of the intersection surface ~, the two mean 
extrinsic curvatures3 that ~ has by virtue of being 
imbedded in a four-dimensional space, and one 
other extrinsic quantity; in a suitably chosen 
specialization of the above mentioned coordinate 
systems, giving these additional data amounts to 
giving four functions of two variables and one 
function of one variable. 

A comparison between the gravitational field and 
a string vibrating in one dimension may help clarify 
the above numerology. To specify the particular 
vibration which the string is carrying out one can 
either (a) give the amplitude A of the vibration and 
aAjat at time t = 0, or (b) give A on each of two 
lines U, V tangent to the sound cone (in an x, t 
diagram) and also give a single number on the 
intersection point ~ of U and V. 6 One sees from the 
above discussion that gravitational fields behave 
similarly but there are the following differences: 
(a) one works in three spatial dimensions rather 
than one spatial dimension, (b) the gravitational 
field has two degrees of freedom rather than one, 
(c) in the gravitational case the characteristic initial 

6 Discussions of this problem and of characteristic initial 
value problems in general can be found in R. Courant and 
D. Hilbert, Methoden der Mathematischen Physik (Verlag 
Julius Springer, Berlin, 1937), Vol. 2, or in 1. G. Petrovsky, 
Partial Differential Equations (Cambridge University Press, 
New York, 1954). 

value problem is in some ways simpler than the 
usual initial value problem. In addition, one would 
have expected that the gravitational field differs 
from a rest-mass nonzero Lorentz covariant field 
with two degrees of freedom by the fact that the 
gravitational field also contains "longitudinal" 
modes analogous to the longitudinal modes of the 
electromagnetic field. Perhaps this difference mani­
fests itself in the scheme that we are here discussing 
by the fact that one has to set four pieces of data 
on ~, but this point is not entirely clear. 

Two limitations on the results of this paper are 
worth emphasizing. First, all considerations are 
carried through only locally and all assertions in 
the following development should be qualified by 
the statement that they hold only for a sufficiently 
small four-dimensional region. Second, very com­
plicated integration processes for various field 
variables will be discussed without paying any 
attention to the question of where, if anywhere, the 
solutions are finite. 

The author would like to emphasize also that he 
does not at present believe that consideration of the 
characteristic initial value problem is more funda­
mental than the consideration of the usual initial 
value problem. The two seem to him to be mutually 
complementary alternatives. 

The actual calculations and the details of the 
results presented here are believed to be new. How­
ever, many of the main ideas were originally given 
in the pioneering work of Darmois6 and in a recent 
paper by Penrose. 7 

COORDINATE CONVENTIONS8 

In order to simplify the (in any case clumsy) 
calculations, a special coordinate system will be 
introduced. The final results stated in the introduc­
tion can be formulated in purely geometrical terms, 
so the introduction of special coordinate frames is a 
matter of convenience, not of principle. 

Suppose one is given an arbitrary space-time, 

6 G. Darmois, Les equations de la gravitation Einsteinienne 
(Mem. Soc. Math., Paris, 1927). 

7 R. Penrose, reference 4, particularly pp. 34 and 35. 
8 The following conventions will be used throughout: 

Capital Latin letters A, B, etc. run from 2 to 3; small Latin 
letters a, b, etc. run from 0 to 3. The signature of the metric 
tensor gab is taken as +2 (so that the metric of a space-like 
surface is positive definite). Commas denote ordinary deriva­
tives; semicolons denote covariant differentiation with 
respect to the metric of the four-space; colons denote covariant 
differentiation of a geometrical object within ~ with respect 
to the metric of ~. Rab is the Ricci tensor of the four-space; 
R is the curvature scalar of the four-space. u = x· and v = Xl 

once we have gone over to the specially adapted coordinate 
systems discussed in this section. 

gab, gAB, hAB, and C A are defined by the equations 
gab gbc = 5a c, gAB gBC = 5A

C' hAB h BC = 5A
C , C A = gAB CB. 
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specified by its metric tensor as a function of any 
coordinates, and in this space-time a pair of null 
hypersurfaces U and V intersecting in a space-like 
surface ~. Within ~ let us choose a pair of coordi­
nates xA(A = 2, 3) for which the inner metric of 
~ takes the form 

gAB = exp [2h(x C
)] OAB, (1) 

where OAB is the two-dimensional Kronecker delta. 
Such coordinates can always be introduced locally.9 
Next, consider the two linearly independent null 
vectors defined at each point of ~ by the property 
that they are orthogonal to every direction in ~. 
One of these, say ka (with a = 0 ... 3, ka 

~ 0, 
kaka = 0), must lie within the hypersurface U; at 
the same time ka is the normal to the hypersurface 
U since it is orthogonal to itself and to every other 
direction in U. The other null vector, say ma

, bears 
the same relation to the hypersurface V. These two 
vectors are not defined uniquely at ~; they are 
still subject to the scale transformations 

k,a = rka, m,a = 8ma, (2) 

where rand 8 are any functions of the coordinates 
x A in ~. Therefore, we can and shall demand 

maka = -Ion 2: (3) 

without loss of generality. 
Next consider the lines within U that are orthog­

onal to U; these will be called rays. They are 
automatically geodesics 1o

; therefore, one can intro-

(a) 

FIG. 2. The coordinate 
system adapted to the 
hypersurfaces U and V. 
2 (a) A surface x2 = 
const, x3 = const. 2 (b) A 
hypersurface u = const. 

(b) 

---;-r:. P. Eisenhart, An Introduction to Differential Geometry 
(Princeton University Press, Princeton, New Jersey, 1940), 
p.203. 

10 P. Jordan, J. Ehlers, and R. Sachs, Akad. Wiss. Mainz 1 
(1961). 

duce along each of them a preferred parameter, 10 

which will be called v. One can then obtain every­
where in U a normal vector field k,a by the require­
ment dx"jdv = k,a along any ray in any coordinate 
system xa. If one now demands that k'" = ka and 
v = 0 on ~, one has fixed the preferred parameters v 
completely for a given choice of ka on ~; it will be 
supposed that these conventions have been made. 
Consider now the two-dimensional space-like sur­
faces v = const within the hypersurface U. Except 
for U itself, there is one and only one null hyper­
surface which passes through anyone of these 
two-dimensional surfaces. Let us call this null 
hypersurface in four-space the hypersurface v = const. 
In this way one extends the definition of the quantity 
v to a four-dimensional region once v is determined 
on U. The reader will note that the hypersurface V 
is now characterized by the equation v = 0, and 
this fact will be used very often in the following 
arguments. 

One can now repeat all the above manipulations 
on the hypersurface V instead of the hypersurface 
U. One obtains another quantity, say u, which has 
the following properties: (a) within V, u is a preferred 
parameter along each of the geodesics that are both 
normal to V and lie in V; (b) the hypersurfaces 
u = const in four-space are null hypersurfaces and 
the hypersurface U is characterized by the equation 
u = 0; (c) dx"jdu = m" at ~. Since both u and v are 
now defined in a four-dimensional region one can 
now define m" and k" in a four-dimensional region 
by the equations8 

m" = v. a • (4) 

Finally, we extend the definition of xA to a four­
dimensional region by the requirements 

x~ama = 0 in V x~aka = 0 everywhere. (5) 

The geometrical picture of the four quantities u, v, 
and x A is given in Fig. 2. 

Since we have defined four scalar functions, one 
can use these as coordinates and it is easy to show 
that the metric in terms of the new coordinates 
takes the form 

di = _e- 2a du dv 

+ gAB(dxA + eA du)(dxB + eB du), (6) 

where q, gAB, and eA are any six functions of the 
four coordinates. They obey the following restric­
tions: 

q = 0 on U and on V 

eA = 0 on V (7) 
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Conversely, it is easy to show that whenever one 
writes a metric in the form (6) and (7), the coordi­
nates u, v, and x A automatically have all the geo­
metric properties discussed above. 

THE FIELD EQUATIONS 

N ext let us consider what restrictions the Einstein 
field equations Rab = 0 place on the six unknowns 
in Eq. (6). By standard manipulations one finds for 
the Christoffel symbols the values given in the 
Appendix. Using the Christoffel symbols one can 
work out the Ricci tensor. It will be convenient to 
divide the ten field equations into four groups as 
follows: 

hypersurface equations; Rll = R'A 0 
propagating equations; RAB = 0 
subsidiary equations; Roo = ROA 0 
trivial equation; ROl = O. 

The terminology is similar to that previously used 
by Bondi and by the author. From the Bianchi 
identities (R ab 

- 1/2gab R); b = 0 one infers by 
the usual argumentsll the following lemma'2 : If the 
three hypersurface equations and the three propa­
gating equations hold everywhere in a sufficiently 
small four-dimensional region R, bounded from below 
by U and V, and if the three subsidiary conditions 
hold on the hypersurface V, then the three subsidiary 
equations and the trivial equation automatically 
hold everywhere in R. 

It will be convenient to start by discussing how 
the integration of the subsidiary equations hold on the 
hypersurface V can be performed. Let us split the 
quantity gAB into two parts 

(8) 

by the requirement determinant (hAB ) = 1. Define 
quantities gAB, hAB, and CA as follows: 

gAB gBC = o~ hABhBC = o~ CA = gABCB. (9) 

One finds that the first subsidiary condition Roo = 0 
takes on V the form 13 

-2h,oo -2(h,o)2 + h~oEhAE.O = 0 

(h. o == ah/au etc). (10) 

11 Compare Lichnerowicz,2 and the references given in 
footnote 4. 

12 The lemma holds only if the quantity ka;a, usually 
called the expansion, is different from zero. One can always 
arrange for ka;a. "" 0 to hold in so~e f0l:lr-din:ensional regi~n 
by suitable chOIce of ~. An extensIve dISCUSSIOn of spaces In 
which ka'a = 0 for some ka has been given, for example, 
by P. Jordan, J. Ehlers, and R. Sachs.lo 

13 The reader should not try to evaluate the form of any 
of the subsidiary conditions without first setting v = 0 so 
that CA = O. The form of the subsidiary conditions when 
v "" 0 is very complicated; this form is not needed in the 
following argument because of the lemma stated above. 

One sees from Eq. (9) that if hAB is given on V, 
h is given on ~ and h.o is given on ~ then the value 
of h throughout V is completely determined; in fact, 
Eq. (10) enables us to integrate one ordinary 
differential equation along each line XA = const with­
in V to get h. 

The remaining two subsidiary conditions have on 
V the form 

CA.OI + JCA.I + J' = 0, 

CA.I == aCAjav etc. (11) 

Here J and J' are "junk factors"-that is, quantities 
which can be considered as known functions at any 
one stage of integrating the field equations. In the 
case of Eq. (11) the junk factors have the following 
property: If gAB == e2hhAB is known on the hyper­
surface V, then J and J' are also known on this 
hypersurface. Since hAB on V has already been 
assumed as part of the initial data, and since Eq. 
(10) has already been integrated to obtain h on V, 
one may consider J and J' known. One can now 
integrate Eq. (ll) to obtain the value of CA • I 

everywhere on V, provided one gives as additional 
data the values of CA • I on ~. In the following dis­
cussion it will be supposed that the integrations in 
Eqs. (10) and (11) have been carried out explicitly. 
Thus at this stage one has the following data every­
where on V (including ~): 

q = CA = 0 on V, (12) 

with h, hAB' and CA.I known functions on V. 
Having satisfied the subsidiary conditions on V, 

one turns next to the hypersurface equations. The 
equation Rll = 0 has the form 

-2h.ll - 4h. 1q.1 - 2(h)2 + h~,EhAE., = O. (1;.3) 

Since q = 0 on U, one can use Eq. (13) to integrate 
for h in terms of hAE on U and h.1 on ~; it will be 
supposed that this integration has been done. More­
over, on any other hypersurface u = const ;;.£ 0, one 
can use Eq. (ll) to integrate for q provided the 
expansion k7a = e2Qh. 1 is different from zero (com­
pare footnote 12) and gAB is known on the hyper­
surface u = const ;;.£ O. The necessary initial value 
is the value q = 0 on V. The next two hypersurfaee 
equations have the form 

CA.ll + JCA.I + J' = O. (11) 

This time the junk is characterized by the fact that 
if h, hAB' and q are known on anyone hypersurface 
u = const, then J and J' are known on this hyper­
surface. Thus, one can find C A on such a hypersurface 
provided one knows in addition the initial values of 
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CA and CA • l on V. But CA = 0 on V and CA • l has 
already been obtained there by integrating Eq. (11). 

One now proceeds as follows: Imagine that Eqs. 
(13) and (14) have been solved to yield q and CA as 
some complicated functionals of hand hAB • Consider 
now the three propagating equations, which have 
the form 

gAB.Ol + JgAB •O + J' = O. (15) 

In Eq. (15) the junk terms J and J' are characterized 
as follows: If all six metric components are known 
on a hypersurface u = const, then J and J' are 
known there. According to the remarks made about 
Eqs. (13) and (14), this fact means that when h 
and hAB are known on a hypersurface u = const, 
then J and J' are known there-admittedly, only 
as quite complicated and nonlocal functionals of h 
and hAB • One therefore sees that Eq. (15) determines 
the time derivatives gAB.O at u = const in terms of 
gAB at u = const and in terms of the value gAB.O on 
the surface u = const, v = O. Since, as one sees from 
Eq. (12), the latter has been previously obtained, 
the propagating equations enable one to determine 
the values of gAB throughout some four-dimensional 
region R in terms of all the initial data that have 
been set. Then q and C A are also determined in R 
by inserting the values of gAB into the proper 
functionals. 

From the lemma and the discussion of the field 
equations one sees that at this stage all the com­
ponents of the Ricci tensor vanish in R and all the 
metric components are known in R. Collecting 
resul ts one has the main theorem: 

Given hAB on U and on V and given h, CA • l , h.o 

and h.l on ~, there is precisely one gravitational 
field (in a sufficiently small four-dimensional region 
R bounded from below by U and by V) which has 
these initial data as boundary values and obeys the 
field equations. 

The data can be chosen quite arbitrarily and are 
not subject to constraints. As stated in the introduc­
tion, the question of how large R is (and in particular 
if it is different from zero!) has not been carefully 
examined. 

GEOMETRICAL INTERPRETATION OF 
THE INITIAL DATA 

After the ugly and formal manipulations of the 
previous section it is a pleasure to turn to the next 
question-what do the data that have to be given 
mean geometrically? The interpretation of hAB is 
straightforward. Note first that the entire inner 
metric of either U or V is known if and only if gAB 

is known. The reason one only needs a 2 X 2 metric 
tensor to specify the inner metric is that the hyper­
surfaces U and V are null hypersurfaces. Thus, if 
one were to adopt a different system of coordinates 
and obtain some 3 X 3 metric in, say, U with the 
values g,,~(a, (3 = 1···3) one would immediately 
find that this metric possesses a null eigenvector. 
That is, one would find a direction ka ~ 0 in U 
for which ga~kP = O. Thus, of the six components 
of g a~, only three would be algebraically indepen­
dent, and these three would be essentially gAB. 
Stated somewhat differently, gAB gives the distance 
not between two neighboring points in U but be­
tween two neighboring rays at a point in U and the 
latter is the only meaningful distance that can be 
aSRigned. Now the data given consist not of gAB 

but only of hAB' so that one initially knows gAB 

only up to the factor e2h which must be obtained by 
integrating the field equations Roo = 0 and Ru = 0 
on V and on U, respectively. Thus one sees that 
giving hAB on U and on V is completely equivalent to 
specifying the inner conformal geometry3 of these 
two hypersurfaces. Note that the conformal metric 
must be given as a function of a preferred affine 
parameter3 along the rays. 

To give h on ~ is fully equivalent to giving the 
inner geometry of ~, as one sees from Eq. (8). The 
meaning of h. 1 and h. 0 is obtained by introducing 
for ~ the two extrinsic curvatures EAB and FAll 

that any two-space imbedded in a four-space has.3 

Usually, in a positive definite space, these forms 
are not uniquely defined; they are still subject to 
orthogonal rotations of the normal directions which 
define each.3 In the case of a normal hyperbolic 
metric it is convenient to choose the two null 
directions k a and ma as the defining normal direc­
tions. Then (in the special coordinate systems that 
have been introduced) 14 

(16) 

the abovementioned arbitrariness of an orthogonal 
rotation now manifests itself by the fact that one 
can still perform the transformations 

k,a = rlea, 

(17) 

This arbitrariness will be discussed in more detail 
later. For the moment we note from the Christoffel 
symbols of the Appendix that to give h.l and h.o 

14 If one introduces an arbitrary coordinate system, EAB 

and FAB retain their meaning but are no longer related to 
ka and ma in the simple way given by Eq. (16); the covariant 
derivatives appearing in Eq. (16) are those of the four-space. 
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on 1:, merely amounts to giving the trace (with 
respect to the inner metric of 1:) of each of the two 
second fundamental forms: 

(18) 

These two traces are called the mean extrinsic 
curvatures; they give information about the extent 
to which a geodesic in 1: deviates from being a 
geodesic in the full four-space. 3 

Finally, one can consider the two quantities CA • l • 

One sees from the Christoffel symbols that in the 
special coordinates 

(19) 

It follows from this equation and Eq. (17) that one 
can still alter C A.l on 1: by adding an arbitrary 
gradient: 

Ci.l = CA.l - (lnr).A (20) 

Thus the geometrically meaningful quantity is 

CA •IB - CB • IA 

= EACF~ - EBCF~ + W~ABkomb on 1:. (21) 

Here Robed is the full Riemann tensor of the four­
space. There is only one independent quantity 
defined by Eq. (21) since both sides are antisym­
metric in A and B. It is easy to show that one can 
set C~I:A = 0 on 1:, where a colon denotes the 
covariant derivative with respect to the metric 
of 1:. Then r is fixed up to a solution of the homo­
geneous Laplace equation on 1: and C A.l is fixed 
up to the gradient of this solution by giving the 
geometric quantity (21). To specify a particular 
solution of the homogeneous Laplace equation, one 
must give one additional function of a single variable 
(namely, the relevant boundary values); this func­
tion and the quantity given in Eq. (21) constitute 
the remaining independent data that must be set 
in place of CA •l • 

Finally, one can ask the question: To what extent 
do the initial data consist of "true observables?" 
In other words, suppose someone were to give us a 
metric expressed in terms of some arbitrary coordi­
nate system. To what extent could we work out the 
values of all the above quantities as functions of 
their arguments. From the discussion given above 
it is easy to see that one must make the following 
arbitrary choices: one must choose, ad hoc, some 
partiCUlar two-dimensional surface 1:; in addition 
one must choose, ad hoc, some particular coordinates 
in 1: which express the conformal flatness of 1: in 
the form given by Eq. (1) (as is well known, this 
choice amounts to choosing a particular solution 

of the Laplace equation in 1:).3 Then the numerical 
values of all the functions given as data are in 
principle determined. 

To summarize the results of this section: The 
data that have to be set have rather straightforward 
geometric interpretations; the functions constituting 
the data are not true observables but the amount of 
arbitrariness in them is relatively small. 

CONCLUSIONS 

A discussion of the local characteristic initial value 
problem in gravitational theory has been given. 
One sees that apart from questions of mathematical 
rigor, a complete scheme can be obtained. There 
are two very difficult and interesting questions 
that have not been discussed: First, is it easier to 
quantize the theory of gravitation by using com­
mutation rules set on null hypersurfaces rather than 
space-like ones, or are there two essentially equiv­
alent schemes, or is it easier to use space-like hyper­
surfaces? Second, is it possible to relate in a neat 
way the local methods discussed here to the more 
difficult and physically more interesting global 
methods that various authorsI6 have recently 
introduced. Until one can answer the first of these 
questions, one cannot say whether the use of null 
initial data is simply a matter of taste, as in the 
classical theory, or is in principle different from the 
use of standard initial data. Unless one can answer 
the second question positively one will probably not 
be able to draw many useful conclusions about the 
results of physically conceivable experiments from 
the results presented here. 
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APPENDIX 

The Christoffel symbols 

r~e = !g"d«(hd.C + ged.b - gbe.d) (AI) 
----

15 V. Fock, Theory of Space, Time, and Gravitation (Moscow 
1955); R. Arnowitt, S. Deser, and C. W. Misner"; Bondi 
and his co-workers'; R. K. Sachs.' 
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are needed to calculate the Ricci tensor 

In the coordinate system (6) they are: 

r~l = 0 

r~o +!i"[2(e-2").o + (CACAL] 

r~A !e
2Q

[(e-2").A + CA.l] 

rto = !yAD [CD.1 + (e-
2Q

).D] 

r~o !gAD[2CD.O - (CACA).D] 

- !e2"CA[2(e-
2Q

).o + (CACA).I] 

r~B = !yAD[YDB.O + CD.B - CB.D] 

+ !iQCA[ -(e-2Q).B - CB.l] 
(2) 

r~c = r;c - !e
2Q

CA
YBC.l 

r~l = 2q.l 

r:o -!e2"C~ICA - q.ACA 

r~l -!e
2Q

[CA.l - (e-
2Q

).A] + !iQCDYDA.l 

-!iQ[(CACA).o - 2CDCD.O + CD(CACA).D] 

-!e
2Q

[(CB CB ).A 

- CD(YAD,O + CD.A - CA.D)] 
(2) 

-!e
2Q

[CA.B + CB.A - YAB,O - 2CD r~B] 

(-2q + 2h).a 
(2) 

Here r~c are the Christoffel symbols of the two 
dimensional spaces u = const, v = const. 

Note added in proof. The author has learned that 
a paper with similar title has been submitted to 
the L. Witten volume on general relativity by 
Professor Bruhat; in case there is any overlapping 
of subject material it should be pointed out that 
Professor Bruhat's work began as early as 1958 and 
was submitted long before the submission of the 
present paper, even though publication of the 
present paper may happen to take place first. The 
essential results of this paper were obtained simul­
taneously and independently by G. Dautcourt in 
his Ph.D. thesis (Humboldt University, Berlin, 
1961-62; to be published, 1963), which also contains 
an exhaustive discussion of the special case k7a = 0 
mentioned in footnote 12. 
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A Note on the Scattering of Boson Fields* 

DAVID SHALE 

Department of Mathematics, University of California, Berkeley, California 
(Received February 2, 1962) . 

A physically operational and mathematically simple definition is given for the convergence of 
states for a: boson field. The rele.vant form~latio~ of th~ sc~ttering matrix is discussed. As an example, 
th~ scattermg of a free Boson Field by a gIVen lmear tlme-mdependent unquantized source is treated. 
It IS shown that cases usually called "infrared" and "ultraviolet" catastrophes are actually convergent. 

1. INTRODUCTION 

FIELD theories which attempt to derive asym­
to tic behavior from the dynamics specified for 

all finite times consider limits of the kind W: 

lim (t ---l- ± 00 )w(t), where 

wet) = exp [iHtotal t] exp [-iHI,ee t]. 

Two difficulties are: 
(A.) Supposing Htotal can be formulated at all , 

H lree and Htotal still cannot be formulated as opera­
tors on the same Hilbert space in physically interest­
ing cases.! 

(B.) Even in the mathematically most tractable 
case2 when Hire. and H total can be formulated as 
self-adjoint operators on the same Hilbert space, 
taking 10: = lim (t ---l- ± 00 )w(t), with convergence 
in the weak operator topology, still requires at 
least a finite renormalization to obtain a unitary 
M¢ller wave operator. 

The work of Segal3
-

6 has, among other things, 
gone a considerable way towards resolving (A), 
which is clearly the more important difficulty. This 
paper arose from considering (B). Using the work 
of Segal we formulate the notion of asymptotic 
convergence of states in a physically reasonable and 
mathematically simple way which avoids questions 
of renormalization and unitarity. Consideration is 
limited to boson fields whose formal total Hamil­
tonian is at most quadratic. As an application we 
extend the work of Cook to treat scattering by a 
wide class of given linear sources. In particular we 
give a mathematically rigorous treatment of scatter­
ing by a point source. Physically the examples 

* Prepared with partial support from the National Science 
Foundation, Contract G19136. 

1 L. Van Hove, Physic a 18, (1952). 
2 J. M. Cook, J. Math. Phys. 2, 33 (1961). 
3 I. E. Segal, Ann. Math. 48, 930 (1942). 
4 I. E. Segal, Kgl. Danske Videnskab. Selskab, Mat-fys 

Medd. 31, No. 12. 
• 1. E. Segal, Can. J. Math. 13. 1 (1961). 
6 I. E. Segal, "The Mathematical Characterization of the 

Physical Vacuum" (to be published). 

are uninteresting since the scattering matrix is 1. 
Mathematically, however, they offer further hope 
that the usual formalism may be altered so as to 
provide a convergent theory. 

2. BASIC DEFINITIONS 

We reproduce some basic definitions from refer­
ence 4 and 5. Let H, to be called the space of wave 
functions, be a complex pre-Hilbert space with 
inner product (. , . L. The single particle structure 
(or classical field) over H, 'Z.(H) , is the pair 
lK, B(· , .)} where K is H restricted to real opera­
tions and with inner product (. , .) = Re (. , ')c 
and B(· , .) = 1m (. , . )c' The real operator in K 
corresponding to il is ,vritten A. 

Our basic example is the case of the Klein­
Gordon equation of mass m ~ O. H can be taken 
as the space of complex wave functions if;(R) on the 
hyperboloid (k, k) + m2 = 0 in momentum space, 
which are square integrable with regard to the 
Lorentz invariant measure d3k/lleol and satisfy 
the "reality" condition if; ( -k) = if;(k)*. (* = com­
plex conjugation.) If €(lc) = ±1 as leo > 0, < o. 
The operator A is given by Aif;(k) = if(k)if;(k). 

A quantization over '£(H) is a map z -t V(z) 
from K to unitary operators on a complex Hilbert 
space S) such that: 

V(z) V(Zl) = exp [tiB(z, z!)] V(z + Zl), (1) 

and Z ---l- V(z) is weakly continuous on every finite­
dimensional subspace of H. [In a formal way 
V(if;(x)) = exp [i f <I>(x)if;(x) dx], where if;(x) is a 
classical wave function and <I>(x) is the "field at x."] 

The algebra of field observables <X is the uniform 
closure of U<X M where J.ll ranges over the finite­
dimensional subspaces of H, and aM is the weakly 
closed ring of operators generated by {Y(z) : z E MI. 

A regular state E is a positive linear functional on 
a normalized so that E(l) = 1, and such that for 
some quantization V(·) there is a vector x such 
that E(A) = (Ax, x) for all A E a. Pure regular 

915 
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states E and F are relatively normalizable if they 
are determined by vectors x and y in the same 
irreducible quantization space. 

3. OPERATIONAL CONVERGENCE OF STATES 

Definition 1. A one-parameter family of regular 
states E, converges operationally to a regular state 
E if for each field observable X, E,(X) --7 E(X). 

Mathematically this amounts to topologizing the 
regular states as the weak dual of a. Let p(E, F) 
denote the transition probability between states 
E, F. It follows readily that when H has finite 
dimension E, --7 E operationally if and only if 
peE"~ F) --7 p(E, F) for every fixed state F. Now 
in the infinite dimensional case, since quantization 
is not unique, the appropriate definition of p(. , .) 
is not entirely clear. It appears reasonable, how­
ever, to put p(E, F) 0 if, E and F are pure and 
not relatively normalizable. Granting this the 
example given elsewhere7 shows that there exists 
a one-parameter family E. of regular states, which 
is continuous by Theorem 1 below, but with 
p(E., E~) = 0 if A ~ p,. 

Again as an example below (Sec 8) shows, the 
physical vacuum state cannot be expected, in general, 
to be relatively normalizable with regard to the 
free field vacuum. [This is the difficulty of 1. (A).J 
Consequently if finite times are to be considered, it 
cannot be expected that a pure "in" state which is 
relatively normalizable with regard to the free field 
vacuum will be normalizable with regard to E, 
for finite times t. Hence for a fixed state F the 
transition probability p(E" F) will not be a con­
tinuous function of time. We claim further that 
transition probabilities between states do not play 
any operational role and could be omitted from the 
theory entirely. We conclude the present section 
with a brief discussion of this claim. 

For systems of finitely many degrees of freedom 
where irreducible quantization is unique up to 
unitary equivalence a certain amount of semantic 
confusion between "state" and "observable" is 
permissable. Let A be a non-negative self-adjoint 
operator of trace class and trace 1, then A represents 
both an observable and the state E: E(X) = 
Tr (XA). Then if F is any other state, p(F, E) = 
F(A). For a system with infinitely many degrees of 
freedom let A, as above, act on the space of an 
irreducible quantization. Then E is still a state, but 
A is not a field observable; for it may be seen that A 
has no representation in any quantization arising 

7 D. Shale, Trans. Amer. Math. Soc. 103, 149 (1962), Re­
mark 6.1. 

from a pure regular state, not relatively normalizable 
with respect to those arising from vectors in the 
Hilbert space on which A acts. Thus for fields, 
"states" and "observables" must be sharply dis­
tinguished. 

Now it may be argued that what is measured in a 
sequence of identical scattering experiments is the 
expected values, or rather the distribution of values, 
of certain observables in the "in" and "out" states, 
i.e., given a self-adjoint field observable A and a 
state E what is actually determined experimentally 
is a certain borel measure lLA,E on the real line and 
concentrated on the spectrum of A. 8

-
IO If the system 

has finitely many degrees of freedom and A has 
pure point spectrum lAd of multiplicity 1, with 
Xi the eigenvector corresponding to Ai, then 
P,A ,E(Ai) p(E, Fi ) where F; is the state determined 
by Xi- This accounts for the historical importance of 
transition probabilities. The method cannot be 
applied in the cases usual in field theory where A 
has continuous spectrum or parts of infinite multi­
plicity. For a self-adjoint observable A it is simpler 
to compute if; A. E the characteristic function (Fourier 
transform) corresponding to the measure }lA,E' This 
is given by if;A.E(A) = E(exp [iAA]). 

Now let E, be a one-parameter family of regular 
states continuous in the sense of definition 1. For 
fixed A denote the characteristic functions by 
if;(t, A). By definition 1, for each fixed A, if;(t, A) is 
continuous in t, i.e., definition 1 implies continuity 
of the measures flA.E, in a sense common in prob­
ability theory. 

4. CONVERGENCE THEOREM FOR STATES 

The characteristic function pC·) of a regular state 
E is dp,fined by p(z) = E(V(z» for all z in the space 
of wave functions H.ll.12 

It is provedll that p(.) is a characteristic function 
if and only if p(z) is continuous on every finite-di­
mensional subspace M of H, p(O) = 1 and 

L: a,ar exp (i/2)B(zi' ZJ]P(Zi - Zj) ~ 0 . ", (2) 
ii 

for complex aI, ... , an and ZI, •.. , Zn in H. The 
property (2) will be referred to as quasi-positive 
definiteness. 

The following analog of a well-known theorem of 

8 G. W. Mackey, "Lecture Notes on the Mathematical 
Foundations of Quantum Mechanics," Harvard, ]960 
(unpUblished). 

g See reference 3. 
10 J. von Neumann, Mathematical Foundations of Quantum 

Mechanic8, (Princeton University Press. Princeton, New 
Jersey, 1955). 

11 See reference 5. 
12 H. Araki, J. Math. Phys. 1, 492 (1960). 
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LevyI3 provides a tool for checking whether states 
converge operationally. 

Theorem 1. Let E, be a one-parameter family of 
regular states with characteristic functions p,(.). 
Then there exists a regular state E such that 
lim (t --> t')E, = E (operational convergence), if 
and only if p,(z) converges pointwise to a function 
p(z) which is continuous at the origin on every 
finite-dimensional subspace M of the space of wave 
functions H and then p(z) is the characteristic 
function of E. 

Proof. If E, --> E then the conclusion is trivial. 
We prove the converse first in the case when dim H 
is finite. Suppose that the p,(z) converge pointwise 
to p(z) continuous at the origin. 

A function 1)(z) on K is integrally quasi-positive 
definite (q.p.d.) if 

J exp [tiB(z, z')h(z - z')f(z)t(z')* dz dz' ~ 0 

where fez) is any Lebesgue integral function on K 
and the integral is over K X K with regard to 
Lebesgue measure. 

Now the functions p,(z) being q.p.d. are integrally 
q.p.d. Hence, p(z) is measurable, continuous at the 
origin and, by the Lebesgue dominated convergence 
theorem, integrally q.p.d. Hence,14 there exists a 
continuous q.p.d. function v(z) with v(O) = 1 such 
that v(z) = p(z) a.e. Let E be the regular state 
determined by v(z). 

Now let V(z) be the irreducible quantization. 
Let Co be the complex vector space generated by 

{V(f) = J V(z)f(z) dz: fez) E LI(K)}' 

Then Co is an algebra whose uniform closure is C 
the algehra of completely continuous operators. I4 

E,(V(f)) may be evaluated as f p,Cz)fCz) dz. It 
follows that for every X in Co, (and hence every 
X in C), E,(X) --> E(X). 

Let A,(respectively A) be the non-negative 
self-adjoint operator of trace class such that 
E,(X) = Tr (A,X) [respectively, E(X) = Tr (AX)]. 
We wish to show that E,(X) --> E(X) for all bounded 
operators X. It is sufficient to establish this when 
X is self-adjoint. Given X there exists a completely 
continuous operator Y such that X + Y is self­
adjoint with pure point spectrum. I5 Consequently 

13 M. Loeve, Probability Theory (D. Van Nostrand Com. 
pany, Princeton, New Jersey, 1960), 2nd ed., p. 191. 

14 See reference 5, proof of Theorem 2. 
15 J. von Neumann, "Charackterisierung des Spectrmuo 

eines Integrai-operatoren," Actualites Scientifiques et indu8-
trielles (Hermann & Cie., Paris, 1935) p. 229. 

we can suppose that X has pure point spectrum. 
Let {c.} bean orthonormal basis so that Xc" = A"cM 

for all n. Let p .. be the projection with range C", 

'rhen for all n, 

(A,cn , cn) = Tr(A,P,,) = E,(Pn) --> E(P .. ) = (Ac .. ,cn). 

Also (A,c .. , cn) ~ 0, (Ae", en) ~ 0 and 

1. 

It follows readily that 

E,(X) = L A .. (A,e .. , en) --> L An(Aen , en) = E(X). 
" " 

We have established that E, ---t E. It follows that 
v(z) = p(z) everywhere. 

In the general case, dim H infinite, the above 
shows that p(z) is the characteristic functional of a 
regular state E and that E,(X) --> E(X) for all tame 
field observables X (i.e., X E a. for some finite 
subspace M of H). The theorem follows since tame 
observables are uniformly dense in a. 

S. FORMULATION OF THE 
SCATTERING AUTOMORPHISM 

We now attempt to give some minimal require­
ments under which a system may be said to undergo 
convergent scattering. Our treatment is partly 
adapted from the work of Segal. 16 

From the present point of view, given a fixed 
frame of reference, it is the states which evolve with 
time. The evolution will be given by a one-parameter 
group D(t) mapping the regular states into them­
selves and such that: 

(a) For every pair of regular states E, F and a ~ 0, 
b ~ 0 and a + b = 1, D(t)(aE + bF) = 
aD(t)E + bD(t)F. 

(b) D(t) is continuous in the sense that for every 
regular state E, D(t)E is operationally continuous. 

Any *-automorphism cp of the algebra a of field 
observables determines a contragredient map cp* 
of the regular states given hy:cp*(E)(X) = E((cp- 1X)) 
for all X in a. A one-parameter family cp(t) of 
*-automorphisms is continuous if cp*(t) is continuous 
in the above sense. 

Vle now assume that the total (respectively free) 
field dynamics arise from a continuous one-param­
eter group of *-automorphisms cp(t) [respectively, 
CPoCt)[. Let wet) = cp(t)cpo( -t). The dynamics 
of the total field is asymptotic to that of the 
free field if the M011er wave automorphisms 
W: = lim (t --> ± (X) )wCt) exist. The scattering 
automorphism is then s = W~'·w_. 

15 See references 4-6. 
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Now a free field posesses a vacuum state Eo and 
hence has a quantization associated with it. Con­
siderations of positivity of the free field energyl7 
have made the Fock quantization'S the most likely 
candidate to describe the free field. We shall assume 
this if the final condition on s is that s*(Eo) = Eo. 
lt follows that there then exists a unitary operator 
S, the "s matrix," such that seX) = S.X.S-l. 

6. ADMISSABLE WAVE FUNCTIONS 

We now consider H the pre-Hilbert space of 
normalizable wave functions introduced in Sec. 2. 
To emphasize its dependence on H we write a(H) 
for the algebra of field ohservables. For a given 
differential equation specifying the free field let R 
be the corresponding Hilbert space of normalizable 
wave functions. Usually H is taken to be R. If 
instead H is a proper dense submanifold, then a(H) 
is a proper subalgebra of a(R) (see Sec. 7). How­
ever the space of symmetric tensors S(H/ 9 on 
which the free field quantization acts, is identical 
with, S(Er). Consequently, if the dynamics is given 
as an automorphism of a(H) instead of a(Er), the 
s matrix S is unchanged. 

Associated with the free field quantization there 
are certain observables (e.g., free field energy, 
total number of particles), which are not field 
observables and need not have any meaning at 
finite times, but which can presumably be measured 
in the "in" and "out" states. Now Er is the sub­
space of one particle states in S(H). However, only 
states which assign finite expectation values to 
observables like the" free field energy" can possibly 
be attained in practice. Accordingly it seems ap­
propriate to discard the others from the space of 
admissable wave functions, and hence, restrict the 
observables for which the dynamics need be speci­
fied, should it be convenient to do so. We extend 
this idea in the foIImving: 

Definition 2. Let G denote the proper inhomogen­
eous Lorentz group and ,g its lie algebra. Let U(·) 
[respectively, dU(·)] be the canonical representation 
of G (respectively, J) on Er. A linear submanifold 
H will be called admissable if there is a submanifold 
Ho with Ho ~ H, Ho dense in R, invariant under 
U(·) and dU(-), and such that dU(X) is essentially 
skew adjoint on Ho for all X in J). 

The existence of Ho has been established by 
l'\ e lson. 20 

17 See reference 6. 
18 J. M. Cook, Trans. Amer. Math. Soc., 74, (1953). 
19 See reference 18. 
20 E. Nelson, Ann. Math. 70, 591 (1959). 

7. AUGMENTED SYMPLECTIC GROUP 

In order to construct examples we give an ex­
tension of the symplectic group over the single 
particle structure '2(H) introduced by Sega1. 21 We 
begin by noting that the commutation relations 
[Eq. (1)], can be regarded as arising from a unitary 
representation V-(·) of the group K- = {z- = (a, z): 
a is real and z E KJ with multiplication law: 

(a, z)(a l , z,) = (a + a, + tB(z, Zl), z + z,) 

(cf. reference 5), where 

V-(z-) = e;aV(z) 

(3) 

(4) 

For any finite dimensional subspace M of K let ltr 
be the subgroup {z- : z EM). ltr is to be given the 
Euclidean space topology. 

The proper augmented symplectic group given in 
the following definition describes the group of dy­
namical tranl'formations arising from Hamiltonians 
which are at most quadratic. 

Definition 3. The augmented symplect.ic group 
Sp(K)- is the group of automorphisms T- of K­
such that T- : j1r ~ T-ClJr) is continuous for 
each finite dimensional subspace M. C = {(a, 0) ) 
is the center of K. The proper augmented sym­
plectic group ASp(K) is the subgroup which leaves 
C pointwise fixed. 

Since each T- E Sp(K)- leaves C invariant, the 
continuity condition implies T-(a, 0) = (aa, 0) with 
a fixed. Let 'P(T-) V-(z-) = V-(T-z-). By con­
sidering elements of a(H) of the form el, c complex, 
it becomes clear that 'P(T-) determines an auto­
morphism of a(H) if and only if T- leaves C point­
wise fixed, i.e., T- E ASp(K). 

Theorem 2. For T- E ASp(K) there exists a 
linear functional A on K and a linear transforma­
tion T on K which preserves B(· , .), such that 
T-(z-) = (a + A(Z), Tz). Conversely, every pair 
(A, T) determines a unique T- E ASp(K). 

Proof. Writing T-(O, z) = (A(Z), T(z» the identity; 

T-«a, z)(alz,» == T-(a, z) . T-(al , Zl) 

giveR 

T(z + Zl) = T(z) + T(z,) (5a) 

!B(T(z) , T(z,» - !B(z, z,) 

= A(Z + z,) - A(Z) - A(Z,) (5b) 

Since the right side of (5b) (left side) is symmetric 
(antisymmetric) in z, z, both must equal zero. It 

21 See reference 4. 
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follows from Eqs. (5) that T(exz) = exT(z) and 
A(exZ) = exA(Z) for all rational ex and hence all real ex 
by continuity. This establishes the direct part. The 
converse is trivial. 

For '1'- : T-(a, z) = (a + A(Z), '1'z) we write 
T- = (A, T). If E is a regular state with characteristic 
functional p(z) then cp*(T-)E has characteristic 
functional 

p'(Z) = exp (-iA(T- 1z))p('1'-IZ) ... . (6) 

For 

p'(Z) = cp*('1'-)E[V(z)] = Elcp(T-- 1
) V-CO, z)] 

= EI V-[ -A('1'-IZ), '1'-IZ] I 
= exp [ -iA('1'-IZ)]p(T- 1z). 

Let Yo(') be the free field quantization and Eo 
the free field vacuum state. We take H (and hence K) 
to be a Hilbert space. 

Corollary. For T- in ASp(K) there is a unitary 
operator Y such that cp(T-)X = Y.X.Y-\ or 
equivalently Eo and '1'* ('1'-)Eo are relatively normaliz­
able if and only if T- = (A, '1') with A continuous 
on K in the Hilbert space topology and (T*'1')I/2 - I 
is Hilbert-Schmidt. Further if '1'- = (A, I), Y can 
be taken to be V(ZI) where ZI is the unique vector 
in K such that A(Z) = -B(z, ZI).22 

Proof. T- = (A, '1') = (0, '1') (A, 1). Since the part 
concerning (0, '1') has been proved elsewhere23 we 
consider only (A, 1). By Eq. (6) the characteristic 
functional of E1'_ '1'* ('1'-)Eo is p'(z) 
exp [-iA(Z)]p(z). If E1'_ and Eo are relatively 
normalizable then E 1'- arises from a vector x in 
the Hilbert space of the free field quantization and 
p'(z) = (V(z)x, x). Since Fe,) here is continuous 
from the Hilbert-space topology on K to the weak 
operator topology it follows that A(') is continuous. 
It is straightforward to show that A(Z) is continuous 
on K if and only if A(Z) = - B(z, Zl) for a unique ZI in 
K. Finally the commutation relations [Eq. (1)] give 

V(ZI) . V(z) . V( -Zl) 

= exp [ -iB(z, Zl)] V(z) = '1'('1'-) V(z). 

To see, as remarked in Sec. 6, that a(HI ) is not 
equal to a(H) for HI a proper linear submanifold 
of H, it is only necessary to note that there exists 
a nonzero linear functional A on H (not necessarily 
continuous) which is zero on HI' Putting '1'- = (A, I) 
we have '1'('1'-) = I on a(H1 ) but not on a(H). 

22 Cf. I. E. Segal, Trans. Amer. Math. Soc. 88, 12 (1958), 
example 2, p. 33. 

23 See reference 7. 

8. SCATTERING OF A FREE BOSON FIELD 
BY A TIME INDEPENDENT LINEAR 

UN QUANTIZED SOURCE. 

As an example we reformulate the treatment of 
scattering with a given source due to Cook,24 and 
extend it to give a convergent treatment of cases 
usually labeled as "infrared" and "ultraviolet" 
ca tastrophes. 

Let S) denote the space on which the free field 
quantization Vo(z) acts, and E be the space of 
normalizable wave functions. For Z E E let iRo(z) 
be the infinitesimal generator of Vo(tz)- co <t< co. 

The canonical action r(·) of unitary group U(E) 
on Sj will be given explicitly in Sec. 9. If A is a 
self-adjoint operator on E then dr(A) is the infini­
tesimal generator of r(exp (iAt)), - co < t < CD. 

If A is the one-particle Hamiltonian, dr(A) is the 
free field Hamiltonian. Recall that A is the relll 
form of iI. The basic result due to Cook24 is: 

Theorem 3. If A is a self-adjoint but not necessarily 
bounded on B. and Z E ~(A) then 

[dr(A) + Ro(AAz) + HAz, z)r 

We give a new proof in Sec. 9. 
Consideration will be limited to a Klein-Gordon 

field of mass m ~ O. The free particle Hamiltonian 
A is multiplication by ko on the space of normaliz­
ahle wave functions on (k, k) + m2 = 0 in mo­
mentum space. The following lemma is a simple 
consequence of the Fubini Theorem and the Rie­
mann-Lebesgue Lemma. 

Lemma A. If f(k) is an integrable complex-valued 
function on (k, k) + m2 = 0, m ~ 0 with regard 
to the measure dm = d3k/[leo!, then F(t) = 
f exp (ileol) -t(le) dm -> 0 as t -> ± CD. 

Now let cp(x) be a time independent source func­
tion. Let $(le) = $(ko, k) be the Fourier transform 
f cp(x) exp (-i(le, x) d3x, regarded as a function on 
(le, k) + m2 = O. 

Case I (Coole). $(le) is norma liz able and in ~(A -1). 
The total Hamiltonian is. 

[dr(A) + R(A$) + HA -1$, $)r 

= Vo(A -1$) 'dr(A). Vo(A -1$)-1 (7) 

using Theorem 3. 
Reformulating in the present language we take the 

space of admissible wave functions to be E. The 
field dynamics is given by the automorphism CPo(t) = 

24 See reference 2, Theorem 1. 
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cp(T(t» with T(t) the symplectic transformation 
exp (iAt). Exponentiating Eq. (7) and applying 
the corollary to Theorem 2 we get the interacting 
dynamics given by the automorphism cp(t) = 
cp(A, I)CPo(t)CP(A, 1)-1 where (A, I) is augmented 
symplectic transformation determined by the linear 
function A(Z) = -B(z, A- I $). Now the M¢Uer wave 
automorphism wet) = cp(t)cpo( -t) = cp(To(t» where 
To(t) = CA(') - A('1'(-t)(·», I). Applying Eq. (6), 
if p(z) is the characteristic functional of the regular 
state E and p'(z) that of w*(t)E, we have 

p'(z) = p(z) exp [-'tA(Z) + iA(T( - t)z)]. (8) 

It follows that 

w~ = cp(A, I), (9) 

provided A('1'( -t)z) --)0 0 as t --)0 ± co and then the 
scattering automorphism 8 = W~lW_ = 1. 

Now 

A(T(-t)z) = -B(exp (-iAt)z, A-1$) 

= - 1m J exp (-ikot) [z(k)$(k)* /koJ dm. (10) 

By Lemma A this --)0 0 as t ---> ± co. 

Case II. Suppose the Fourier transform $(k) 
of the source is normalizable but $ EE m(A-I

). This 
can happen if m = 0 when A-I is unbounded. The 
difficulty with the above formulation is that 
X(z) = -1m J [z(k)$(k) * /ko] dm will not be defined 
for all normalizable wave functions z(k). Accord­
ingly, we apply the doctrine enunciated in Sec. 6 
and take H to be the subspace of Ii consisting of 
infinitely differentiable functions with compact 
support on (k, k) + m2 

= 0 which does not contain 
O. Then H may be seen to satisfy the general re­
quirements of definition 2. In addition, z(k)/ko is 
normalizable for all z E H and the remainder of the 
reformulated disenssion is unchanged. We remark 
that in this case it follows from the corollary to 
Theorem 2 that the clothed vacuum w!Bo is not 
relatively normalizable with regard to the free field 
vacuum state. 

Case III. The Fourier transform $(k) is not a 
normalizable wave function. :For example let cp(x) 
be the 8 function at Xo corresponding to a point 
source. This is the so-called "ultraviolet" catas­
trophe. Then $(k) = exp [-iCkIXI + k2X2 + kaxa)J. 
We take the space of admissible wave functions to 
be as in case II. Since x(k)$(k)*/ko is then integrable 
for z H the reformulated treatment is unchanged. 

Our aim in treating the above examples has been 
to establish the viability of the mathematical frame-

work given for scattering. It may be observed that 
the maneuver used to treat the "divergences" 
amounts to requiring that when the source is highly 
concentrated the wave functions used (on space time) 
must be spread out. There is no difficulty in ex­
tending the treatment to a wide class of interactions 
for which the interaction Hamiltonian is at most 
quadratic. In particular the infrared, catastrophe 
which arises for the Maxwell field with a given time 
dependent unquantized source can be treated by 
adapting the maneuver given by Cook.2 
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APPENDIX. THE HOLOMORPHIC QUANTIZATION 
AND A NEW PROOF OF COOK'S THEOREM 

The holomorphic quantization of SegaeS has 
appeared Aince the work of Cook.26 It has the 
advantage that field quantities may be computed 
very simply. We use it to give a new proof of Cook's 
theorem (Theorem 3 above). 

We begin by reproducing the basic definitions. 
Let H be a complex Hilbert space and "k(H) = 
{K, B(· , .)} the single particle structure over H. 
Let L 2 (K) be the Hilbert space of square integrable 
functions over K with regard to the normal distri­
bution with variance 1. Let f(tl , ••• , tn ) be a complex 
polynomial in n variables and Zl , ••• , z" E H. 
The antihoJomorphic polynomial (a.h.p.) determined 
by f and ZI ••• Zn is 

fez) = f(tI , •• , ,tn), with t, = (Z;, Z), (11) 

where (. , .) is now the inner product in H. Let .p 
be the subspace (closed) of L 2(K) determined by 
the a.h.p. The quantization on .p is determined by 

Vo(z')f(z) = exp [-(z', z')/4 - Hz', z)]f(z + z') (12) 

where f ranges over the a.h.p. 
Let ~ = {g(tl ... tn) = f(tI , ... , t .. - 1 ) exp (-atn)}, 

where g is a complex polynomial, ti = (z;, z), 
i = 1 ... n (arbitrary n > 0), and ZI, '" ,z" E H 
are arbitrary. It may be seen that ~ is a dense 
subspace of .p. 

The canonical action r(·) of the group U(H) of 
unitary operators on H is given by r(u)f(z) = 

!IS See reference 6. 
26 See reference 2. 
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f(u-1z) where f ranges over the a.h.p. If U(H) is 
given the weak operator topology, r(·) is weakly 
continuous. For g E ~, r(u)g(z) = g(tl' ... , t" 
with t; = (uz;, z). Finally recall that if A is self 
adjoint on H, idr(A) is the infinitesimal generator 
of r[exp (iAt)]. 

Lcmma 1. (a) On ~, Vo(z') is given by 

Vo(z')g(z) = g(tl' ... ,tn) 

X exp (-(z',z')/4 - (z',z)/2) 

with t; = (Zi' z) + (z;, z'), i = 1 ... n. 
(b) If iRo(z') is the infinitesimal generator of 

Vo(tz'), on ~, Ro(z') is given by 

Ro(z') g(z) =" . ag(tl' ... ,tn) ( ') L.J - '/, !Clt. • Z;,Z 
1 U 1 

+ (i/2)(z', Z)gCtI' ... , In) 

with t; = (Zi' Z') i = 1 ... n. 
(c) Let A be self adjoint on H. Let :n be the set of 

functionals in (! for which the z/s lie in :n(A) the 
domain of A. Then:n lies in the domain of dr(A) and 

dr(A)g(z) = "ag(l!, ... ,tn).(A. ) 7-' ali z" Z 

with t; = (z;, z). 

Proof. Part (a) follows readily from the definition. 
Proof is omitted. 

(b) For g in ~ consider 

h, = (l/t)[Vo(tz')g - g] - iRo(z')g. 

As t ~ ° h, ~ ° pointwise. Now suppose g depends 
on ZI ••• Zm. Let H' be the subspace generated by 
z', Zl, ... , Zn with CI , ••• Cr an orthonormal basis 
for H'. Then for t ~ 0, h, is an antiholomorphic 
function based on H'. It may be seen that for suitable 
M > 0, \h,\ < 111 exp (ilLi\(Z, Ci)\2) for all il > 0. 
If K' is the real subspace determined by H', it 
follows by the Lebesgue dominated theorem that 
h, ~ 0, as t ~ 0, in L 2 (K') (integral with regard to 
Gaussian measure with variance 1). Therefore 
h, ~ ° in L2(K). 

(c) It is convenient, though inessential, to estab­
lish part (c) using the duality transform D~ be­
tween S(H) a space of symmetric tensors over H 
and ~. We define D~ by 

D~(z! ® ... ® Zn)8 = (n!)-I IIi(z;, z). 

If r'(·) is the canonical action of U(H) on S(H) 
then clearly D~ transforms r' and dr' into rand 
dr, respectively. For ZI, ••• , Zn in ;tl(A) it is a 
straightforward matter to check that 

dr(A)(Zl ® ... ® zn). 

= (Azi ® Z2 ® ... ® zn). 

+ (ZI ® AZ2 ® Za ® ... ® zn). + 
It follows that for monomials (and hence for poly­
nomials) based on :n(A), dr(A) has the form stated. 
To treat the general case suppose (f E :n, with 
g(tl' ... , tn) = f(tl, ... tn-I) exp (tn). Put 

g,. = f (i: t:/r!). 
r~O 

Now using the Lebesgue dominated convergence 
theorem and arguing as in the proof of (b) we obtain 
(fm(z) ~ g(z) and dr(A)gm(z) ~ dr(A)g(z) as m ~ 0, 
with convergence in L2(K). The result follows. 

The following lemma,27 which is probably not new, 
proves to be a convenient tool for establishing that 
certain operators are essentially self-adjoint. 

Lemma 2. Let A be a self-adjoint unbounded 
operator on a complex Hilbert space Hand 
U(t) = exp (iAt). Let :n be a dense sub manifold of 
H such that (1) :n c :n(A) (the domain of A), 
(2) :n is invariant under U(t) for - CD < t < CD; 

then the restriction of A to :n is essentially self­
adjoint. 

Proof. Let:n. = {Ax ± ix:x E :nl. It is sufficient 
to show that the closure :n: of :n. is H. We es­
tablish this for :n+. Suppose :n: ~ H. Then :n: is 
invariant under U(t), - CD < t < CD, and hence 
reduces A. Hence (A + iI)-l maps :n+ into :n:. 
Therefore, :n = (A + iI)-l:n+ c :n:. It follows 
that :n is Bot dense in H. Contradiction. 

Proof of Theorem 3. In order to establish the 
theorem in the form stated it is enough to find a 
dense domain :n on which 

dr(A) + Ro(AAz') + t(Az', z') 

= Vo(z') dr(A) Vo( -z'), 

and such that the right side is essentially self-ad­
joint. Now take :n as in Lemma 1, part (c). Then 
:n satisfies the requirements of Lemma 2 (with ~ 
instead of Hand dr(A) instead of A). Then dr(A) 
is essentially self-adjoint on :no Since V(z') and 
V( -z') leave :n invariant, V(z') maps :n onto :no 
It follows that V(z') dr(A)V(-z') is essentially 
self-adjoint on :no The stated equality on :n now 
follows by computation using Lemma 1. 

27 Note added in proof. Lemma 2 is equivalent to a result of 
J. L. B. Cooper, Proc. London Math. Soc. 50, 11 (1948). 
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The S matrix associated with a central potential is shown to be meromorphic in the energy and 
angular momentum variables under very broad conditions. The domain of merdmorphy contains the 
product of a domain in the energy variable by a domain in the angular variable. The former (latter) 
domain has a very simple connection with the domain of meromorphy of the Laplace (Mellin) trans­
form of the potential with respect to the radius. 

I. INTRODUCTION ¢(k, A, r) = j~(kr) 

11T + k 0 G~(kr. ler') V(r')¢(r', k, A) dr'. 

As usual, 

(1) T HIS paper is devoted to an extension of the 
results obtained by Bottino, Longoni, and 

Ilegge,l concerning the analyticity properties of the 
flcattering matrix associated with the Schrodinger 
equation with a central potential. The S matrix 
is first expressed in Sec. 2 in terms of the Jost 
functions, which are formally expanded in powers 
of the potential. This expansion is studied in detail 
in Sec. 3, and a partial summation of terms cor­
responding to the Green's function is shown to be 
possible under very weak conditions upon the po­
tential. This proves the desired properties in a 
small region. To enlarge this region, it is con­
venient to study in more detail (Sec. 4) the analytic 
continuation of the Laplace and Mellin transforms 
of the Green's function. 

ixCkr) = (!1rkr)1/2 J.,,(kr); n~(kr) = (!1rkrY/2 N~(kr) 

This analytic continuation then makes it possible 
to derive in Sec. 5 the desired properties, by separat­
ing out the divergent parts of the Jost functions 
and expressing them as Laplace and/or Mellin 
transforms of the Green's function. In the conclusion 
we gather together all conditions on the potential 
and the corresponding analyticity properties. 

II. FORMAL EXPANSION OF THE S MATRIX 

Let the Schrodinger equation read 

[ 
02 ? A 2 

- 1/4 ] . 
or?: + k- - r2· - VCr) ¢(k, A, r) = 0, 

where the solution ¢ is the "regular" solution at the 
origin, or, more precisely, the solution of the inte­
gral equation 

* On leave of absence from C. E. N. Saclay, France. 
t Supported in part by the Air Force Office of Scientific 

Research, Air Research and Development Command. 
I Bottino, Longoni, Regge, Potential Scattering jor Complex 

Energy and Angular Momentum, (Istituto Di Fisica dell' 
Universita Torino, Torino, Italy, to be published). 

h2'(kr) = Ukr) + in~(kr); h~2'(kr) = j,,(kr) - in).(kr) 

G).(kr, kr') = fi).(kr)j).(kr') - j).(kr)n),(kr'). 

The Jost function teA, k) is defined by the asymptotic 
behavior for large r of ¢(k, X, r): 

¢(k, X, r) ~ (1/2ik)[f(X, le) eCir/2)().+'/2'h2'(kr) 

- t(X, -k) e-Cir/2)()'+l/2'h~2'(kr)] 

and the S-matrix element: 

S(' h') = 2;; = ir().-l/2, teA, k) 
1\,. e e t(X, -k) (2) 

where W, stands for: 

W,(A,k) = lim W[h~l)(kr),¢(k,X,r)J; (3) 

W is the Wronskian, and 

W2(X, k) = -[W,(A*, k*)]*. 

The solution of Eq. (1) is formally given by 

¢(k, X, r) = j).(kr) 

X VCr m) dr m] ixCkr,) 

and likewise formally, the expression (3) for WI 
becomes: 

n-l n 

X II G).(kr m+', kr m) II rVer m) dr m]ixCkr,) (4) 
nl=l 1n=1 

922 
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by virtue of the following relation for the Wronskian: 

W[ajx(kr) + (3nx(kr) , 'Yjx(kr) + 0 nx(kr)] 

= k(ao - (3'Y). 

The fact that Eq. (3) contains the symbol limr~;oo 

is reflected in the fact that the integral of Eq. (4) 
extends to infinity. 

III. STUDY OF THE CONVERGENCE OF THE FORMAL 
SERIES 

A convenient way to study the series (4) is to 
carry out all integrations, except those going to 
zero or to infinity (over r l and rn), which give rise 
to divergence, then to sum the series, and finally 
to study the last two integrations. Accordingly, 
define for n > 2 

X 1,<.,<r,< ... <r._,< •• _,<r. It [UI/2Crn)UI/2(Sm_I)] 

X dr2 ... drn_1 dSI ... dsn_l . 

This last integral is equal to: 

(2n ~ 4)! {' {r n

-, U1I2(r) dr rn
-. dSn_1 

1 {l OO 

}2n-4 < (2n _ 4)! (rn - r l ) 0 U
l/2

(r) dr , 

if f~ Ul/2 (r) dr < ro, which shall be considered to 
hold throughout the rest of this paper. 

Thus, it is possible to sum the series: 
00 

I(r, r') = L In(r, r') 
u=2 

and it converges uniformly in r, r', k, X on every 
n-I 

X II VCr m) dr2 ... drn_l . 
m=2 

(5) compact set. In particular, it is an entire function 
of k and X as every term In. It may be useful to 
remark that the function I(r, r') is a Green's func­
tion of the total Hamiltonian. The preceding com­
putation gives an upper bound for I(r, r') of the 
form: 

An upper bound on this quantity may be put in 
the following way: 

n-I 
X II VCr m) dSI ... dSn- 1 dr2 ... drn- I 

m=2 

where G~(x, y) == (a/ax)Gx(x, y) satisfies 

IG{(ks, ler) I < M(k, X) ~:::~~~ for S > r 

and: 

S :::; 1 IRe XI ?: 1/2 

1 S :::; 1 IRe Xl :::; 1/2 

exp 11m ksl s > 1. 

I ( ) I
F u(r') C ' ) 

Ir,r' < Nu fi\.x(r) r - r. (8) 

This allows to determine a region where the integral 
(6) (4) converges uniformly in k and X, and therefore 

to establish analyticity in k and X in some domain 
for WI (2)' However this domain is fairly small, 
as compared with the domain obtained by Regge 
et al. Therefore it is necessary to devise some 
analytic continuation procedure, which is developed 
in the next section. 

(7a) 

(7b) 

(7c) 

IV. ANALYTIC PROPERTIES OF THE MELLIN AND 
LAPLACE TRANSFORMS OF THE GREEN'S FUNCTION 

(See Appendix for the derivation of this bound.) 
Fk .x(s) is monotonic, therefore: 

The divergence of the integral (4) is due to the 
wrong power behavior for small values of r l and to 
the wrong exponential behavior for big values of rn. 
It is therefore natural to try and isolate the singu­
larities in X, k associated with these divergences 
by studying the analytic properties of Mellin or 
Laplace transforms of I(r, r'). Three cases are to 
be considered: 

Fk.X(sm) < Fu(rm+ I). 
Fk.X(rm) - fi\.x(rm) 

Furthermore, let U(r) = max,>r W(s)l. U(r) is a 
monotonically decreasing function, so that I V (r m) I < 
Ul/2(rm)Ul/2(Sm_I)' By substitution of these dif­
ferent upper bounds into the expression for In(r l , rn): 

a) r < r' < 1 A(s, s') 

= 1'( r,-lr,,'-II(r, r') dr dr' 
J O<r<r' <1 
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b) r < 1 < r' B(s,p') where 

= 11 r'-ll(r, r') e-p'r' dr dr' exes, s') 
O<r<l<r'<oo 

- { r'-{a~' l(r, 1) 

+ (1 - s')l(r, 1) J dr 
c) 1 < r < r' C(p, p') 

- 11 l( ') -pr-p'r' d d' - r, r err. 
1 <r<r' <co 

(3(s, p') = 
The limiting value 1 is taken arbitrarily here, and 

- [" e-p,r'[:r 1(1, r') 

it does not even need to be the same for all three 
functions, as for any finite range of values of r, r' 
the integrals converge. As they stand, these func­
tions, according to (8), are analytic in the following 
regions: 

A) Re s > max [iRe XI - 1/2, OJ 

Re s' > 1 - Re s 

B) Re s > max [IRe Xl - 1/2, OJ 

Rep'>/Imkl (9) 

C) Re (p + p') > 0 Rep' > 11m kl. 
A possible way to continue these functions in their 
arguments is to use the fact that l(r, r') satisfies 
two differential equations, and therefore, A, B, C 
satisfy the transformed equations, which may allow 
to analytically continue them outside of (9). 

The differential equations satisfied by l(r, r') 
are the same with respect to r and with respect to r': 

[ 
a2 2 X2 - 1/4 J 
a/' + k - r2 - VCr) l(r, r') = oCr - r'). 

The transformed equations read, with the Mellin 
transform: 

[(s - 1)(s - 2) - (X2 - 1/4)J 

X A(s - 2, s') + k2 A(s, s') - -2
1

. 
71'Z 

f
HOO 1 

X . A(s - IT, S')U(IT) dlT = +' _ l' 
-.a> S S 

[(s' - I)(s' - 2) - (X2 
- 1/4)J 

X A(s, s' - 2) + k2 A(s, s') - 21. 
71'1-

X i:~oo A(s, s' - IT)u(lT) dlT 

+ ~ 1 + ex(s, s'), s s-

[(s - I)(s - 2) - (X2 
- 1/4)J 

X B(s - 2, p') + eB(s, p') - 21. 
71'Z 

X i:~oo A(s - IT, p')u(lT) dlT = (3(s, p'), 

(lOa) 

(lOb) 

(lOc) 

+ (1 - s)l(l, r') ] dr' 

U(IT) = f V(r)r"-l dr, 

and the integral over IT is as yet taken according to 
the general theory of Mellin transforms, which is 
possible by virtue of (8) and n U1

/
2 (r) dr < ex>. 

Similarly, the Laplace transforms Band C satisfy: 

(a 2/ap,2)[(p,2 + k2)B(s, p')J - (X2 
- I/4)B(s, p') 

1 f+i OO 

- 271'i -ioo B(s, p' - q)u"(q) dq = 'Y(s, p') (lla) 

(a2/ap2)[(p2 + e)C(p, p')J - (X2 - 1/4)C(p, p') 

1 f+ia> 
- 271'i -ia> C(p - q, p')u"(q) dq 

e-(P+P') 

= o(p p') + --, , p +p (lIb) 

- -. C(p, p' - q)u"(q) dq = e __ , 
1 f+i OO -(p+p') 

27r1. _;00 p + p 
(11 c) 

where again: 

'Y(s, p') = e- P
' { r8-{a~' l(r, 1) + p'l(r, 1) J dr 

o(p, p') = e-P
' 100 

[:r 1(1, r') + pl(1, r') Je-,,'r' dr' 

u(q) = 100 

e-arV(r) dr. 

The integral over q is to be taken along a path 
satisfying, say, Re Q > O. 

It is possible to do the same tranf'formations and 
to prove that ex and 'Y ({3 and 0) satisfy equations of 
type Eq. (10) [Eq. (11)] with an inhomogeneous 
term that is now an entire function. 

The analytic continuation procedure developed 
here cannot proceed unless some additional con­
ditions on the potential are assumed. The condition 
f~ U1

/
2 (r) dr < ex> implies that r2 V(r) goes to zero 

with r. It is therefore possible to take Re IT greater 
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than 2 and arbitrarily close to it in Eq. (10). The 
present method requires a little more; that is, that 
there exists a small positive number 1J such that 
r2-~V(r) goes to zero with r. It is then possible 
to take the path of the u integration in Eq. (10) 
along a line 2 - 1J < Re u < 2. This allows to 
express the first term of Eq. (10) as a function of 

singular points for u(rJ); it is understood that 
(uo + i ro) + (u! + i ro) is any number whose real 
part is the same as that of (uo + (1)' 

The set of essential singularities of A(s, S/) is 
given by: 

s = -1 - s/ - 2n + m(S - 2) + (8 - 2) 

the others, and therefore allows one to extend or 
domain (9) by a strip of width 1/ in the s or s' plane. 
This procedure may then be repeated any number s = ±}.. - 1/2 - 2n + m(S - 2) + (8 - 2) 

(13) 

of times unless one of the following circumstances 
occurs [the language adopted is that suitable for 
Eq. (lOa), but it is clearly irrelevant]: 

i) The inhomogeneous term is infinite: this generates 
a pole in A(s, s') at s = -s' - 1. 
ii) (s - l)(s - 2) = }..2 - t: this generates a 
pole in A(s, S/) at s = ±}.. - !. 
iii) The second term may have a singularity: this 
tells us that every singularity in A(s, s') is associated 
to an infinite chain of singularities of similar type 
at regular intervals of 2. 
iv) The integral over u may be pinched between a 
singularity of u(u) and a singularity of A(s - U, S/). 
This shows that if So is a singularity of A(s, Sf), 

then So + rJ - 2 is a singularity of A(s, S/) when­
ever rJ is a singularity of u. This particular set of 
points we shall denote by So + S - 2, where S 
denotes the set of singular points of u(rJ). It is 
important to note that in the case where the pinching 
is between two poles, the resulting singularity is 
again a pole, as may be seen by decomposing the 
contour into a loop around one pole and a contour 
which is not pinched. 
v) The last possibility for the analytic continuation 
procedure to fail is that the integral over u starts 
diverging. This however only occurs for fairly 
pathological potentials, where the asymptotic be­
havior of u(rJ) for u -+ ±iro depends upon Re rJ. 

This may be treated together with the preceding 
case by saying that there is a singularity of u(u) 
at Re rJ + i ro. An example of such a potential is: 

VCr) = e- pr cos (ln2r) 

All these possibilities are then taken together and 
the singularities of A(s, s') in s are given by the 
formulas: 

or 
s = -1 - s' - 2n + m(S - 2) 

(12) 
s = ±'A - 1/2 - 2n + m(S - 2) 

where m, n take all possible non-negative integer 
values, the symbol m(S - 2) denoting the set: 
{rJl + ... + U m - 2m\, where U1, ••• , rJ m are 

where 8 is the set S minus the set of all poles of u; 
in fact, it has been noticed that the only mechanism 
to produce an essential singularity in A(s, 8' ) is 
to have an essential singularity in u. 

The very same procedure may be used to find 
the singularities in 8' of A(8, 8' ). It is however 
impossible that there be poles with a fixed location 
in 8' , because their residue would then obey an equa­
tion of type (10) without right-hand side, and there­
fore they would appear in the region (9). Therefore, 
the only singularities in A(s, 8 ' ) are exactly those 
already found in (12). 

For B, a, and 'Y the reasoning is similar, but the 
inhomogeneous term is entire in s. Therefore, the 
only singUlarities are those independent of 8' in (12). 

A completely analogous study may be made to 
continue in p and p', with the proviso that VCr) 
decays exponentially, or equivalently, that the 
integral on q in (11) might be taken inside -}L < 
Re q < O. 

In this case, the singularities are created either 
by the Fuchsian type singularity p2 + k2 = 0 in 
Eq. (11), or by the inhomogeneous term, or by the 
integral on the potential. The reasoning is made 
along the same lines with the only difference that 
all singularities appearing are cuts instead of poles. 
The result is: C(p, pi) is analytic except for cuts 
starting at 

p/ = ±ik + m(J> or p + p' = m(J>, (14) 

where (J> is the set of singularities of u(q); and 
B(8, pi) is analytic in pi except for cuts starting at 
pi = ±ik + m(J>. 

A final step in the reasoning is to prove that in 
the domains determined by Eqs. (12) and (14), 
the functions A, B, C are analytic in all four vari­
ables, as they were in the domains (9). This is done 
by a straightforward repeated application of a 
generalized form of Hartog's lemma (See Bochner 
and Martin,2 p. 141). It is worth noticing that this 
theorem is in fact very deep, and that it is perhaps 

2 S. Bochner and W. T. Martin, Several Complex Variable8 
(Princeton University Press, Princeton, New Jersey, 1948). 
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the most powerful tool used in this proof, although 
it looks almost trivial. 

V. SEPARATION OF THE DIVERGENT TERMS 

The summation of the series in (4) leads to the 
formula: 

W 1(A, k) = -ik + fa'" h~l)(kr) V(r)j.(kr) dr 

+ J1<r<r'<oo h~l\kr') VCr) V(r')J(r, r')j~(kr) dr dr'. 

These integrals diverge outside (9), but it is possible 
to separate explicitly the divergent part in the 
following way. 

For r < 1 use: 

where j,(kr) is of the order of r 2N+)'+6/2 for small r. 
For r > 1, use the following integral representation 
for h~l)(kr), which can be proved by solving an 
equation analogous to (11): 

X [ Ikr + 1 r-'" prp' (~) d ] 
e ik J'k e ).-1(2 ik P 

Both terms involving the remainders of formulas 
(16) or (17) are convergent for A and N large enough, 
therefore the singularities in (18) are the only ones 
due to the divergence of the simple integral in (4). 
Of course there is also the branch point for k = 0 
due to the nonanalyticity of the integrand at that 
point. The double integral is evaluated along the 
same lines, dividing it into three parts, according 
to whether rand r' are :S 1. The separation (16) 
and/or (17) introduces explicitly the following types 
of diverging integrals: 

(i) rr r2n+~+1/2r'2n'''~+1/2V(r) V(r')J(r, r') dr dr' 
JJ O<r<r'<l 

I1f"'" = 47r2 -I'" A(2n + A + 3/2 - u, 2n' 

± A + 3/2 - u')u(u)u(u') du du'. 

This integral may be analytically continued as long 
as [Eq. (12)]: 

2n + A + 3/2 - S ~ ±A - 1/2 - 2n + m(S - 2) 

and: 

2n + A + 3/2 - S + 2n' ± A + 3/2 - S 

;= -1 - 2n + m( S - 2). 

It therefore has singularities at 

where p' is the derivative of the Legendre function A = -n + !em + 1)(S - 2) m, n = 0,1,2 '" 
of the first kind. Hence, 

X [e
lkr + i~ l~A eprp~-1I2(7k) dPJ + h~(kr) (17) 

where h).(kr) is of the order of e- Ar for large r. 
A separation of the first integral in (15) into two 
parts r ~ 1, followed by the use of (16) and (17) 
through a suitable expression of j~(kr) in terms of 
h~l)(kr) and h~l)(-kr) for r > 1 or of h~l)(kr) in 
terms of j~(kr) and j_x(kr) for r < 1, leads to the 
evaluation of the following divergent integrals: 

f r 2A+1 +2n V(r) dr = U(2A + 2n + 2) 

1'" e(p+p')rVCr) dr = u( -P -p'), 

with p and pi varying between - A and ik. There­
fore, the singularities due to the divergences of the 
simple integrals are: 

(ii) 1'[ r2n +)'+112 VCr) V(r')e-p' r' f(r, r') dr dr' 
J O<r<l <r' <00 

11f+i'" = ~7r2 -i'" B(2n + A + 3/2 

- u, p' - q)u(u)u(q) du dq. 

The singularities of this integral are given by: 

2n + A + 3/2 - S = ±A - 1/2 - 2n + m(S - 2) 

p' - CP = ±ik + mCP, 

p' describes a path going from A to -ik. Therefore 
this integral has the singularities: 

A = -n + t(m + l)(S - 2); 2ik = -em + l)CP 

(iii) l'r e-pr - p
'

r
' VCr) V(r')f(r, r') dr dr' 

J l<r<r'<(X) 

1 lJ+ I

'" = -4~ . C(p - q, p' - q')u(q)jJ.(q') dq dq' 
1r _$00 

which has singularities at: 

A = !(s - 2) - n, 

-2ik = CP. 

p' - CP = ±ik + mCP and p' + p - 2CP = mCP 
(18) 

2ik = -em + l)CP. 



                                                                                                                                    

COM P LEX AN G U LA R MOM EN T A IN POT E N T I A L seA T T E R I N G 927 

It is easy to see that, by taking N and A large 
enough, the remainders of formulas (16) and (17) 
do not contribute more singularities. The singu­
larities of W 2 are obtained from those of WI by 
complex conjugation. The preceding reasoning also 
allows us to keep track of the nature of the singu­
larity around k = 0 by writing down at each step 
the circuit relations around k = O. It is easily seen 
that these circuit relations are exactly those of the 
formal series (4) and therefore, the formula obtained 
by Bottino, Longoni, and Regge l is proved by this 
method: 

-2i'7f"A 

the S-matrix element is meromorphic throughout 
the (X, k) space, according to formula (20). 

As a last remark it should be noted that the 
domain defined by (20) has not been shown to be 
the largest possible, and in particular it may happen 
that some of the singularities of (20) disappear, by 
some peculiar cancellation. 

APPENDIX 

The upper bound upon the derivative of the free 
Green's function [cf. Eq. (7)] may be obtained very 
easily by the following identities: 

-e 
SeX, k) - 2 cos 71'Xe- i 

.. ,,· 

(19) n~(ks)j.Jkr) - j(ks)n,,(kr) 

CONCLUSION 

We have reached the conclusion that, subject to 
the conditions r2-~e"rV(r) bounded from zero to 
infinity, 7] and IL arbitrary, positive, defining u(a-) = 
n r·-1V(r) dr and u(q) = I~ e-OTV(r) dr then, 
the S-matrix element is meromorphic in the (X, k) 
plane except for the following points: 

X = -n + !m(S - 2) + !(S - 2) 

k = ±[(m + 1)/2i]cP 

k = O. [See Eq. (19)] 

(20) 

where S is the set of singularities of u(u), S, the set 
of essential singularities of u(u) [see before Eq. (12) 
for the pathological case of singularities at i 00 1 and 
(p is the set of singUlarities of u(q). 

Of course this is independent of the reality of the 
potential VCr), except for the symmetry of the 
domain. Furthermore, it shows clearly that, as long 
as the potential stays bounded, it has no need to be 
analytic except near zero and infinity. This of course 
will correspond to essential singularities at infinity 
in the (X, k) space, but our reasoning applies as well 
to the square-well potential, for example, for which 

= (-l/sin 71'A)[j~,,(ks)j,,(Jcr) - j(ks)j_,,(kr)] 

= (l/2i) [h2) '(ks)h~2)(kr) - M2) '(ks)h~1) (kr)]. 

Let A be noninteger and k nonzero. Then 

Ij)..(lcr) I < ClrRo 
,,+1/2 IjWcr) I < C2r R

• H/2 r < 1. 

This immediately justifies the upper hound (7) for 
r < s < 1, and the form (7a) of F. It is possible to 
use (7a) for IRe XI < !. but then F is no longer 
monotonic, a property which was used later. Hence 
the introduction of (7b). Also 

r> 1. 

This justifies (7) with the definition (7e) , for 1 < 
r < s. Then for r < 1 < s, (7) is trivial whatever 
representation of the Green's function one chooses. 
The case A integer or lc zero does not satisfy (7) 
rigorously, but may be treated by using the theorem 
on the maximum of an analytic function, as the 
Green's function involved in (7) is analytic in lc 
and X. In fact, it is enough to study the questions 
of convergence on the boundary of a domain to 
know the result inside the domain, as we only study 
absolute convergence, and it is always possible to 
keep this boundary off the points A integer, k = O. 
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By an appropriate rotational procedure, a projection operator can be constructed to give exact 
eigenfunctions of angular momentum. Applications to cases involving spin and orbital angular 
momentum are given and, in particular, all spin multiplets of the altern ant molecular structure 
are obtained. The connection with the group theoretical approach is discussed. 

1. INTRODUCTION 

T HERE are at least two commonly used tech­
niques for extracting exact eigenfunctions of 

spin and orbital angular momentum, and their 
z components, from an arbitrary coupling of n 
particles in a quantum mechanical system. The 
first method is described in essence in Condon and 
Shortley' and involves the repeated use of the 
vector coupling (Clebsch-Gordan) coefficients. The 
second method uses a projection operator2 to obtain 
a pure state function by projecting out all unwanted 
components from a mixed or impure wavefunction. 
In this paper a third approach is described. It is 
also a projection method but the projection is 
accomplished indirectly rather than directly. By 
averaging the rotations of an impure state, with a 
suitable weight factor, in the space of rotations, the 
unwanted components are reduced to zero, leaving 
the desired exact eigenfunction. A similar procedure 
has been used in recent years in nuclear physics3 

where the impure state corresponds to an intrinsic 
state of the nucleus and its components are the 
eigenfunctions associated with collective excitations 
of the nucleons. 

The derivation of the basic formula is presented 
in the next section in a straightforward way, without 
explicit use of group representation theory. In Sec. 3, 
it will be used to solve, almost trivially, two spin 
projection problems which have heretofore required 
quite extended and cumbersome procedures. Finally, 
in Sec. 4, interpretation will be made from the 
viewpoint of group theory and the unification thus 
achieved will permit the description of a simple 
algorithm for the general angular momentum 
projection. 

2. PROJECTION BY ROTATION 

Let us, in full generality, include both space and 
spin coordinates and denote them by Xi and Ui, 

respectively. Then if Rq,9x denotes a space rotation 
with Euler angles ¢, 0, X, and Sq,8 x the corresponding 
spin rotation, we define 

(1) 

where 

cos ¢ cos 0 cos X - sin ¢ sin X sin ¢ cos 0 cos X + cos ¢ sin X -sin 0 cos X 

- cos ¢ cos 0 sin X - sin ¢ cos X -sin ¢ cos 0 sin X + cos ¢ ('os X sin 0 sin X (2) 

and 

cos ¢ sin 0 

[

e-(i/2) (q,+x) cos (0/.2) 

eU/2) (q,-x) sin (0/2) 

_e-(U2) (q,-x) sin (0/2)] 

e(i/2) (q,+x) cos (0/2) 

(3) 

* Work performed at the AEC Computing and Applied 
Mathematics Center under auspices of the IJ. S. Atomic 
Energy Commission. 

1 E. U. Condon and G. H. Shortley, The Theory of Atomic 
Spectra, (Cambridge University Press, New York, 1959). 

2 P. O. L6wdin, Phys. Rev. 97, 1507 (1955). 
3 D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953). 

sin ¢ sin 0 cos 0 

We must determine a weight function F(¢, 0, x) 
which, on averaging over both space and spin 
rotation, will project the impure state function 
y; = y;( . .. Xi, Ui ••. ) onto a wavefunction 
Y;JM(' .. Xi, Ui ••. ) of definite angular momentum 
J and its z component M. That is, we require 

Y;JM('" Xi, U i ... ) 

= III F(¢, 0, X)V/(··· Xi, Ui •.• ) 

X sin 0 dO d¢ dx, (4) 

928 
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where 

1/;' = R¢8x S¢8x1/;('" Xi,Ui ... ) == 1/;('" X:,U: ... ). 
It is readily verified that 

J. = -i I: [Xi ajaYi - Yi ajax i + iu,j2] , 

operating on 1/;(' .. xi, uj ... ), is identical with 

J. = i ajacp, (5) 

where the u's are the usual Pauli spin matrices and 
units have been chosen so that n = 1. Corre­
spondingly, we have 

J x = -i[ -(cos cpjsin 0) cos 0 ajacp 

- sin cp ajaO + (cos cpjsin 0) ajax] (6) 

J y = -i[(sin cpjsin 0) cos 0 ajacp 

- cos cp ajaO - (sin cpjsin 0) ajax] (7) 

and 

j2 = (-Ijsin2 O)[a2jacp2 

+ sin 0 (ajaO) sin 0 ajaO + a2jax2 

- 2 cos 0 (ajacp) ajax]. (8) 

Hence, in order that J.1/;JM = M1/;JM we need, 
from Eq. (4), 

J.1/;JM = III F(cp, 0, x)J.1/;'(··· Xi, U i ••. ) 

X sin 0 dO dcp dx. (9) 

Inserting the expression (5) for J. in Eq. (9) and 
performing a partial integration with respect to cp, 
we find 

J.1/;JM = -i III (ajacp) F(cp, 0, x) 

X 1/;'('" Xi, Ui ••• ) sin 0 dO dcp dx. 

But this must coincide with M1/;JM and thus, 

J.F(cp, 0, x) == i(ajacp) F(cp, 0, x) 

= -MF(e/>, 0, X). 

(10) 

(11) 

In a similar way we determine the condition on F 
that 1/IJM be an eigenfunction of J2 with eigenvalue 
J(J + 1). The calculation is the same as the one 
just given except, of course, that the partial inte­
grations are performed over all the Euler angles 
and we use the property that J2 is self-adjoint with 
respect to the volume element in rotational space. 
The result is 

J 2F(e/>, O,X) = J(J + I)F(e/>, O,x). (12) 

Since Eqs. (11) and (12) are precisely the equa­
tions for a rigor rotator, we can write down the 
solution4 immediately, 

where the aJMK are arbitrary and 

FJMK(e/> , O,x) 

= eiM¢eiKx COS IK+M1 (Oj2) sin lK- MI (Oj2) 

X F(G - J, 1 + G + J; 

X 1 + !K - M!; sin2 (Oj2» 

(13) 

(14) 

where G = ! !K+M! + ! !K - M! and F(a, b; c; z) 
is the hypergeometric function. 

The expressions (4) and (13) constitute a gener­
ating function: given a state 1/1, a sequence 1/;nI of 
eigenstates of rand J. may be constructed. The 
construction consists literally of a z-axis rotation to 
extract an internal J. of value K, an x-axis rotation 
to obtain a J2 of J(J + 1) and a final z-axis rotation 
to produce an external J. of M. If we demand in 
addition a real decomposition of 1/;, a state originally 
diagonal in J. can give rise only to states of the 
same Jz. This requires K = M and, of course, 
appropriate normalization of the anIK' We write 

1/;nf = fY JM1/;('" Xi, Ui .•. ) 

= aJMM III FJMM(e/>, 0, x) 1/;'(' .. Xi, Ui ... ) 

X sin 0 dO de/> dx (15) 

as the defining equation for the projection e J M, and 
by direct calculation 

anUf = «FJMM I FJMM»-l = (2J + l)j811"2. (16) 

Let us verify that the 1/; J M constitute a complete 
decomposition of the mixed state 1/;. Since the F JMK 
are a complete set of symmetric top eigenfunctions, 
then 

L aJMKFJMK(CP, 0, X)F~MK(e/>', 0', x') 

= o(cp - e/>', 0 - 0', X - x') 

where the 0 function is defined with respect to the 
volume element sinO dO de/> dx. Choosing e/>' = 0' = 
x' = 0, then since F JMK(O, 0, 0) = OMK, we have 
I: aJMMFJMM(e/>, 0, x) = o(cp, 0, x), producing no 
rotation in (15), and hence I: eJM = 1 as desired. 
Further, with K = M, the reciprocal rotation 
(-x, -0, -e/» is seen to convert FJMM to F~MM 

4 L. Pauling and E. B. Wilson, Quantum Mechanics, 
(McGraw-Hill Book Company, Inc., New York, 1935), 
p.278. 
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and it readily follows that 0JM is Hermitian. 
Finally since J.0JM = 0JMJ. = M0JM and 
J

2
0 JM = 0 JMJ

2 
= J(J + 1)0JM, the 0JM are 

obviously orthogonal, e.g., 

so 0J 'M,0JM = 0 unless M = M'. 
We conclude that 

0JM if; = 2J8~ 1 fff eiM
(4)+X) COS

2M (0/2) 

X F(M - J, 1 + M + Jj 1j sin2 
(0/2» 

(17) 

3. SPIN PROJECTION OPERATOR 

Consider the problem of obtaining an eigen­
function of total spin S with eigenvalue S2 equal to 
S(S + 1) and of Sz equal to M, in the case of n 
spin 1/2 particles. Let f.L be the number of particles 
with spin z component up and'll = n - f.L the number 
with spin z component down. Then we denote the 
mixed state by 

(18) 

as an abbreviation for a Slater determinant built up 
from the f.L orbitals aI, a2, ... , a" in order and 
the P orbitals bll b2 , ••• , bp in order. The spin part 
of each term in the determinant is the product 
II1-1 u(j) II~-1 vel). Operating with the spin 
rotation operator given in Eq. (3), we have 

" p " 

S4>8x II u(j) II v(T) = II {Sllu(j) + S2IV(j)} 
j=1 1=1 j=1 

, 
X II {SI2U (T) + S22v(1)} , 

I-I 

where Sii is the ijth element of the spin rotation 
operator. After carrying out the indicated multi­
plications we obtain 

" S4>da" I b'] = L S~~i S~I[a"-i I ai] 
;=0 

, 
X L S;2S;;IW I b,-l] (19) 

1-0 

where now the notation [I J includes the sum of 
all possible permutations of the individual orbitals 
between spin types but maintaining the order 
within each type. 

From an examination of Eqs. (3) and (14), it is 
seen that the 4> and X integrations in Eq. (17) are 
trivial. The X integration gives 

( 
f.L j j 1 'II l) 271'aM--+---+-+---
2 222 2 2 

= 271' a( M - ~ + ~) (20) 

where a denotes the Kronecker a function. But 
M = (1/2)(f.L - 'II) so the integral is 271'. For 4>, we 
have 

( ~. JL j j l 'II l) 
271' 0 lvI - 2 + 2 - 2 - 2 + 2 - 2 

= 271' a(l - j) (21) 

and a nonzero contribution is obtained only for 
1 = j. Thus Eq. (19) yields 

, 
S4>8xift = L (-1)iSj~iS;IS;2S;;i 

;=0 

X [a"-ib i I aib'-i], (22) 

where [a"-ib i I aibP-iJ is the sum of (j) X G) deter­
minants obtained from [a" I bPJ by interchanging j 
orbitals from the a group, in order, in all possible 
ways with j orbitals of the b group, in order. The 
factor (-1) i arises because, in each determinant, 
j columns of a orbitals are interchanged with j 
columns of b orbitals in writing Eq. (19) in the 
above form 

Next we substitute Eq. (22) with the values of 
the spin matrix elements inserted into the expression 
for the projection, Eq. (17), obtaining 

'" [" I b'] - 2S + 1 1 r 2M ~ 
VSM a - 2 0 cos 2 

X F(M - S, 1 + M + Sj 1jsin2 
0/2). 

, 
X L (-l)i(-l)i(cos 0/2),,-i+.-i 

i-O 

X (sin 0/2)2i[aH bi I aib'-i] sin 0 dO. (23) 

The integral is easily evaluated for two special 
values of M. In the first case M = S, and then the 
hypergeometric function F(O, 1 +2S; 1; sin2 0/2) = 1. 
On interchanging the summation and integration 
and substituttng cos 0 = 2y - 1, we get 

0 ss [a" I b'] = 2S + 1 t (1':)-1 [a"-ib i I aib"-i]. (24) 
f.L + 1 i-O J 

This result has been obtained by L6wdins by a 
rather lengthy derivation. 

The second case is M = 0 and this implies f.L = P. 

6 R. Pauncz (private communication). 
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Then the hypergeometric function reduces to a 
Legendre function, 6 

F(-S, S + 1; l;sin2 8/2) = Ps(cos 8) (25) 

and the Legendre function can be expanded6 to 
give (on setting cos 8 = x), 

PS(x) 

= (_1)S (!l)S [(1 _ x)(1 + x)]s 
2s S! dx 

(-1)s S I [S!]3(1 + X)I(1 _ X)S-I 
= 2sS! ~ (-1) [(S - l)! lW . (26) 

The second part of Eq. (26) is obtained by carrying 
out the differentiation explicitly. We set this 
expression into Eq. (23) and substitute the values 
of elements of the spin rotation matrix from Eq. (3). 
Making the substitution x = 2y - 1, the integral 
is readily evaluated, and after some reduction, we 
find 

Elso[a~ I b~] = (_l)S 2S + 1 t ± (_I)i+' 
S + ~ + 1 ;~o 1-0 

X (fY(s ~ j ~ lr\a~-jbj I aib~-i]. (27) 

This expression has application to alternant 
molecular systems which possess closed shell 
structure. Such systems have been studied by 
Pauncz, de Heer, and Lowdin7 who obtained the 
projected spin eigenfunctions for some special cases. 

4. CONNECTION WITH GROUP 
REPRESENTATION THEORY 

The basic expression (17) is easily obtained by 
an application of the theory of group representations. 
Suppose the ~j(R) = (~~~(R)) to be a complete 
set of irreducible representations, of dimension ni, 
of the transformation group G = {R} of order h. 
From the general orthogonality theorems 

L: ~~~(R) ~~:m,(R-l) = (h/n;) ~mm' ~p~' ~ii' (28) 
R 

and the fact that ~j is a unitary matrix representa­
tion, it readily follows that 

(L: ~~'m(R)R)(L: ~;':;m,(R')R') 
R R' 

6 W. Magnus and F. Oberhettinger, Functions of Mathe­
matical Physics (Chelsea Publishing Company, New York, 
1954), p. 50. 

7 R. Pauncz, J. de Heer, and P. O. Liiwdin, J. Chern. 
Phys. 36, 2247 (1962). 

In other words, the 

El im = njh- 1 2: ~~'m(R)R (30) 
R 

are a set of orthogonal projections. Not only does 
El jm1/; transform according to the jth representation, 
but, as a consequence of 

R 2: ~::m(R')R' = 2: ~~m(R) ~~:(R')R', (31) 
R' Jl,R' 

it is seen that El jm1/; is an eigenfunction of any R on 
which ~j is diagonal. Finally the Elim are complete, 
a result of the second orthogonality theorems 

L X1CCa)*XI(Cp) = (h/ha) ~aP, (32) 
I 

where x'(R) = Tr ~'(R) and C a is any element of 
the a class; this, coupled with ~~m(I) = 1, shows 
that L: Elim = I. 

The representations of the rotation group in 
three dimensions may be generated by choosing the 
complete set {Y zm } of eigenfunctions of L2 and L. 
as a basis (including integer and half-integer l): 

R YZm = 2: ~~p(R) YIP' (33) 
~ 

The representations generated this way are, in the 
notation of (13) and (14), given explicitly by 

~~il/>, 8, x) 

= e-im<t>e-il'x cOS1m+1'1 (8/2) sin'm-I" 8/2 

X F(g - 7,1 + g - l; 1 + 1m - ~1;sin2 8/2) (34) 

with g = t 1m - ~I + t 1m + ~I, where R is specified 
by its Euler angles. Since the dimension of ~ I is 
2l + 1 and the volume in the space of rotations is 
871'2, Eq. (30) indeed reproduces Eq. (17). 

Let us, as an example, consider the case of three 
electrons coupled to give a resultant orbital angular 
momentum L with z component 1'v1. In the usual 
way the wave functions will be taken as products of 
single-particle wave functions and for the mixed 
state we write 

1/;(ml m2m3) = <I>"m,(1)<I>"m,(2)<I>'.m,(3). (35) 

It is assumed that the angular part of the single­
particle function is Y lm so that the effect of operating 
with the space rotation operator is given by (33). 
Since the rotation operator operates on all coordi­
nates we get a product of three such terms. The 
rotation matrices can be combined using the 
Clebsch-Gordan9 series, namely, 

8 V. Heine, Group Theory in Quantum Jl echanics (Perga­
mon Press, New York, 1960), Sec. 14. 

9 M. E. Rose, Elementary Theory of Angular Momentum 
(John Wiley & Sons, Inc., New York, 1957), Chap. IV. 
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X C(l), l2' j; Ill' 1l2) j)~,+m"p,+p" (36) 

where the coefficients are the Clebsch-Gordan 
coefficients and the limits on j are III - l21 and 
(ll + l2)' Using Eq. (36) again, j)~',P' can be com­
bined with j)~,+m •• p,+p, to give a sum of terms 
involving j)~',p where m = m l + m2 + m3, Il = 
III + 112 + Ila, and j' is the new summation index. 
From the orthogonality of the rotation matrices we 
find that j' = Land m = Il = M. Thus two of the 
summations are eliminated and we have 

fhM1/;(ml , m2 , ma) = L: L: L: C(ll, l2' j; m l , m2) 

X C(ll' l2' j; Ill' 1l2) 

X C(la, j, L;M - ml - m2 , m l + m2) 

X C(la, j, L; M - III - 1l2; /.11 + /.12) 

X 1/;(Il) , 1l2, M - III - /.12)' (37) 

WignerlO has written the formula in the case of 
two particles. The extension of Eq. (37) to more 
particles simply involves repeated use of Eqs. (33) 
and (36), there being a Il and j summation added 
for each extra particle. If two or more particles are 
in the same shell, there are further limitations on 
the Il summation arising from the Pauli principle, but 
these need not be introduced explicitly as the 
superfluous terms are eliminated upon antisym-

10 E. P. Wigner, Group Theory (Academic Press Inc., 
New York, 1959), p. 192. 

metri~ation. By using Eq. (37) to construct eigen­
functIOns of Land M the concept of fractional 
parentage is by-passed; this is a feature of projection 
operator techniquesll in general. Other methods of 
constructing eigenfunctions usually solve for the 
principal case (M = L) and find the eigenfunctions 
for other values of M by repeated use of the step­
down operation. Equation (37) gives the functions 
for all values of M directly. 

Since the rotation matrices for half-integral order 
obey all the relations given here, with Eq. (33) 
generalized to the form 

R",e"S",e,,'PJM = L: j)~icp, e, x)'PJp , (33') 
p 

the result given in Eq. (37) is valid, with appro­
priate changes in notation, for j-j coupling. 

We have added this discussion of orbital angular 
momentum because there are advantages of using 
projection operators in the form given here that 
are not as widely recognized as they might be. 
Equation (37) is probably the simplest way to 
compute the eigenfunctions and is certainly the 
easiest method for doing hand calculations as­
suming, of course, the availability of a tabie of 
Clebsch-Gordan coefficients. More important is the 
fact that for many problems it is not necessary to 
?arry out all the summations indicated in Eq. (37); 
mdeed the very form of this equation makes the 
application of selection rules very easy. 

~l J.-~. Calais, P.reprint No.7, Quantum Theory Project, 
Vmverslty of Flonda, Gainesville, Florida 1960 (unpub-
lIshed). ' 
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S. T. KURODAt 

Department of Mathematics, University of California, Berkeley, California 
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The ph!U3e shift formulas for the wave and scattering operators in the potential scattering of a 
single nonrelativistic particle are proved under weaker assumptions on the potential than the one 
used previously by Green and Lanford. 

CONCERNING the potential scattering of a 
single nonrelativistic particle by a spherically 

symmetric potential VCr), Green and Lanford/ 
proved, among other things, that, if the function 
VCr), ° < r < 00, satisfies 

foR r !V(r) I dr < 00 and {" !V(r) I dr < 00, 

for ° < R < 00, (1) 

and either 

1.00 

V(s) ds belongs to VCR, 00) 
(2) 

or for some E > 0, 

r ---7 00 , 

then the wave and scattering operators exist and 
the phase shift formulas for them hold true. The 
purpose of the present paper is to supplement their 
results by showing that the assumption (2) can be 
made redundant. This will be done by a limiting 
procedure starting from a case of the potential 
vanishing outside of a certain sphere, to which the 
result of I can be applied, and using a kind of 
continuity theorem for wave and scattering operators 
proved in a previous work of the writer.2 

By the separation of the angular and radial 
variables, our three-dimensional problem is essen­
tially reduced to the one-dimensional problem of 
radial equations. Therefore, in order to avoid the 
complication of the notations, we shall state our 
result in the one-dimensional form as in the theorem 
given below. Then, the proof of the three-dimen­
sional version of the theorem will be sketched in 
the remark after the theorem. Hence, except in 
that remark, we shall fix a partial wave space with 

* Work on this paper was partly supported by National 
Science Foundation Grant G-19136. 

t On leave of absence from the University of Tokyo. 
1 T. A. Green and O. E. Lanford, III, J. Math. Phys. 1, 

139 (1960). Hereafter, we shall refer to this paper !U3 I. 
2 S. T. Kuroda, J. Math. Soc. Japan 12, 243 (1960), 

hereafter referred to !U3 II. 

arbitrarily specified quantum numbers land m, and 
treat the problem in the Hilbert space X = L2(0, 00) 
of all radial wave functions of that partial wave 
space. In X we consider the following two ordinary 
differential operators as the free and total Hamil­
tonians: 

-d2/dr2 + l(l + 1)/r2
, 

(3) 
H -d2/dr2 + l(l + 1)/r2 + V(r) , 

where ° < r < 00, and l is a non-negative integer. 
The exact definition of Ho and H as self-adjoint 
operators in the Hilbert space X = L2(0, ex)) is 
given in I under the assumption (1), using the 
theory of eigenfunction expansion associated with 
the ordinary differential operators (3). We follow 
this definition and denote the generalized Fourier 
transforms associated with H 0 and H by F 0 and F, 
respectively.3 As is well known, Fo is the isometric 
integral operator from X onto4 g = L2(0, 00) given 
by the kernel 

l/;o(r, k) = cp(kr), cp(r) = r'/2JI+1/2(r), (4) 

where J denotes the Bessel function. The restriction 
Fe of F on the continuum subspace Xc of H (i.e., the 
subspace of X consisting of all functions orthogonal 
to all the bound states of H) is the isometric integral 
operator from Xc on5 g whose kernel l/;(r, k) is a 
solution of the differential equation 

-d2 l/;/dr2 + {l(l + 1)/r2 + V(r)} l/; = el/;, 

satisfying the boundary and asymptotic conditions 

lim l/;(r, k) = 0, 
(5) 

l/;(r, k) ro.J (2/rr) 112 sin [kr - 1'71"/2 + o(k)], 

3 The transforms F 0 and F are the restrictions on the 
partial wave space under consideration of the transforms 
F 0 and F given in I. 

• Although X may be regarded !U3 identical with X, we make 
a distinction mainly because X and X correspond to the 
configuration and momentum spaces, respectively. 

6 We regard the momentum spaces of the free and actual 
particles as identical. This is for the convenience in handling 
the phase shift formula without introducing the canonical 
mapping between two momentum spaces. 

933 
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where we assume ° S; o(k) < 211". By these require­
ments, tf;(r, k) and o(k) are determined uniquely. 

In what follows we shall prove the following 
theorem. 

Theorem. Let Ho and H be as above with VCr) 
satisfying (1). Then the wave operators 

Q", = strong-lim exp (itH) exp (-itHo) 

and the scattering operator S = Q":Q+ exists, and the 
latter is unitary. Furthermore, we have the phase 
shift formulas 

Q", = F;1 exp {±i o(k) IFo, (6) 

S = F~1 exp {2i o(k) )Fo. (7) 

Remark. The similar phase shift formulas for the 
three-dimensional Hamiltonian as given in I are 
readily obtained from this theorem. [See (4.32) and 
(4.34) of I. We note that, in I, Fo and F stand for 
the three-dimensional version of the generalized 
Fourier transforms.] Since the three-dimensional 
Hamiltonians are considered as the direct sums of 
Hamiltonians in each partial wave spaces,6 the 
proof is readily obtained as follows: 

Let a Hilbert space X be a direct sum of Hilbert 
spaces X k , k = 1, 2, ... : X = L::-I EB X k , and 
let self-adjoint operators Ho and H in X be direct 
sums of self-adjoint operators H O•k and Hk in X k, 
respectively. Then, the wave operator 

Q", = strong-lim exp (itH) exp (-itHo) 

exists if and only if 

Q=.k = strong-lim exp (itHk) exp (-itHo,k) 

exists for each k. Furthermore, Q", is the direct sum 
of fL,k: Q. = L::-l EB Q""k' 

Proof. Put Q(t) = exp (itH) exp (-itHo) and 
define Qk(t) similarly with Hk and HQ,k. Each u E X 
is expressible as u = L: EB Uk E X k, and the following 
formula holds true: 

00 

II(Q(t) - n(t'))uW = L: /1(Q,,(t) - Qk(t'))UkW, 
k-l 

By taking t and t' sufficiently large, the first term 
on the right-hand side can also be made less than E. 

This proves the sufficiency of the condition. The 
formula Q", = L::-l EB Q=,k is proved in a similar 
way, 

Proof of the theorem. In virtue of the theory of 
eigenfunction expansions, we have formally 

[(Ho + 1)-1/2u](r) 

= i oo 

<p(kr)W + 1)-1/2 dk E" <p(ks)u(s) ds. 

The operator (Ho + 1)-1
1

2 is therefore an integral 
operator with the kernel 

x(r, s) = ioo 

<p(kr)<p(ks)W + 1)-1/2 dk. 

Rigorously speaking, these integrals may not be 
convergent and appropriate definitions are required. 
In particular, x(r, s) is actually defined as the trans­
form F~l of the function <p(kr)(e + 1)-1/

2
, namely, 

X(r, s) = stro~~~lim iL<p(kr)ce + 1fl/2<p(ks) dk. (8) 

The verification of this fact is straightforward. Then, 
Parseval's formula for F~I applied to (8) gives, for 
any fixed r, 

i OO 

/x(r, s) 12 ds = i oo 

l<p(kr) 12 W + 1)-1 dk 

= r {' I'P(X) 12 (x2 + r 2)-1 dx. (9) 

Since <p(x) is bounded and <p(x) ,-...., x 1+\ x -) 0, by 
(4), we see from (9) that there exists a positive 
constant K such that 

i
OO 

Ix(r, S)12 ds S; min (Kr, K). 

By virtue of our assumption (1) this estimate 
readily yields 

The necessity of the condition follows from this at i oo 

(OOO 1 VCr) 1 Ix(r, s) 12 dr ds 
once. For the proof of the sufficiency, take an J, 
arbitrary E > 0. Since the series L: IlukW = lIuW is 
convergent, there exists N such that L::-N IIukl12 < E. S; K iR 

r 1 VCr) 1 dr + K Loo 

1 VCr) / dr < 00. (10) 
Hence, by the above formula, we have 

II(Q(t) - Q(t'))U/!2 
N-I 

S; L: II(Qk(t) - Qk(t'»)UkW + 2E. 
k-l 

6 See Sees. II and III of reference 1. 

In other words, the operator IV/ 1
/

2(Ho + 1)-1/2 is an 
integral operator of Hilbert-Schmidt type. According 
to the corollary to Theorem 1 of II, this in turn 
establishes the existence of Q. and the unitarity of 
S. (In II, H is defined in terms of the theory of 
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closed forms. However, that definition is easily 
shown to be equivalent to the present one.7

) 

In order to prove (6) and (7) we approximate 
V(r) by a sequence of functions V .. (r), n = 1,2, ... , 
defined to be V .. (r) = V(r), if r < n, and 0, other­
wise. Let n~n) denote the wave operators corre­
sponding to the scattering potential V .. (r). Then we 
have the following four statementsB

: 

Equation (6) holds for n~") 

(with li replaced by lin); (11) 

strong-lim n~n) = n.; (12) 

(13) 

(14) 

where lin(k) and F~n) are the phase shift and the 
generalized Fourier transform determined by H, 
with V replaced by Vn • The statement (11) is due 
to Green and Lanford, for Vn(r) clearly satisfies 
the condition (2). 

The formula (12) is a consequence of Theorem 2 
of II, for it follows from (10) that 

ln~ f' fa'" I VCr) - Vn(r) I lx(r, S)!2 dr ds = o. 

The proof of (13) and (14) will be sketched later. 
By (13), the sequence of the multiplicative 

operators given by exp {ilin(k») converges strongly 
to the one given by exp {io(k»). Therefore, starting 
from the formula (6) for n~n) and taking limit as 
n ~ co with the aid of (12), (13), and (14), we 
finally obtain the formula (6) for n±. The formula (7) 
follows immediately from (6). 

Sketch of the proof of (13) and (14). Let us consider 

7 Incidentally, we remark that, in II, Q± is denoted by 
W~. 

8 Although (12) is established here only for the one­
dimensional case, the same argument as in the above remark 
shows that (12) holds also for three-dimensional wave op­
erators. 

the two solutions 1/;,,(r, k) and "',,(r, k) of the dif­
ferential equation 

_d2 1j;/dr2 + {l(l + 1)/r2 + Vn(r»)1/; = e1/;, 

where 1/;n(r, k) satisfies the requirement (5) with 
liCk) replaced by lin(k), and "'n(r, k) = 1/;(r, k), if 
o < r < n. Since Vn(r) = VCr) if ° < r < n, we 
readily obtain 

"'n(r, k) = cn,k1/;n(r, k), 

(." .. - 1/;)(r, k) = _k- 1 L sin k(r - s) 

x (Vn - ll)(S)1/;(s, k) ds, r > n, 

(15) 

(16) 

where Cn,k is a constant. Since 1/;(s, k) is known to 
be bounded in {(s, k) I ° :::;; s < co, 'YJ < k < co} 
for each 'YJ > 0, it follows from (16) that 

lim ("'n - 1/;)(k, r) = 0, (17) 

uniformly for all rand k E (0, co ).9 Hence, by 
virtue of the asymptotic forms of ." .. and 1/;, and the 
periodic property of the sine function, we get 

lim {sin (ler - liCk»~ - Cn,k sin (kr - lin(k» I = 0, 

uniformly for all rand k E (0, co). This readily 
implies 

lim lin(k) = li(k) , lim C .. ,k = 1, (18) 

both uniformly for k E (0, co). To prove (14), we 
note that (15), (17), and (18) give that 

lim 1/; .. (r, k) = 1/;(r, k) 

uniformly for all rand k E (0, co). From this we 
get (14) by a standard argument, using the fact 
that 1/; .. and 1/; are kernels of the isometric integral 
operators F~n)-l and F~\ respectively. 

9 "Uniformly for k E(O, co)" means that the convergence 
is uniform with respect to k in any closed interval of (0, ex» 

of k. 
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Generalized "pinch" techniques are developed for analyzing singularity configurations of any 
Feynman integral in the product space of the loop momenta. The Landau equations follow immedi­
ately, and the dual diagrams arise naturally as geometric singularity criteria. Cutkosky's formula fQr 
the discontinuity is derived by an elementary method, and its structure is clearly exhibited by this 
approach. The basic differences between Landau and non-Landau singularities for single loop diagrams 
are discussed, and it is shown why the presence of non-Landau singularities, in contrast to thoSe in the 
Landau scheme, depends on the dimensionality of space. 

1. INTRODUCTION 

THE aim of this paper is to establish a new 
approach to the study of singularities in per­

turbation theory, based on direct examination of 
the mass shell singularities in k space, the product 
space of the loop momenta. Previous work in per­
turbation theory has been based on a study of 
singularity configurations either after effecting a 
transformation to invariants formed from the loop 
momenta or by introducing Feynman parameters 
and eliminating the loop momenta by symmetric 
integration. 1 

,2 

The present method has not been used before 
because it seems at first more difficult conceptually, 
and singularity criteria are more subtle than those 
derived previously. These difficulties are in fact 
only initial, and the method turns out to be no 
harder than alternative techniques, and for some 
problems it is more helpful towards a deeper under­
standing of the structure of Feynman integrals. 

In Sec. 2 a simple generalization of the pinch 
criteria for singularities is derived,3 and it is shown 
that this is equivalent to the Landau conditions. 
The dual diagrams appear as an integral part of 
the geometric structure, and the method gives a 
vivid picture of why the Landau conditions are 
equivalent to mechanical tautening in the dual 
diagram. In Sec. 3, a new but fairly simple tech­
nique is introduced by which the cuts beginning 
at singular points can be examined. This is applied 

1 The possibility of deriving the dual diagrams by k-space 
methods is Buggested by the work of J. C. Taylor, Phys. Rev. 
117, 261 (1960). 

• A list of references to most recent work in perturbation 
theory is given by R. J. Eden, Maryland lecture notes, (1961), 
(unpublished). R. J. Eden and J. C. Polkinghorne, Brandeis 
University, Summer School of Theoretical Physics, 1961 (W. 
A. Benjamin Publishing Company, New York, 1962). 

3 This generalization has been derived independently by 
P. V. Landshoff and J. C. Polkinghorne (unpublished). See J. 
,C. Polkinghorne, Nuovo cimento 23, 360 (1962). 
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to give an elementary derivation of Cutkosky's 
formula for the discontinuity. In Sec. 4 the non­
Landau singularities4

•
5 for single loop graphs are 

discussed. The structural connection between Cut­
kosky's formula and the general pinch criterion is 
exhibited and used to define an equivalence relation­
ship among the sets of singularities. Under this 
relationship the non-Landau singularities form a 
group on their own, and this explains their di­
mensional dependence. 

It appears that k-space techniques provide a 
powerful tool for examining the structure of per­
turbation theory. They are being used at the 
moment in an investigation of "mixed" singularities,S 
and it is hoped that they may be useful in solving 
other outstanding problems in perturbation theory, 
such as the appearance of isolated real points on 
Landau curves.6

•
7 

2. DERIVATION OF THE LANDAU EQUATIONS 

2.1. Notation 

Spin and isotopic spin are consistently ignored. 
The standard notation for Feynman diagrams is 
adopted, p denoting external, q internal, and k 
loop momenta with masses m. The Feynman integral 
has the form 

II d4
ki 

J II (iq~ _ m~) 

4 R. E. Cutkosky, J. Math. Phys. 1, 429 (1960). 
5 D. B. Fairlie, P. V. Landshoff, J. Nuttall, and J. C. 

Polkinghorne, J. Math. Phys. 3, 594 (1962). In this paper 
non-Landau singularities are referred to as "second type." 

6 R. J. Eden, P. V. Landshoff, J. C. Polkinghorne, and J. C. 
Taylor, J. Math. Phys. 2, 656 (1961). 

7 S. Mandelstam, Phys. Rev. 112, 1344 (1958); US, 1741, 
1752 (1959). 
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where i goes over the loop momenta, i over all 
internal lines. 

2.2. Generalized Pinch Criteria 

The singularity criteria used by previous authors2 
are valid only when there is one surface of singularity. 
They correspond essentially to this surface having 
a locally conelike degeneracy. An example of more 
general pinch conditions arises in considering the 
Feynman integral for the self-energy part with two­
dimensional momenta. 

J dkl dk2 
(ki + k~ - m~ - ie)[(k1 - p)2 + k~ - m; - ie]' 

In the real (leI, k2) plane there are two circles of 
pole with attached complex singular surfaces. 

A plane contour is trapped at a point if, and 
only if, every line lying in the plane and passing 
through the point is pinched at the point. For if 
one is not, by continuity lines through the point 
lying in some segment including this line are not 
pinched, so the plane can be distorted away from 
the singularity, into the four-dimensional space. It 
follows from this that a single circle of finite radius 
does not cause singular behavior although all lines 
tangential to it are pinched (see Fig. 1). "Line" 
is used sometimes to mean the real line and some­
times to include the complex surface attached to 
the real line. A line is pinched if the complex points 
where it meets singular surfaces pinch the real 
subsection. If a contour has to be distorted away 
from the real subsection to avoid oncoming singu­
larities, a pinch can occur by singularities coming 
together at a complex point. 

If the radius of a circle shrinks to zero, a pinch 
develops on every line through the center, so m 1 = ° 
gives rise to a singularity (Fig. 2). Note that the 
attached surface is conelike. To derive conditions 
for the two circles acting together to produce a 
pinch, we examine lines through the common point. 
It is clear that if both circles have the same sign 

FIG. 1. Intersec­
tions of k1

2 + k22 = 
m2 + i. with lines. 

for ie, a is pinched and b is not pinched at X (see 
Fig. 3). Generally, any line through X in the sector p 
between the tangents to the circles is pinched. 

To identify the sectors p, n we attach a direction 
to every line through X, then denote p by (0, i) 
meaning that at X every l in p is going, e.g., out of 
eland into C 2' The condition for a singularity is 
that every line through X is pinched, so that the 
region n, or (i, i) goes to zero. This means that the 
two circles touch externally. Touching occurs also 
if (0, i) shrinks to zero, but in this case one circle 
lies inside the other and no line except the common 
tangent is pinched. However, if the ie on one of the 
circles is reversed (0, i) going to zero gives a singular 
situation, so it corresponds essentially to a singu­
larity on another sheet. (The ie's having the same 
sign corresponds to the physical sheet.) 

e- FIG. 2. Pinch aris­
ing as m -+ O. 

Hence for two circles in a plane, singularities 
arise when (i) the radius of either circle goes to 
zero or (li) the circles touch externally. This last 
condition is of course analogous to the criterion 
that both Feynman parameters be positive for the 
physical sheet singularity. 

2.3. Three- and Four-Dimensional Analogs 

For the vertex part in three dimensions (Fig. 4), 
the Feynman integral is 

J d3k 
W - mi - ie)[(k + p')2 - m; - ie][(k - p)2 - m; - ie] 

The denominator corresponds to three spheres of 
pole in k space. We consider the analytic behavior 
near a point X where the three spheres intersect. 
The solid angle about X can be divided into sets 
(i, i, i), (i, i, 0), (i, 0, i), (0, i, i) for the two circles, 
making the obvious generalization. A pinch occurs 
at X if (i, i, i) goes to zero. The condition for this 
is that the three tangent planes at ° to the sphere 

b " 2! do 

" " ,,,' 
,..( b 

~ P 

FIG. 3. The self-energy part in two dimensions. Singularity 
configurations on lines through X. 
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FIG. 4. The vertex 
part. 

have a common line, that is the two points X, X' 
of intersection of the spheres coincide. This means 
that X lies in the plane of centers, immediately giving 
the well-known dual diagram condition for singu­
larity (Fig. 5). 

FIG. 5. Dual diagram for the 
vertex part. 

If X lies in the plane of centers, but outside the 
triangle of centers, one of the regions (i, i, 0), etc., 
has gone to zero (i, i, i) still being nonzero, so there 
is no singularity. This is because our criterion con­
veniently includes the implicit condition that the 
singularity be on the physical sheet. As before, 

p'-k' 

\(' 3 
p' 

p 

FIG. 6. The wigwam diagram. 

TABLE I. Direction ratios of normals to singularity surfaces 
.. for wigwam diagram. 

k k' 

1 k 0 
2 k+p 0 
3 0 k' 
4 0 p' - k' 
5 k' + p + k' k' + p + k' 

changing one i~ would swap the corresponding i, 0 
and hence change sheet. 

If the points of intersection of the spheres move 
off to (1) (as the centers become collinear) the tangent 
planes become parallel, and all the regions except 
(i, i, i) collapse. This is best seen in the (Re kIt 
Re k2' 1m ka) section, where the "spheres" are 
hyperboloids. These non-Landau configurations will 
be discussed in detail in Sec. 4.8 

It is clear that another possible singularity in the 
three-dimensional case is given by two spheres 
touching. The third sphere is of course irrelevant for 
this singUlarity. Taking coordinates in a plane 
through the line of centers of SI, S2 with an angle 
variable cp to position the plane, the (i, i) region in 
the plane is zero, and independent of cp, so the solid 
(i, i) region must also be zero. 

By the same argument, three spheres in four 
dimensions have the same singularity configurations 
as three spheres in three dimensions because co­
ordinates can be taken in a solid through the plane 
of centers, with a cp variable to position the solid, 
and the configurations are independent of cp. 

2.4. N-Space Criteria and the Landau Conditions 

The above conditions for singularity can be ex­
pressed more succinctly as follows: There exists a 
point X in the space such that m of the surfaces 
of singularity pass through X and the m tangent 
primes to these surfaces form a linearly dependent 
set. The arguments used above are not really 
dimensionality dependent, and the generalization 
to this criterion is fairly trivial. It is given in 
Appendix 1. 

We now give a proof that the above condition is 
equivalent to the Landau equations for a singularity. 
This is done most easily by taking a specific example, 
for instance the wigwam diagram in Fig. 6 for which 
the Feynman integral is 

The direction ratios for the normals at points 
on a surface have eight components (working in 
k, k' space). The components are listed for the 
five surfaces of singularity in the integrand. The 
important point is that the normal to 5 does not 
lie in one of the subspaces, as the surface is sym­
metric in k, k'. 

8 In (5) it is shown that non-Landau singularities are 
associated with infinite internal momenta. 
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It is clear from Table I that when the normals 
are linearly dependent at some common point of 
the five surfaces we have the complete set of Landau 
equations, the a's being just the coefficients in the 
dependency equation. Any other diagram has the 
same formal solution. 

For the single loops, the dual diagrams appear 
immediately as part of the structure. For higher 
diagrams, the situation is a little more subtle. The 
dual diagrams do not appear complete because for 
the n-Ioop case the piece of diagram corresponding 
to each loop appears in a four-dimensional subspace 
of the 4n-dimensional space. However, the full 
diagram can be constructed in a single four-space 
from these bits without difficulty, because where 
the same line occurs in two or more subspaces, it 
occurs in "parallel" sets (see Table I above). Of 
course, it may be impossible to put the bits together 
to form a dual diagram. This corresponds to the 
"improper,,9 case and for this the best that can 
be done is to duplicate lines (bearing in mind that 
such lines must be parallel). 

2.5. Tautening 

As the procedure for constructing dual diagrams 
outlined above defines directions as well as lengths, 
the tautening conditions are automatically satisfied 
(as indeed they must be since the procedure is 
equivalent to the Landau equations). A more vivid 
way of seeing how the tautening conditions arise 
is given by the following example. 

For the wigwam diagram in three dimensions, 
the five surfaces of singularity meet in a one­
dimensional curve, corresponding to the one degree 
of freedom in the dual diagram. If the external 
variables are such that the dual diagram is nearly 
in a plane, the curve approximates to an ellipse 
in the (h, h') variables (see Fig. 7) with only second­
order variations in the other four variables [the 
six-dimensional space is the (k, k') space]. As the 
ellipse shrinks to a point, all five surfaces of sin­
gUlarity have the (h, h') plane as a common tangent 
plane, so that their five tangent primes at the point 
are linearly dependent (they always have a line in 
common). Also, when the ellipse shrinks to a point 
there is of course no freedom of movement left in 
the dual diagram, that is, it is mechanically taut. 
This perhaps illuminates the close connection be­
tween tautening and effective pinches in n di­
menSIOns. 

A less trivial tautening condition, that for the 
Mercedes diagram, (Fig. 8) is given by exactly the 

9 P. V. Landshoff, Nuclear Phys. 20, 129 (1960). 

x 
~ ekci view 

\a ~ 

FIG. 7. Dual of wigwam 
diagram. 

same argument. Six surfaces in 9-space meet in a 
3-curve, and at the point of tautening this lies in 
a 4-pJane tangential to all six surfaces. 

3. DERIVATION OF CUTKOSKY'S FORMULA 

3.1. Preliminaries 

Cutskosky4 has shown that the discontinuity of 
the Feynman integral across a branch cut starting 
from a singularity defined by Landau's conditions 
for which q~ = m~ for i :::; m is 

7r d4k II B(+l(q: - m:) 

(27ri)m f ir ( 2 2) . qi - m i 
i2:m 

The method of proof is to transform to the q~'s 

with extra angle variables and use a pinch analysis 

FIG. 8. The Mercedes diagram. 

on the q: contours. The formula is derived below 
by k-space methods. All the essential features are 
exhibited in the following example. 

3.2. Self-Energy Part in Two Dimensions 

The normal threshold singularity is given by 

kl ---t------ b 

+--~--++---+d 

FIG. 9. The self-energy part in two dimensions. 
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("i.) 

-------/. 

FIG. 10. Movement of singularities in the complex planes 
a and b (see Fig. 9) on moving around the normal threshold 
in the complex p-plane. 

p = m l + m2 (see Fig. 12). Keeping mi> m2 fixed, 
the center O2 of C2 is moved in the complex plane 
k2 = 0 in a path such that p goes around ml + m2 
and returns to its original position. 

To see what is happening in lc space, we take 
various sections k2 = const. In the section k2 = 0 
there are four poles as shown in Fig. 10. If the 
contour is distorted upwards, leaving a bubble 
contour about C21 (Fig. 10), it is easy to see that 
moving O2 in a circle about the point ml + m2 

gives no change in the integral over k] for this k2 • 

Similarly for the section b (Figs. 9, 10) there is no 
change in the integral over kJ on varying O2 , 

GJ 0: FIG. 11. The essential difference 
between a and b. 

FIG. 12. The kz integration is 
equivalent to allowing the pole 
to trace out a cut. 

There is, however, an important difference. For 
a, C21 describes a path about Cl2 , but for b, C12 

lies outside the path of C2l • This means, by con­
tinuity, that at some intermediate stage Cl2 , C21 

actually collide, and as C2l will be surrounded by 
a contour this gives rise to a singular situation. 
[The bubble about C2 ] in i (which could equally 
well have been put about Cl2 ) is necessary simply 
because C2 ] goes around Cl2 .] Distorting the path 
traced by C2l merely changes the point at which 
the collision occurs. So does distorting the f dk2 

FIG. 13. Limiting procedure for 
defining il functions. 

contour away from the real axis. This collision, 
unlike the normal pinch situation, cannot be avoided 
by making suitable changes in parameters. This is 
essentially because performing the circuit about the 
singular point m] + m2, at some stage the cut from 
this singularity must be encountered, and the 
equivalent of this in the above picture is the pole 
collision situation, as is shown in the next section. 

3.3. Equivalence of "Colliding Poles" and a Cut 

Performing the integral over k2 is equivalent to 
summing over a continuous series of situations be­
tween a and b and so on to co (see Fig. 11). The 
position is not altered if the path P is fixed and the 
integral represented by allowing the other pole to 
trace out a cut, the discontinuity or strength cor­
responding essentially to the relative velocities of 
the two poles k2 is increased. 

It now becomes apparent why the collision cannot 
be avoided-P is a path about an end point E of 
an infinite cut. (It is clear that the "line of pole" 
must be a cut, because moving the k2 integration 
contour moves it about, giving an analytic continua­
tion which would not apply if, for instance, the 
line of pole corresponded to a series of cuts having 
different end points along its length.) Hence the 
discontinuity in the original integral, measured by 
the small contour round P, is equal to the product 
of the discontinuity across the cut and the strength 
of P (Fig. 12). 

It is easy to see that if the k2 contour is un­
distorted, for the two circles the collision occurs 
at the point of intersection X (Fig. 9) and the 
discontinuity will be greater if the circles cut at a 
smaller angle, depending on the "relative velocity" 
of the two poles, as k2 is increased at a uniform rate. 
A more detailed discussion of this point of view 
is given in Appendix 2. 

3.4. Integrating Over I) Functions 

Perhaps the easiest method at this stage is to 
anticipate the answer, and consider evaluating the 
integral 

I = J oW - mi) o[(k - p? - m;] dk1 dk2 • 

The standard method is to change to variables e, 
(k - p? in which case the value of the integral is 
just that of the Jacobian at the point of intersection 
of the circles, 0: A -1 where A is the area of the 
triangle Ol02X (Fig. 9). It is clearer that this is the 
answer if the delta functions are defined by a 
limiting process, 
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,~O 

where 0, = 0 outside (-tI2, t12) 0, = t- I inside 
this interval. Replacing the two 0 functions in J 
by 0, functions the circles become ring-like and I 
gives their common area, (see Fig. 13) that is, 
tltdsin 8, (tl = tlmr, t2 = tlm2) multipled by the 
weighting factor t- 2

, hence 

I=iA- I
• 

3.5. Limiting Processes for Colliding Pole Situations 

It has been shown in the last section that in 
evaluating integrals over products of 0 functions 
it is sometimes helpful to define the 0 function by a 
limiting method, because this elucidates the structure 
of the integral at the vital points where the curves 
defined by the 0 functions overlap, oCC I ) 0(C2 ), 

in the obvious notation. 
It is plausible that the amount of overlap 

o(C I ) oCC2 ) is a measure of the intensity of singularity 
caused by the colliding poles when one circle crashes 
through the other one as its center executes a path 
in the complex plane. 

A more acceptable picture of this is given by 
replacing one of the circles, which corresponds to 
a distribution of pole with measure o(CI ), by a 
distribution with measure o,(C,) and take the limit 
as t -} O. This means the circle is replaced by an 
annular cut, and the pole collision (which occurred 
for a discrete value of k2 ) is replaced by a pole 
passing through a cut of strength "-' lit over a 
raRge "-' t of values of k 2 • 

On a contour C in this range the singularity 
configuration is as shown in Fig. 14 (ii) , and the 
discontinuity caused by the collision is measured 
by the hubble contour enclosing 0(C2 ) on opposite 
sides of the cut o,(C,). It is clear that the total 
discontinuity on integrating over k2 is given by the 
total amount of overlap of the pole a(C2 ) and the 
cut Ot(C2 ), that is, 

(27l'i)2 \~~ J 0(C2) Ot(CI ) dk 

This is, of course, exactly Cutkosky's formula for 
the discontinuity. 

3.6. Summary 

At this point we review what has been established 
thus far. The k integral is over a two-dimensional 
(Re kl' Re k2 ) contour in a four-dimensional space. 

--~~--c. 

FIG. 14. Discontinuity across normal threshold for self-energy 
part. 

We consider the singularity configuration in the 
three-dimensional subspace (Re k" Re k2' 1m k,) 
that is, the space formed by the stack of complex 
planes with k2 a real constant. On moving the 
external variable P in its complex plane in a path 
around the normal threshold singularity, at some 
stage the k contour, viewed in the three-dimensional 
subspace, is trapped in a collision. This corresponds 
to encountering the cut in complex p space. Varying 
the three-dimensional space by replacing Re k2 
with a path off the k2 real axis in the complex k2 
plane merely moves the cut around and alters the 
point at which the collision occurs. The discontinuity 
across the cut in p space, corresponding to the 
"strength" of the collision, can be found by re­
placing the k-space singularities by small cuts, and 
taking the limit as the length of the cut goes to 
zero, keeping its total strength constant. This leads 
immediately to Cutkosky's formula. 

3.7. Vertex Part in Three Dimensions 

The method used is essentially the same as that 
for the two circles in a plane, but is a little more 
difficult to visualize. The singUlarity configurations 
are considered in the four-dimensional space (Re kl' 
Re k2' Re k3' 1m k,) by fixing k2' k3 at real values 
and examining the situation in the k, complex plane, 
then integrating over k2' ka• 

We replace two of the three spheres of pole by 
shells of finite thickness, giving a total pole dis­
tribution o(S,), 0, (S2), 0, (S3)' Nothing is gained 
by taking different t's for S2' Sa. 

For a line (k2' ka) through the area O(SI) O,(S2) 
0,(83 ) the singularity configuration in the complex 
kl plane is as shown in Fig. 15. and on varying the 
external parameters about the anomalous threshold 
singularity, the pole 0(8 1 ) will trace a path P to 
a point on the other side of both the cuts, hence the 
difference in the integral round the bubble contour 
will be proportional to the product of the strengths 
of the two cuts. 

FIG. 15. Discontinuity across 
leading singularity for vertex part. 



                                                                                                                                    

942 MICHAEL FOWLER 

To find the total discontinuity on going round 
the anomalous threshold, the integral is taken as 
before over all values of k2' k3 giving a contribution, 
that is, the values in the region 8(81 ) 15,(82 ) 15,(83 ), 

giving 

It should perhaps be emphasized that there is 
no need to vary the external parameters in such a 
way that only 8 1 moves with 8 2 and 8 a remaining 
stationary. The only configurations of importance 
are the initial and final ones, corresponding to 
moving from one side to the other of a cut in an 
external variable. 

For completeness, we must take into account the 
fact that a colliding-poles situation occurs also on 
any line corresponding to the intersection of two 
of the spheres, 15(81 ) 8(82). This corresponds to the 
normal threshold, and on going around the anoma­
lous threshold in the above example, if the k2 and ka 
integration paths are left undistorted along the real 
axes, the "normal threshold" collision occurs twice, 
corresponding to going through the normal thresh­
old cut and coming back. Suitable distortion of the 
k 2 • k3 rontours would move the normal threshold 
cut away from the anomalous threshold (as indeed 
it is in the usual representation adopted, with both 
going in a positive direction). 

3.8. Generalization to any Diagram 

For definiteness the example of the wigwam dia­
gram (Fig. 7) in three dimensions is taken. There 
are five surfaces of singularity in a six-dimensional 
space, so in general, they meet in a one-dimensional 
curve. This corresponds to the fact that the dual 
diagram has one degree of freedom. By analogy 
with the simpler case, four of the five surfaces are 
replaced by 15, surfaces, then sections are taken 
corresponding to fixing five of the six complex 
variables at real values, these five then being inte­
grated over. The leading singularity arises from the 
pole going from one side to the other of all four 
small cuts. It is clear that the discontinuity given 
is the integral over the product of the five delta 

FIG. 16. Non-Landau term for self­
energy part. 

functions, and that the method generalizes Im­
mediately to any diagram. 

4. NON-LANDAUIAN SINGULARITIES FOR SINGLE 
LOOP DIAGRAMS 

4.1. Introduction 

The presence of singularities apparently not in­
cluded in the Landauian scheme was first noticed 
by Cutkosky4 in some elementary applications of 
his formula. For instance, the discontinuity across 
the normal threshold for the self-energy part in 
four dimensions is 1/8 (see Sec. 3) so the function 
itself must have a pole at 8 = 0 on some sheet 
reached through the normal threshold. In general, 
the forward scattering curve is singular on some 
sheet, if the dimensionality of the space is greater 
than the number of sides of the loop. A general 
discussion is given in reference 5. 

In this section a discussion of how non-Landau 
singularities arise in the k-space approach is given. 
The single loop self-energy part is considered in 
some detail. The dimensional dependence of the 
singUlarity and its relation to touching of surfaces 
at infinity are examined. The techniques developed 
in Sec. 3 are applied to give the discontinuity, and 
it is shown that in p space the function has a cut 
along the whole length of the imaginary axis. 
Essentially, this corresponds to the function de­
pending only on 8 = p2. This cut is closely related 
to the non-Landau singularity in 8. It is shown that 
these singUlarities do not occur on the physical sheet. 

Finally, the structural connection between Cut­
kosky's formula and the general pinch criterion is 
used to define an equivalence relationship which 
separates out the non-Landau singularities and ex­
plains why their existence (unlike that of Landau 
singUlarities) depends on the dimensionality of the 
space. 

4.2. Single Loop Self-Energy Part 

We have seen that the non-Landauian "forward 
scattering" term appearing in the discontinuity 
ro.J 1/ A in the two-dimensional case, where A is 
the area of the shaded triangle (Fig. 16). As p -7 0, 
rp ro.J const, so A does not go to zero at p = O. 
Hence for the two-dimensional case there is in 
fact, no non-Landauian singUlarity. For the' n­
dimensional case, n > 2, there is a weighting factor 
corresponding to the area of the hypersphere of 
radius r, that is, ex: rn

-
2

• Since rp "-' const as p 
goes to zero, if p2 = 8 the form of the non-Landauian 
singularity in 8 is 8 1

-
n

/
2 at the origin. 
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Hence, in general, a singularity arises when the 
two spheres of singularity become concentric (or 
have their centers separated by a zero length vector). 
It is a well-known result in projective geometry 
that under these conditions the surfaces touch at 
infinity, so in this sense the singularities are a 
natural extension of the Landauian scheme. Of 
course, the same remarks apply equally to the two­
dimensional case, for which there is no singularity, 
and the cases are topologically equivalent, but 
since the critical situation occurs at infinity the rn 
weighting factor is all important in determining 
whether, or not there is a singularity, and of what 
type. This is discussed further in Sec. 4.5. The 
touching arises at infinity as the circles become 
concentric and is not equivalent to a common 
tangent situation at some point X where X goes 
to infinity. Hence the surface of singularity cannot 
be merely part of the Landau surface. The con­
figuration is best seen in Re k" 1m k2) space where 
there are two rectangular hyperbolas becoming 
concentric at p = O. 

4.3. Discontinuity Across the Singularity 

Examining the singularity as it appears in the 
discontinuity across the normal threshold, its dis­
tinuity is 2/p in three dimensions, zero in two and 
four dimensions. It is interesting to study the 
singularity more directly by applying the collision 
techniques developed in Sec. 3, as this gives a clearer 
picture of why it arises. If O2 , the center of the 
circle C2 , follows a circular path P in the complex 
plane about 0, (to avoid unnecessary complications, 
sufficiently small for the circles never to cut at real 
points, see Fig. 17), then the intersect of C2 with 
the complex plane y = Yo (Re) goes around the 
intersect of C I if Yo is sufficiently large. This gives 
rise to the familiar situation that P(Yu = 0) does 
not go round C I (Yo = 0) but P (Yo sufficiently 
large) includes CI' Thus at some intermediate point 
there is a collision, and it must correspond to p 
being pure imaginary. A similar phenomenon occurs 
in the lower half-plane, so the entire imaginary axis 
is cut, as is best seen in the (Re, 1m) plane where 
two rectangular hyperbolas crash through each other 
at the point where p is pure imaginary. Applying 
Cutkosky's formula the "common area" of the two 
rectangular hyperbolas is identical to that of two 
circles with the same centers and radii, so this 
provides a check with the other method. 

The cut along the imaginary axis corresponds to 
the function depending only on S = p2. Transform­
ing to S and mapping the Re p > 0 half-plane 

-----h o 
o 

FIG. 17. Path around non-Landau singularity. 

into the entire plane, the imaginary axis cut runs 
twice along the negative real axis in S. It is easy 
to prove that in this mapping the cut alternately 
disappears and has two sheets as the number of 
dimensions is increased. In Fig. 18. 2f(A) = f(A) -
fCB) is 2rn

-
2 

/ A and so (r pure imaginary) is alter­
nately pure real and pure imaginary. As the function 
is real, feB) = (±)"f( - B), so there is alternation 
between single and two-sheeted behavior. Koneof the 
single-loop forward-scattering singularities is on the 

11\" 
A I B 

1_ n.Q\'1..l"-"J.o.,, " .... ~ 

I 
I 
I 
I ~ 
I-B 

...... ,---- . FIG. 18. Singularities 
111 p-complex plane for 
self-energy part. 

physical sheet. For the self-energy part, continuing 
towards S = 0 on the physical sheet gives the con­
figuration in Fig. 19, for y = o. Integrating over 
all real y, the contour is never distorted as the 
singularities remain in their own half planes. At 
infinity, Cl1 , C21 coincide and this gives rise to 
possible singularity only on those sheets where the 
contour is caught between them. Similar con­
siderations hold for higher single loop graphs. 

4.4. Connection Between Cutkosky's Formula and 
General Pinch Criteria 

Theorem. Higher-order singularities appear in the 
discontinuity across Landau cuts. 

Proof· If an integration is over a surface 8 in a 
space D, with surfaces of singUlarity S" a singularity 
occurs when Si n 8 meet at a point where the 
normals (in 8) are linearly dependent. As the normal 
to each Si at the point can be written in components 

T. C~I " t .. FIG. 19. Singu­
larities on a (Fig. 
17)forp = O. 



                                                                                                                                    

944 MICHAEL FOWLER 

FIG. 20. Singularity configuration 
in the discontinuity across the normal 

1-__ -,... Re C. threshold for the vertex part. 

on 0 and perpendicular to 0, in D the normals to the 
set (8;, 0) are linearly dependent, so there is singu­
larity in the integral over D with surfaces (8;, 0) 
singular. 

This theorem can be used to define an equivalence 
relationship among singular configurations. For 
instance, if three spheres have two coincident com­
mon points, and hence pinch the real three-space, 
the two circles 8 1 n 8 2 and 8 1 n 8 3 pinch the 
real two-space 8 1 , Further, if two circles touch and 
thus pinch the real two-space, the two points C1 n C2 

pinch the real subspace of the surface C1 • (see Fig. 
20). This configuration corresponds to two-sheeted 
inverse square root behavior, so we have established 
an induction procedure for reducing complicated 
configurations to very simple ones whose behavior 
is well known. This is equivalent to examining the 
singularity as it appears across successively lower­
order thresholds. 

4.5. Differences between Landauian and 
non-Landauian Singularities 

Using this procedure it is easy to see that all 
Landauian singUlarities are equivalent to two poles 
pinching a line or an n sphere pinching real n space 
when its radius goes to zero. The order of magnitude 
of such a singUlarity is given by 

1· J dX I .,. dx" l' J rn
-

1 
dr n-2 

lffi 2 2 2 = 1m -2--2 ""' a 
B~O Xl + '" + Xn - a a~O r - a 

If the order is aO the singularity is logarithmic­
it never disappears. For a given singularity, the 
order depends on the dimensionality of space. 

The vital point is that the non-Landauian sin­
gularities are not equivalent to the singularities 
listed above, and it is because of this that their 
existence is dimensional dependent, as we now 
demonstrate. 

For example, consider the vertex part in three 
dimensions, taking the integral around the real 
circle C = 8 2 n 8 3 with two singularities 8, 
8'(SI n 8 2 n S3) on the complex surface of C. 
This configuration is as in Fig. 20, and corresponds 
to the discontinuity across the normal threshold. 

If on varying the external parameters, 8', 8 ex­
change places the contour C has two extra parts, 
bubbles around 8 and 8'. If now 8 1 , 8 2 , 8 a, are 
moved so that their centers become collinear; 8, 
8' move to infinity on C. This does not give rise to 
a singularity, because the residues at S, 8' remain 
finite throughout. In four-dimensional space, S, 8' 
are replaced by a circle on the complex part of a 
sphere. This can be adequately represented by 
multiplying the residues at 8, 8' by a weighting 
factor r corresponding to the radius of the circle. 
In this case, as 8, 8' go to infinity their residues 
become infinite and there is a singularity. 

This can be regarded as a pole of constant residue 
approaching a singularity r n

-
3 at infinity, and in 

this way gives an easy derivation of the alternate 
one~ and two-sheeted behavior as the dimensionality 
of the space is increased. Also, for n = 3 the pole 
of "constant residue" approaches a place where the 
function is analytic, so no singularity can arise. 

From this viewpoint it is easy to see why the 
leading curve (corresponding to 8, S' pinching C) 
switches the non-Landau singularity on and off, 
because on going around it S, 8' pick up or lose the 
bubble contours measuring their residues. No sin­
gularity can be generated by a pinch between S 
and 8' at 00, as this would require only one of them 
to have a bubble contour. 

Thus the non-Landau singularity arises through 
a pinch at infinity between a pole and a singularity 
r n

-
3 which actually disappears for n = 3. (For 

n < 3 there is no singularity for various obvious 
reasons.) This is quite unlike the Landau situation 
where varying the dimensionality only varies the 
type of pinch, as explained above. 
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APPENDIX 1. N-SPACE SINGULARITY CRITERIA 

We give here a generalization of the results of 
2.3. If m surfaces of singularity in n-dimensional 
space meet at a point X, the lines in n-space through 
X can be divided into sets labeled (i, i, '" , i), 
(0, i, ... ), etc., generalizing the previous notation. 
The normals to the surfaces at X span an m-dimen­
sional subspace. It is clear that when one of these 
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sets collapses the normals lie in a space of dimension 
m - 1, and if the surfaces are quadratic with the 
same sign ie on each, the collapse of (i, i, ... , i) 
gives rise to a singularity. Thus if the surfaces are 
all spherical, the condition for singularity [on the 
(+ie, ... , +ie) sheet] is that X lies inside the 
simplex of centers. 

APPENDIX 2. AN ALTERNATIVE DERIVATION OF 
CUTKOSKY'S FORMULA FOR THE S.E. PART 

It is possible to derive Cutkosky's formula with­
out resorting to limiting processes by the following 
rather graphic method, which if: admittedly not very 
rigorous in its present form. Consider the singularity 
configuration in the kl complex plane as k2 is varied 
at constant speed along the real axis. Weare only 
interested in behavior near the critical point, where 
the singularities can be taken as lines of strength 
t l , t2 at angles OlJ O2 (see Fig. 21). Then in the 
complex kl plane given by k2 = const there are 
two poles, of strengths tdsin 01 , t2/sin O2 with 
velocity of approach v. One of these can be regarded 
as stationary, and varying k2 is equivalent to letting 
the other one paint out a cut of strength (pole 
strength/velocity of approach), so the Cutkosky 
discontinuity, measured by a bubble contour around 
the stationary pole, is given by the product of the 
pole strengths divided by the velocity. In terms of 
o this is 

_tl ___ t2_(_1 ___ 1_)=~ 0=0-8 
sin 01 sin O2 tan 01 tan O2 sin 0 ' 2 I 

It is clear from the usual limiting arguments 
that this is the integral over the product of delta 

FIG. 21. Singularities 
near point of intersection 
for self-energy part. 

functions, but it is interesting to show how this ap­
proach ties more directly with the delta integral. 

J o(+)(ki + k; - mi) 

X o(-)[(k1 - p)2 + k; - m;] dk1 dk2 

= J b(+)(ki - r) 

= j~ J o(kl - f) o(kl - p - g) dk1 dk2 

= J dk2 oct - g - p) 
fg 

1 
= fg(f' _ g')' where t - g - p = o. 

It is easy to show that the poles have strengths 
l/f, l/g in the kJ complex plane, and the velocity 
of approach is manifestly f' - g'. Doubtless this 
method can also be generalized, but becomes rather 
more difficult conceptually than the alternative ap­
proach developed in the text. 
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The asymptotic properties of a Schrodinger wave function 
which represents the bound ground state of a system of 
three interacting particles are examined. It is assumed that 
the interaction can be described by a static potential which 
is the sum of three two-body potentials and one three-body 
potential, where the potentials have the property that if any 
one of the particles is separated from the other two by a 
distance which tends to infinity, then the part of the potential 
energy which depends on the position of that particle tends 
to zero. The problem is treated nonrelativistically. Decreasing 
exponential bounds on the ground-state three-body wave func­
tion are established in configuration space. It is shown that 
these bounds depend only on the masses of the three particles, 
on the ground-state energy of the three-body system, and 
on the lower bounds on the spectra of the Hamiltonians for 
the three two-body systems arising when one of the three 
particles is removed and the remaining two interact through 

I. INTRODUCTION 

WE consider three spinl~s particles, numbered 
1, 2, and 3. Let, for u - 1, 2, or 3, mu be the 

mass of particle u, and let !:Iv be the position vector 
of particle u with respect to some origin. The 
vector !:I .. , defined by 

!:Iu. = !:Iu - !:I., (1) 

is the vector joining particles u and v, and pointing 
towards particle u. 

We consider the motion of these three particles, 
within the framework of the nonrelativistic Schr6-
dinger equation, under the assumption that the 
interparticle interaction is described by the potential 

the corresponding two-body potential. 
It is furthermore shown that the three-body wave function 

in momentum space admits of analytic continuation into a 
tube-region in complex momentum space, which tube-region 
is the product of real momentum space and a convex bounded 
region in imaginary momentum space. The tube-region is 
explicitly determined. 

The implications of the results for the theory of the vertex 
function in quantum field theory are discussed. The relevancy 
of the results obtained in this paper to the variational com­
putation of energy levels and wave functions of three-body 
systems is also briefly discussed. 

In the course of the derivation some generalizations are 
pointed out; in particular, the final results remain valid for a 
class of more general interactions, which cannot be described 
by static potentials. Likewise, the results remain valid for a 
class of spin-dependent interactions. 

constraint is expressed by 

ml(ll + m2!:12 + m3!:1a = 0. 

In the following we shall let the letters r, 8, t, 
u, v stand for the indices which label the particles, 
with the convention that u = 1,2, or 3 and v = 1,2, 
or 3, whereas the triplet (r, 8, t) always stands for 
some cyclic permutation of the triplet (1, 2, 3). 

We shall assume that the potentials satisfy the 
bounds 

1 U,,(!:Irs) 1 <Q(jg,.I), for !:I",r,O, (4a) 

!U123(!:I12, !:I23)1 < Q(I!:I121 + 1!:I231)' 

for 1 !:II 2 1 + 1 !:I23 1 > 0, (4b) 

U = UI2(!:I12) + Un(!:In) 

+ U31 (!:I31) + U123 (!:II 2 , !:I23)' 

where the function Q(q), defined for all q > 0, 
(2) is a continuous positive function such that 

Since the Hamiltonian is translationally invariant 
the motion of the center of mass is independent of 
the motion relative to the center of mass. We are 
only interested in the relative motion and shall, 
therefore, introduce the constraint that the center 
of mass is at rest at the origin in three-space. This 
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lim Q( q) = 0, steadily, (5a) 
.~'" 

lim qQ( q) < <Xl. (5b) 
.~O 

It is not our purpose here to investigate under 
what conditions on the potentials the Schrodinger 
equations have meaningful solutions, nor to investi­
gate under what conditions a three-body bound 
ground state does exist. We shall, therefore, assume 
that the potentials are sufficiently well behaved 



                                                                                                                                    

WAVE FUNCTION FOR A BOUND THREE-BODY SYSTEM 947 

such that the various Schrodinger equations and 
corresponding integral equations which we shall 
consider in the following have physically meaningful 
solutions. In particular, we assume the potentials 
to be integrable over any finite region. 

About the three-body system, we shall assume 
that it has a bound ground state of negative energy 
-Bo. We furthermore assume that the greatest 
lower bound of the spectrum of the Hamiltonian 
operator for the residual system obtained when 
particle r is removed and particles sand t interact 
through the potential U" is given by the non­
positive number -BTl where, for r = 1, 2, or 3, 

(6) 

The reader will thus note that we do not assume 
that a bound ground state exists for the residual 
system obtained with the removal of particle r. 
If a bound ground state does not exist we have 
B, = O. If, on the other hand, a bound ground state 
does exist the assumption expressed by the in­
equality (6) states that the binding energy of any 
one of the two-body systems is less than the binding 
energy of the ground state of the three-body system. 

The three-body ground-state wave function satis­
fies a Schrodinger equation on a six-dimensional 
configuration space. We may guess that when a 
point in this space tends towards infinity along 
some direction then the wavefunction at the point 
tends to zero exponentially. It is the principal 
problem of this paper to show that this is indeed 
the case, and to determine exponential bounds on 
the wave function in each rlirection in configuration 
space. 

II. DIFFERENTIAL AND INTEGRAL EQUATIONS 
SATISFIED BY THE THREE-BODY WAVE FUNCTION 

We first consider the question of selection of 
coordinates. For r = 1, 2, or 3 we get three different 
choices of two independent vectors which completely 
specify the configuration of the system; namely, the 
vectors ~., and 1;" where 

1;r = ~r(mi + m2 + ma)(m. + m,)-l. (7) 

The vector 1;, thus joins particle r with the center 
of mass of the t-s system. The corresponding reduced 
masses are given by 

M, = mrCm, + m.)(m1 + m? + ma) -1, (8a) 

JI-. = m,m,(m, + m.)-I. (8b) 

Because of their simple geometric interpretation 
the coordinates !I., and 1;. are useful for visualizing 
the configuration of the system. However, for our 

purposes the following three alternative sets of 
coordinates will be even more convenient: Let 

x, = (2M rB o)I/21;, 

= [2Bomr(mi + m2 + ma)(m, + m,)-I]I/2~r, (9a) 

Yr = (2J1-rBo)I/2~s' 

= [2Bom,m.(m, + m.) -Ir12(!ls - !I,), (9b) 

where (r, s, t) is any cyclic permutation of (1, 2, 3). 
Equations (3) and (9) can be used to express 

!II, ~2, and ~a in terms of anyone of the systems of 
coordinates (xu, Yu), u = 1,2, or 3. Substituting the 
resulting expressions into the relations (9) which 
define (x., Y.), v = 1, 2, or 3, we may thus explicitly 
determine the transformation from the (x"' Yu) 
system to the (x" Y.) system. This transformation 
IS orthogonal and can be expressed as follows: 

where 

Xu = x, cos Bu. + y, sin Bu" 

Yu = -x, sin Bu. + y. cos Bu., 
(lOa) 

cos Or. = - [mrm,(m. + m,)-I(m, + m,)-1]I/2, (lOb) 

sin 0,. = -[m,(mI + m2 + ma) 

X (mr + m,)-I(m. + m,)-T12 . 

Thus, for (r, s) = (1, 2), (2, 3), or (3, 1), we have 

(lOc) 

We regard the six Cartesian components of the 
vectors Xl and Yt as the Cartesian components of 
vector z in a six-dimensional Euclidean space (,. 
To express the fact that z can be specified by either 
one of the three pairs (x., Y.) of three vectors, we 
write 

z = (Xl' YI)I = (x2, Y2)2 = (xa, Ya)a (11) 

when the vectors (x., Y,) satisfy Eqs. (lOa). The 
subscripts after the parenthesis in Eq. (11) are 
meant to indicate particular decompositions of (, 
into a sum of two mutually perpendicular three­
dimensional Euclidean subspaces. The vectors x, 
and Y. are, thus, the projections of z into the three­
dimensional subspaces ('z, and (,u" respectively. The 
consistency of this interpretation follows from the 
fact that if the three pairs of vectors (x" Y,), r = 1,2, 
or 3, satisfy the relations (lOa), then 

z·z = IXll2 + IYII2 

(12) 
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In terms of the coordinates which we have intro­
duced the wave equation which the three-body 
ground-state wave function 1Hz) satisfies assumes the 
form 

[ - '1~ + 17(z) ].,p(z) = - f(z). (I 3) 

The potential V(z) is a sum of four terms: 

V(z) = V 12(Z) + V23(Z) + V 31 (Z) + V 123(z) , (l4a) 

where 

(I4b) 
V123(z) = U123(!}12 , !}23)/Bo• 

We emphasize that the two-body potential 17 .. (z) 
depends only on the projection y, of z into Oy, 
and we, therefore, sometimes write V .. (y,) inter­
changeably with V •• (z) to bring out this fact ex­
plicitly. 

The symbol '1~ stands for the Laplacian operator 
in the six-dimensional space o. It may be expressed 
in terms of the Laplacians '1!r and '1~T in the 
three-dimensional subspaces OXT and OYT) respectively, 
as follows: 

'1~ = '1;1 + '1!1 = '1;2 + '1!2 = \7;3 + '1~3' (I 5) 

which relations hold when the various coordinates 
satisfy the relations (lOa). 

Let us restate the assumptions which we made in 
the introduction regarding the potentials as follows: 

There exists a positive continuous function Q(q), 
defined for all positive values of its argument q, 
and satisfying the conditions (5), such that: 

IV, . .(z) 1 = 1 17,,(y,) 1 < Q(ly,i), for y, ~ 0, 

1 17123 (z) 1 < Q(lzl), for z ~ 0, 

where 

!zl = (z·zr!2. 

(16) 

Let us likewise restate the conditions (6) as well 
as the assumptions contained in the paragraph 
preceding the inequalities (6): 

The greatest lower bound on the spectrum of the 
operator 

H~8 = - V:, + V,,(y,) 

is the nonpositive number -b" where 

b, = B,IBo, 1 > b, ~ 0. 

(17) 

(I 8) 

We conclude this section by stating four integral 
equations which the three-body ground-state wave 
function fez) satisfies. Let 

Ho= -'1~, H~: = -V;" (l9a) 

Hrs = H~, + H~: = - V! + Vr,(z). (19b) 

The regions associated with these operators are 
taken to be the six- and three-dimensional Euclidean 
spaces, respectively. Then the spectrum of Ho 
consists of all non-negative real numbers; the same 
being true for each one of the operators H~:. Since 
the operators H~, and H~:, where (r, s) is anyone 
of the pairs (1, 2), (2, 3), or (3, 1), act on different 
Hilbert spaces, it follows that the operator H .. = 
H~, + H;:, defined in Eq. (19), has as its spectrum 
the set of all real numbers ~ -b,. (The operator 
H .. acts, of course, on the direct product of the two 
Hilbert spaces on which H;" H;:, respectively, act.) 

We define the resolvent operators (Green's func­
tions) 

GoCrJ) = (Ho - 1])-1, (20a) 

G.,(1]) = (H .. - 1])-\ (20b) 

where the complex variable 1] is outside the respective 
spectra. 

In the configuration space representation the 
Green's functions are, thus, solutions to the differ­
ential equations 

( - '1~ - 1]) Go(z , z'; 1]) = 06(Z - z'), (21a) 

[- '1~ + Vr.(z) - 1]JGr,(z, z'; 1]) = 06(Z - z'), (2Ib) 

with the appropriate boundary conditions. In the 
Eqs. (21) the differentiations are with respect to z, 
and 06(Z) is the Dirac delta function in o. 

Since the point 1] = -1 is outside the spectra of 
the operators Ho and Hrs we may reformulate the 
differential equation (13) into four alternative inte­
gral equations, namely, 

fez) = - J d
6(z')GO(z, z'; -1) V(z') fez') , 

(00) 
(22a) 

fez) - J d6(z')G ,,(z, z'; -1) 
(00) 

x [V,,(z') + 17,,(z') + V 123(z')].,p(z') , (22b) 

where (r, s, t) is any cyclic permutation of (1, 2, 3). 

III. EXPONENTIAL BOUNDS FOR 
THE WAVE FUNCTION FOR A SINGLE 

PARTICLE BOUND IN A POTENTIAL 

Before we attack the problem of determining the 
exponential bounds on the three-body wave function 
it will be useful to consider the analogous problem 
for the very simple case of a single particle bound 
by a static potential Vex). By so doing, we can 
illustrate simply the main idea employed in this 
paper, and at the same time we will reach an under-
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standing of the important difference between the 
three-body problem and the problem of the single 
particle. 

We thus consider the Schrodinger equation for a 
single particle bound in the potential Vex). With a 
suitable choice of variables the equation takes the 
form 

[ - \7; + V(x)]cf>(x) = -cf>(x) , (23) 

where cf>(x) is the bound ground-state wave function. 
About the potential we make the assumption that 

I V(x) I < Q(lx!), for x ~ 0, (24) 

where Q(q) is a continuous function, defined for all 
q > 0, which satisfies the conditions (5). 

We denote by G(7]) the resolvent (Green's func­
tion) of the Laplacian in three-space: 

G(7]) = (- \7; - 7])-1, (25a) 

where 7] is any complex number not on the non­
negative part of the real axis. Explicitly, the Green's 
function is given by 

G(x, x'; 7]) = exp (i7]1/2 Ix - x'i)/4'11" !x - x'l, (25b) 

where, in the complex 7]-plane cut along the positive 
real axis, 

We use Eq. (26) and inequality (24), to derive the 
inequality 

Icf>(x) I ~ f dacx') exp ( - Ix - ;' [) 
("'J 4'11" Ix - x I 

X Q( lx' i) Icf>(x') I. (29) 

From the definition (28) it follows that 

Icf>(x') I ~ m(x) exp (f) Ix - x' I). 

When this estimate is inserted into the inequality 
(29) we obtain 

Icf>(x) I ~ hex) m(x) , (30) 

where 

hex) = f d3(x') 
(OOJ 

X exp [-(1 - f)) I~ - x'l] Q(lx'i). (31) 
4'11" Ix - x I 

Let R be any region such that hex) < 1 through­
out R, and let R be the complement of R. By the 
definition (28) we may write 

m(x) = max {l.u.b. [icf>(x') I exp (- f) Ix - x' I)], 
x'ER 

(32) 
l.u.~. [Icf>(x')I exp (-f) Ix - x'i)]}. 
x/Ell 

The wave function cf>(x) then satisfies the integral 
equation By the inequality (30), and by the definition of R, 

we have 

cf>(x) = -f d3(x') exp (-Ix - ;' I) V(x')cf>(x'). (26) l.u.b. {Icf>(x') I exp (- f) Ix - x' I)} 
(00) 4'11" Ix - x I x'ER 

We assert that for every f) such that 1 > f) > ° 
there exists a constant K(f)) such that 

Icf>(x) I < K(f)) exp (-f) Ixl) (27) 

for all x. 
Proof. We select any f) such that 1 > f) > 0, 

and define a function m(x) of x (and of f)) by 

m(x) = l.u.b. {Icf>(x') I exp ( - f) Ix - x' 1) I· (28) 
x' 

< l.u.b. {m(x') exp (- f) Ix - x' I)} 
x'ER (33) 

~ l.u.b. {m(x') exp ( - f) Ix - x'I)}. 
x' 

Since 

l.u.b. {exp (- f) Ix - x'i 
x' 

f) lx' - x" I) I 

= exp ( - f) Ix - x" [) , 

Here, and in the following, we employ the notation we obtain, by the definition (28), 

l.u.b. {f(z)} 
zER 

for the least upper bound of the real function fez) 
as the variable z varies over the region R. To avoid 
misunderstandings we always exhibit the vari­
able and its domain as above, except that if the 
region R is not mentioned the variable varies over 
all real values. We employ a similar notation for 
the greatest lower bound, which we abbreviate by 
g.l.b. 

m(x) = l.u.b. {m(x') exp (- f) Ix - x'l)}, 
%' 

which result, when substituted into (33), gives 

l.u.b. {1cf>(x')1 exp (-f) Ix - x'I)} < m(x). 
x'ER 

(34) 

This means that Eq. (32) may, in fact, be written 

m(x) = l.u.~. {Icf>(x') I exp ( - f) Ix - x' I)} . (35) 
x'ER 

Let us now consider the function h(x), defined by 
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Eq. (31). We note that hex) in fact depends only 
on Ixl. Furthermore, we easily see that since Q(q) 
tends monotonically to zero as q tends to infinity it 
follows that hex) tends to zero as Ixl tends to infinity. 
The region R may therefore be selected as the 
surface and exterior of some sphere. The region R 
is consequently the interior of this sphere, and hence 
a bounded region. It then follows immediately from 
Eq. (35) that 

m(x) < K(O) exp (- 0 Ix/) (36) 

for some constant K(O). From the definition (28) 
follows that 

Ict>(x) I ~ m(x) , (37) 

which fact, combined with the inequality (36), 
proves our assertion. I 

We note that this procedure works for any bound 
state, not only for the ground state. By considering 
the case of a Coulomb potential for which explicit 
solutions are known we can conclude that the 
exponential bound expressed by the set of inequali­
ties (27) is the best possible in the sense that, in 
general, an inequality like (27) cannot hold for 0 ~ 1. 

We furthermore note that the restrictions on the 
potential are unnecessarily severe; all that is needed 
for the success of our method is that for every 0 

such that 1 > 0 > ° the function hex), as defined in 
Eq. (31), is less than one outside some bounded 
region. (The region may, of course, depend on 0.) 

Let us now try to generalize this method to the 
case of the three-body wave function, basing our 
discussion on the integral equation (22a) of the 
preceding section. As is well known, the Green's 
function Go(z, z'; -1) is a function of /z - z'j only, 
and has the property that it falls off faster, as 
Iz - z'l tends to infinity, than the function 
exp C - 0 Iz _. z'i) whenever 1 > 0. Let us select 
any 0 such that 1 > 0 > 0, and let us define a 
function ho(z) by 

hoCz) = f d6(z') IGo(z, z'; -1) I 
( 00) 

x [Q( Iyf I) + Q( Iy~ I) + QC Iy~ j) 

+ Q(lz' j)] exp (0 Iz - z' j). (38) 

Let Ro be any region in e such that ho(z) < 1 
throughout the region, and let Ro be the complement 
of Ro. By a procedure very similar to the one by 
which we have derived the equality (35), we may 
derive the result that 

I For an alternative demonstration of this assertion see 
Appendix III. ' 

11f(z) / ~ l.u.p. {11f(z') I exp ( - 0 Iz - z' I) ). C:~9) 
~/ERo 

If we now compare hoCz), as defined by Eq. (38), 
to hex), as defined by Eq. (31), we notice an essential 
difference; the function hex) is less than one outside 
some bounded region in three-space, whereas it 
cannot be concluded that ho(z) is less than one 
everywhere in e outside some bounded region. The 
reason, is, of course, that V(z) does not tend to 
zero as Izi tends to infinity, or differently stated, 
Q(iYrl), for r = 1,2, or 3, does not necessarily tend 
to zero as Izl tends to infinity.2 

A moment's reflection tells us that the above state 
of affairs is entirely in accordance with expectations. 
We may consider, for instance, the deuterium atom 
as an example. In this case it is intuitively clear 
that the probability density of the electron in space 
at large distances from the center of mass depends 
primarily on the binding energy of the three-body 
system with respect to a breakup of the system into 
an electron and a deuteron, and not on the binding 
energy with respect to a breakup in which all three 
particles are completely separated. In fact, it is a 
good approximation for the purposes of atomic 
physics to regard the deuteron as a single particle, 
in which case its binding energy with respect to its 
breakup into a proton and neutron plays no role. 
However, the procedure leading to the inequality 
(39) takes no account of any two-body binding 
energies, and can, therefore, not give us the final 
answer desired. 

Intuitive physical arguments, thus, suggest that 
the asymptotic behavior of the three-body wave 
function must necessarily depend on the constants 
E I , E 2 , and E3, as well as on Eo, and the masses 
ml , m2 , and m3 • If we now examine the three integral 
equations (22b) we note two facts: (a) The Green's 
functions Grs "contain" the solutions to the three 
two-body problems and we may expect that certain 
exponential bounds on the functions Grs will depend 
explicitly on the constants E I , E 2 , and E3 (or rather 
on bl , b2 , and bs); (b) one of the two-body potentials 
is absent in each one of the integrands. This latter 
fact makes it plausible that one may employ the 
integral equations (22b) to derive three inequalities 
o! a similar nature as the inequality (39), but with 
Ro replaced by larger regions. We shall show that 
this is indeed the case, and that the four inequalities 
which one obtains in this manner are sufficiently 
stringent for the establishment of exponential 
bounds on the ground-state wave function .f(z) in 
every direction in e. The procedure which we shall 

2 See also E. Gerjuoy, Ann. Phys. (New York) 5,58 (958)' 
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follow can be regarded as fairly straightforward: 
First, we establish exponential bounds on the Green's 
functions G .. (z, z'; -1) as functions of (z - z'), 
and then we employ the integral equations (22) to 
establish exponential bounds on 1f;(z). 

Let us return to Eq. (38) in which ho(z) is defined. 
By inspection of the integrand we note the following: 
For every fJ such that 1 > fJ > 0 there exists a /..0 
such that when Iyrl > /..0 for T = 1, 2, and 3, then 
hoCz) < 1. This enables us to state: 

Lemma I. Let fJ be any number such that 
1 > fJ > O. Then there exists a number /"0, such 
that if Ro is the region consisting of all points z such 
that Iyrl > /..0 for T = 1, 2, and 3, and if Ro is the 
complement of Ro, then the three-body wave 
function if;(z) satisfies the inequality 

I if;(z) I ~ l.u.b. {I if;(z') I exp (- fJ Iz - z'l) I (40) 
z'ERo 

for all z in 8. 
This result indicates the importance of the region 

Ro which can be characterized physically as a region 
such that if the three-body system "breaks up" 
along a direction within Ro, i.e., if z tends to infinity 
within Ro, then the separation between two of the 
particles remains bounded. 

IV. EXPONENTIAL BOUNDS ON THE 
GREEN'S FUNCTIONS G .. (z, Z'j -1) 

We begin by considering the problem of a single 
particle in a field of force derivable from the po­
tential V(y), where V(y) satisfies the inequality 

I V(y) I < Q(lyi), for y rf 0, (41) 

in three-dimensional y space, for some positive 
continuous function Q(q), defined for all q > 0, 
which satisfies the conditions (5). 

Let H~ be the operator 

H~=-\7~+V(y), (42) 

and let the number - b be the greatest lower bound 
on the spectrum of H~. We thus have b > ° if a 
bound ground state exists; otherwise b = O. 

We shall furthermore assume that 1 > b. The 
spectrum of H~ is confined to the real axis, and 
includes the positive half of the real axis. 

Let 7] be a complex number not in the spectrum of 
H~. Then the Green's function G'(7]), defined sym­
bolically by 

(43a.) 

is the solution, with the appropriate boundary 
conditions, of the differential equation 

(-\7; + V(y) - 7])G'(y, y'i 7]) = 03(Y - Y'). (43b) 

Concerning the Green's function we make the 
following assert.ion, 

Lemma II. Let 

(44) 

where 7]lf2 is that branch of the function 7]1/2 which 
has a positive imaginary part on the complement 
of the spectrum of H~. Then, for every To > b, and 
every fJ such that 1 > fJ > 0, there exists a constant 
K(fJ, To) such that 

IG'( ")1 K(fJ,ro) ( I 'I) y, Y ,7] < I ' I exp - fJ p Y - Y y-y 
(45) 

for all y, y', and throughout the half-plane 
Re (7]) ~ -roo 

Since the detailed proof of this lemma is a bit 
cumbersome, we shall defer it until Appendix r. 
To give a plausibility argument, we point out that 
for fixed y', and for y rf y', the Green's function 
as a function of y satisfies a "Schrodinger equation 
with energy 7]," and it is therefore reasonable that 
the method used in the preceding section to establish 
an exponential bound on a one-particular wave 
function can be modified to yield the exponential 
bound stated in inequality (45), but with the 
constant K replaced by a constant which depends 
on fJ and 7]. It is perhaps not quite so obvious that 
the dependence of this constant on 7] is as stated 
in the lemma. 

Let us next study the resolvent of the operator 

H = H~' + H~, (46) 

where 

The remarks following Eqs. (19) apply, and the 
spectrum of H thus consists of all real num­
bers ~ -b. Since we assumed that 1 > b, the 
number -1 is not in the spectrum of H. This fact, 
as well as the fact that H;' and H~ act on different 
Hilbert spaces (and hence commute), permits us to 
write symbolically 

G(-l) = (H + 1)-1 

= 21. f d7](H;' + 1 + 7])-l(H~ - 7])-1, (47a) 
'II"'/, c 

where C is any contour going from infinity in the 
lower half of the 7] plane to infinity in the upper 
half of the 7] plane, and in such a manner that the 
spectrum of H~ is entirely to the right of C, whereas 
the spectrum of - (H;' + 1) is entirely to the left 
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of C. Integral representations like the one in Eq. 
(47a) have been considered quite generally by 
Friedman.3 In Appendix II we shall comment 
briefly on the validity of the representation. Let us 
now select a straight line parallel to the imaginary 
axis as the contour of integration C. We then have 
explicitly 

G( ,. -1) = l..1OO 

dt G'(y, y'; -r + it) 
z, z , 2'1T -00 4'1T Ix - x'i 

X exp [i(r - 1 - it)1/2 Ix - x'lJ, (47b) 

where z = (x, y); z' = (x', y'), and where the point 
-r, at which the contour intersects the real axis, 
satisfies the condition 

1 > r > b. (48) 

IG(z, z'; -1) I ;;::; K1(e', ro)[lx - x'i 

X Iy - y'l (Ix - x'i + Iy - y,/)2fl 

X g.l.b. {exp [ - fJrl/2 Iy - y'l 
!$::r?;b 

- fJ(1 - r)1/2 !x - x'IJ}. (52) 

We note that by selecting 0' sufficiently close to 1, 
and by selecting ro sufficiently close to b, we may 
obtain a 0, as defined by Eq. (51), which is as close 
to 1 as we wish. This permits us to formulate the 
following lemma. 

Lemma III. For every 0 such that 1 > 0 > 0 
there exists a constant K(O) such that 

IG(z, z'; -1)1 < K(fJ)[lx - x'i 

X Iy - y'l (Ix - x'i + Iy - y'ln- 1 

Let us now select a number ro such that 1 > ro > b, X E(fJ(x - x'), O(y - y'); b), (53) 
and let us select a number 0' such that 1 > 0' > 0. 
Let r be a fixed number such that 1 > r ~ roo where the function E is defined by 

Employing the estimate on G'(y, y'; -r + it) E(x, y; b) = g.l.b {exp [_r I/2 Iyl 
given in Lemma II, we may trivially derive an n,,,b 

inequality from Eq. (47b), namely, _ (1 - r)1/2 IxIJ). (54) 

IG(z, z'; -1)1 < K1(O', ro)[lx - x'i 

X Iy - y'l (Ix - x'i + Iy - y'J) 2r 1 

X exp [- fJ'rl/2 Iy - y'l 

- 0'(1 - r)1/2 Ix - x'l] (49) 

for some constant Kl which depends on 0' and ro 
only. 

The number r, subject to the restriction 1 > r ~ ro, 
is at our disposal, and we may select it such that 
the most stringent bound on G(z, z'; -1) is ob­
tained. Hence, 

IG(z, z'; -1)1 ;;::; K1(fJ', ro)[lx - x'i 

X Iy - y'l (Ix - x'i + Iy - y'llf1 

X g.l.b. {exp [ - O'r l
/

2 Iy - y'l 

- 0'(1 - rr/2 Ix - x' IJ}. 

If we now select 

(50) 

(51) 

This lemma thus gives the required exponential 
bounds on the Green's functions Grs(z, z'; -1), as 
functions of (z - z'). Before we state these bounds 
in detail, let us first establish some properties of the 
functions E(x, y; b) which we shall later make use 
of. We thus formulate Lemma IV. 

Lemma IV. Let, for 1 > b ~ 0, the function 
E(x, y; b) be defined by Eq. (54). Let the function 
EoCz) be given by 

EoCz) = Eo(x, y) 

= exp [-(lxI 2 + IYI2)1/2] = exp C -lzl). (55) 

Then, 

(a) E(x, y; b) = 

Eo(x, y), if /y12 

~ b(lxl
2 + lyI2), 

exp [_b1/2 Iyl - (1 - W/2 [xl], 

if lyl2;;::; b(lxl 2 + lyj2), 
(56a) 

(b) E(x, y; b) ~ Eo(x, y) = E(x, y; 0) > 0, (56b) 

we obtain from the inequality (50), the inequality (c) E(x, y; b) = l.u.b. {E(x', y'; b) 
x' ,y' 

X E(x - x', y - y',' b)} " S R. Friedman, "An Abstract Formulation of the Method 
of Separation of Variables," Proceedings of the Conference 
on Differential Equations held at the University of Mary- (d) E(x, y; b) = l.u.b. {E(x - x', y; b) 
land, March, 1955 (unpublished); See also B. Friedman x' 
Principles and Techniques of Applied Mathematics (John 
Wiley & Sons, Inc., New York, 1957), p. 273. X exp [-(1 - b)1/2 Ix'I]); 

(Mc) 

(56d) 
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(e) ECx, y; b) = l.u.b. {EoCx - x', y) 
x' 

X exp [-(1- b) 1I2 Ix'IJI; (56 e) 

(f) E(x, y; b) = l.u.b. {Eo(x - x', y - y') 
x' ,y' 

x ECx', y'; b)}. (56f) 

Proof. The proofs of the statements (a) and (b) 
are trivial. To prove statement (c) we first note 
that since E(O, 0; b) = 1, we have 

l.u.b. {E(x', y'; b)E(x - x', y - y'; b) I 
l' ,y' 

~ E(x, y; b). (57) 

On the other hand, 

E(x', y'; b)E(x - x', Y - y'; b) 

= g.l.b. {exp [_rl/2 Iy'l - (1 - r)1I 2 Ix'i 
l~r?;b 

- r,1/2 Iy - y'l - (1 - r,)1/2Ix - x'IJI 

~ g.l.b. {exp [_r l/2(ly'l + Iy - y'i) 
l~r~b 

- (1 - r)1/2(lx'l + Ix - x'I)JI ~ E(x, y; b), 

which, together with the inequality (57), establishes 
part (c) of the lemma. 

To prove statement Cd) we note that 

E(x, 0; b) = exp [-(1 - b)1/2 IxiJ. 

Therefore, 

l.u.b. {E(x - x'} Y - y'; b)E(x', y'; b) I 
l' ,y' 

?; l.u.b. {E(x - x', y; b) 
x' 

X exp[-(l- W!2 !x'I]) ~E(x,y;b), 

which, together with the statement in (c), proves 
the assertion. 

To prove part (e) we first note that it follows 
from parts (b) and (d) that 

l.u.b. {Eoex - x', y) exp [ - (1 - b)1I2 lx' IJ) 
x' 

~ E(x, y; b). (58) 

Furthermore, we trivially have 

l.u.b. {Eo(x - x',y) exp [-(1 - b)1/2Ix'l1l 
x' 

~ Eo(x, y). 

This result, taken together with the inequality (58), 
proves the assertion for the case where lyl2 ~ 
b(lxl2 + lyI2). 

For the case where b(ixl2 + IYI2) > !y12 (which 

can obtain only if b > 0, and x ~ 0), we simply 
note that for 

, = [1 - ill (~)1I2J 
x x Ixl b ' 

we have 

Eo(x - x',y) exp [-(1 - b) 1I2 Ix'IJ = E(x,y; b), 

which, together with the inequality (58), completes 
the proof. 

The proof of assertion (f) is trivial once assertions 
(a) to (e) have been proved. 

We conclude by stating in a theorem the principal 
result of this section, namely, the exponential bounds 
on the Green's function Gra. 

Theorem I. Let Gro(z, z'; T/) be the Green's func­
tions defined by Eq. (20b) or (21b), subject to all 
the assumptions made in Sees. I and II. Let the 
three functions Er(z), r = 1, 2, or 3, be defined by 

(59) 

where the function E(x, y; b) is defined by Eq. (54). 
Let 8 be any number such that 1 > 8 > 0. Then 

there exists a constant K(8) such that for (r, 8, t) 
any cyclic permutation of (1, 2, 3) 

IGr,(z, z'; -1)1 < K(8)E,(8(z - z'»[lx, - x:\ 

X Iy. - y:1 (Ix, - x:J + Iy, - y:l)2rl. (60) 

V. EXPONENTIAL BOUNDS ON THE THREE-BODY 
GROUND-STATE WAVE FUNCTION 

We shall now make use of the results contained 
in Theorem I to derive from the integral equations 
(22b) some inequalities satisfied by the wave function 
if;(z). Let (} be a fixed constant such that 1 > 8 > 0, 
and let (r, 8, t) be a fixed cyclic permutation of 
(1,2,3). By inspection of the integral equations (22b) 
we obtain the inequality 

Iif;(z) I ~ r d6 ez')Fl(Z,z')F2(z,z')F3(Z,Z'), (61a) 
J(ro) 

where 

F1(z,z') = E,(8(z - z'» Iif;(z') I, (61b) 

F2(z, z') = E,Wl - 8)~z - z')]{lVs,(z') I 1 :~I~;I 

+ 1V,,(z') 11 t;I~:1 + 1V123(z') 11 !'\z'l} , (61c) 

F3(z, z') = IG,,(z, z'; -1)11E,[!(1 + 8)(z - z')JI-1 

X {l + ,1y~1 + 1 + ,1y;1 + 1 +,Izj}. (61d) 
ly,l ly,1 Iz I 
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It follows from Theorem I that the integral 

J d6(z')F3(z, z') < Kl 
Coo) 

(62) 

for some constant K 1 , which depends on 0 but 
not on z. 

Let 

h(z) = l.~;b. {K1Et[t(1 - O)(z - Z')J[Q?~[),;ri' 

+ Q(IY~[) IY~I + Q(klllz'!]} (63a) 
1 + !Y: I 1 + Ii I ' 

where Q(q) is the function introduced in connection 
with the inequalities (16). The function h(z) exists 
for all z, and it follows from Eq. (61c) and the 
inequalities (16) that 

KFiz, z') ~ h(z) , for all z'. (63b) 

Let 

m(z) = l.u.b. {Et( O(z - z'» llf(z') II. (64) 
z' 

We then have 

We shall now formulate in the form of a lemma 
the results obtained so far in this section, together 
with the results expressed by Lemma I. 

Lemma V. Let 0 be any number such that 
1 > 0 > O. Then there exists a number X such that 
the three-body ground-state wave function If(z) 
satisfies the four inequalities 

llf(z) I ~ l.u.b. {Eo[O(z - z')] llf(z') II, 
z'ER 1VR 2 VR a 

(70a) 

llf(z) I ~ l.u.b. {Et[O(z - z')] Ilf(z')I}, (70b) 
z'ER,.VR. 

where the functions E t (z), t = 1, 2, 3, are defined 
in Eq. (59), and where the function Eo(z) is defined 
in Eq. (55), and where the region R t , t = 1, 2, 
and 3, is the set of all points z such that [y t I > X, 
and where Rt is the complement of R t • 

We shall show that the four inequalities (70) are 
inconsistent if llf(z) I falls off too slowly as z tends 
to infinity. For this purpose we state: 

Lemma V I. Let k be any number such that 
1 ~ k ~ O. Let 

F1(z,z') ~ m(z); !If(z) [ ~ m(z). (65) B(z) = max {E1(z),E2 (z),E3(z)l· (71) 

Combining statements (61) to (65), we then obtain Then, with the notation of Lemma V, 

I I/;(z) I < h(z)m(z). (66) 

It is worthwhile to compare the present study with 
the investigation in Sec. III. We note that the 
definition (64) is analogous to the definition (28); 
Eq. (65) is analogous to Eq. (37), and the inequality 
(66) is analogous to inequality (30). Equation (34) 
played an important role in the proof given in 
Sec. III; the corresponding relation for the present 
study is 

l.u.b. {Et[O(z - z')]m(z') I = m(z). (67) 
z' 

This relation is an immediate consequence of the 
definition (64) and Eq. (56c) in Lemma IV. 

Now let R be any region such that h(z) < 1 
throughout R, and let R be the complement of R. 
By a procedure entirely analogous to the one followed 
in Sec. III we obtain the analog of Eq. (35), 
namely, 

m(z) = l.u.b. {llf(z')1 E,[O(z - z')J}. (68) 
zlER • 

By inspection of the definition (63a) we see that we 
may select as the region R the set of all z such that 

Iyr! > A, !y.1 > A, (69) 

where A is a sufficiently large constant (which 
depends on 0). 

(a) l.u.b. {B(z')Eo(z - z') I = B(z) , 
z/ER1VR~VRa 

(72a) 

(b) l.u.b. {Et(z - z')B(z') I ~ B(z) , 
z'ERrVR, 

(72b) 

(c) l.u.b. 
z'ER 1VR 2 UR a 

{B(kz')Eo(z - z') I ~ B(kz). (72c) 

Finally, for all z in R
" 

(d) l.u.b. {E,(z - z')B(kz') I 
z'ERTU~, 

< KoB{[k + 0(1 - k)]zl, (72d) 

where Ko and 1 ~ 0 ~ 0 are some fixed constants 
which do not depend on k. 

Proof. The statements (a) to (c) follow trivially 
from the definition (71) and the properties of the 
functions E listed in Lemma IV, and we may omit 
the detailed demonstration. 

To prove the assertion (d), we define the linear 
manifolds Nt, t = 1, 2, or 3, such that Nt is the 
set of all z such that Yt = O. We note that A is the 
upper bound on the distance from any point of 
R, to N I' Let Zl be in R t, and let Zo be the projection 
of Zl into N,. We then have [Zl - zo[ ~ A. From the 
exponential nature of the functions E,(z) and B(z) 
follows that 

B([k + (1 - k) o]zo) < KIB([k + (1 - k) O]Zl) , 

and 
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l.u.b. {E,(ZI - z')B(kz') 1 
z'ERrVR. 

< K2 l.u.b. {E,(zo - z')B(kz') 1, 
z'EN,VN. 

where KJ and K2 are constants independent of k 
and 0, where le and 0 are such that 1 ~ le ~ 0, 
1 ~ 0 ~ 0. 

To prove assertion (d) it suffices to show that 
there exists a 0, 1 ~ 0 > 0, with the property that 
for every Z in N" and for every le such that 
1 ~ le ~ 0, 

l.u.b. {E,(z - z')B(kz')} 

~ B{[le + 0(1 - k)]z}. (73) 

We show this as follows: For z in N, we have 

l.u.b. {E,(z - z')B(kz')} 
.'EN.,VN. 

~ [l.u.b. {E,[(l - k)(z - z')]}] 
z'EN,VN, 

x [l.u.b. {E,[k(z - z')]B(kz')}]' (74) 
z'EN,VN, 

But we certainly have 

l.u.b. {E,[(l - le)(z - z')]l ~ B[o(l - k)z] (75) 
z'EN,UN, 

for some 0 which satisfies 1 ~ 0 > 0. Furthermore, 
by part (e) of Lemma IV, 

l.u.b. {Et(z - z')B(z')} 
z'EN,VN, 

l.u.b. {Eo(z" - z')B(z')Et(z - z")} 
z'EN,VN. 

zllENt 

~ l.u.b. {B(z")Et(z - z")} = B(z). 
z' 'ENt 

(76) 

Inserting the results contained in inequalities (75) 
and (76) into inequality (74), we obtain the in­
equality (73), which completes the proof of the 
lemma. 

We are now in a position to state the principal 
result of this paper as follows: 

Theorem II. (a) For every (J such that 1 > (J > ° 
there exists a constant C(O) such that the three­
body ground-state wave function 1/t(z) satisfies the 
inequality 

j1/t(z) I < C( (J)B( Oz) , (77) 

where the function B(z) is defined by Eq. (71). 
(b) If j1/t(z) I is replaced by B(Oz) in the inequalities 

(70) of Lemma V, then these inequalities are 
satisfied.4 

• The result contained in Theorem II, for the particular 
case where all the potentials are bounded by decreasing 
exponentials, had been obtained previously by a different 
method by one of the present authors; E. Leo Slaggie, Ph.D. 
thesis, University of California 1960 (unpublished). 

Proof. The proof of the theorem is very simple 
with the aid of Lemma VI. To prove part (a) we 
select a 0 such that 1 > 0 > 0, and a constant le 
such that 1 ~ k ~ 0, and a constant Cl such that 

This is always possible since we may, in particular, 
select k = 0. It then follows from assertions (c) 
and (d) of Lemma VI that 

!1/t(z) I < C1KOB([k + 0(1 - le)] Oz), 

or, repeating the procedure n times, 

!1/t(z)! < CIK~B([l - (1 - or(l - k)] Oz). 

Since 0 > 0, we, thus, obtain the estimate 

!1/t(z)! < C2(O, O')B(OO'z), 

where 0 and 0' can be selected as close to 1 as we 
please. For every such selection C2 (O, 0') exists, and 
the part (a) of the theorem thus follows. 

Part (b) of the theorem follows by inspection from 
assertions (a) and (b) of Lemma VI. 

The reader will note that part (b) of Theorem II 
states that the inequalities (70) in Lemma V cannot 
yield a "better" bound on !1/t(z) I than the one given 
in inequality (77). 

In Appendix IV we shall show that there exist 
potentials which satisfy our assumptions and for 
which the inequality (77) is the best possible III 

the sense that for any 0 > 1 the inequality 

!1/t(Z)! > B(Oz) 

holds for sufficiently large !z!. We conjecture, but 
have been unable to prove, that the same might be 
true for all potentials which satisfy our assumptions. 
As it stands, we have thus proved that without 
further assumptions on the potentials the ex­
pontential bounds given cannot be "improved." 

Our proof perhaps appears to be quite complicated 
at first sight. There exists, however, simple geo­
metrical interpretations for all the steps carried 
out in this section in terms of which most of the 
discussion becomes intuitively "obvious." For a 
discussion of this interpretation we refer to Ap­
pendix V. 

VI. ANALYTICITY PROPERTIES OF THE 
THREE-BODY GROUND-STATE WAVE FUNCTION 

IN MOMENTUM SPACE 

Let f(1e) be the Fourier transform of 1/t(z), 

t(l;;) = (211")-31 d6(z)1/t(z) exp(-ile·z), 
(00) 

(78) 
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where k is a real vector in the six-dimensional 
Euclidean space 8. 

We denote by Pt and qt the projections of k into 
the three-dimensional Euclidean spaces 8xt and 8. , 

which we introduced in Sec. II. In analogy with 
Eq. (11) we, thus, have 

k = (PI' ql)1 = (P2, q2)2 = (P3' q3)3, (79) 

and the pair (Pu, qu) is related to the pair (p" q,) 
by the relations (lOa). Furthermore, 

k·z = PI·XI + ql ·YI = P2· X2 + q2·Y2 

= P3· X3 + q3·Y3' (80) 

Since the wave function if;(z) is exponentially 
bounded, we can extend f(k) by analytic continua­
tion into some region in the complex momentum 
space 80 , Let, therefore, k be complex, and let us 
employ the notation 

k'=Re(k), 

p~ = Re (Pt) , 

q~ = Re (qt), 

k" = 1m (k), 

pi' = 1m (Pt) , 

q~' = 1m (qt). 

(81) 

To determine the region of analyticity of f(k), we 
investigate the convergence of the integral 

J d6(Z)B(z) exp (k" ·z), (82) 
("'l 

where B(z) is the positive function defined in Eq. 
(71). 

From the definition of B(z), it follows that the 
integral (82) converges if an only if each one of the 
integrals 

f d6(Z)Et(z) exp (k" ·z), (83) 
("'l 

where t = 1, 2, or 3, converges. We examine the 
integrand 

Et(z) exp (k" ·z) = g.l.b. {exp [_r l
/
2 IYt I 

- (1 - r)1/2 Ix,! + p~'·Xt + qi'·y,]}. 

The integrand is, thus, a decreasing exponential 
function if and only if for some r, 1 ~ r ~ bt , we 
have 

(84) 

The condition (84) may be restated in the form 

(85) 

From these results and from Theorem II follows 
Theorem III. 

Theorem III. The three-body ground-state wave 
function f(k) in momentum space, defined in Eq. 
(78) as the Fourier transform of if;(z) , can be ana­
lytically continued into a region Te in complex 
momentum space 8e, the region To being defined 
by the four inequalities 

lk"j2 = Ipi'I2 + Iq:'12 < 1, (86) 
Ipi'l < (1 - b,)1!2, t = 1,2, or 3, 

where kIf, pi', and qi' are the imaginary parts of 
the vectors k, P"~ and q" respectively. If we interpret 
the inequalities (86) as confining kIf to a region 
T in the real space 8, then Te is the product of 8 
with T, and is, thus, a tube region. The region T is 
convex, and so is Te. 

The momentum space wave function is, thus, 
analytic in the region defined by the inequalities 
(86), which region has a very simple geometrical 
and physical interpretation. It is quite conceivable 
that the results contained in Theorem III could be 
obtained much more easily. It must be noted, 
however, that whereas Theorem II implies Theorem 
III, the converse is not in general true. We shall 
consider this question, and some related topics, 
in some detail in Appendix V. 

It is easy to see that the region To is the largest 
tube of analyticity for f(k) which can be obtained 
from the estimates in Theorem II, i.e., the largest 
region of analyticity which is a product of real 
momentum space and a region in imaginary mo­
mentum space. The largest tube of analyticity may, 
of course, be smaller than the largest region of 
analyticity of f(k), even if the estimates in Theorem 
II are the best possible. 

VII. ON ELECTROMAGNETIC FORM FACTORS 

Suppose that particle 1 carries a charge, whereas 
particles 2 and 3 are neutral. Considering the ground 
state of the three-body system as a particle, we 
may inquire into the distribution of charge in this 
particle, i.e., study the charge form factor of the 
particle. We are, of course, not in a position to 
discuss anything but the asymptotic distribution of 
charge. 

To cast the discussion into a form in which the 
relationship to the theory of the vertex operator in 
quantum field theory is apparent, we consider the 
rna trix element 

(87) 
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where 

ru = r + !:lu, u = 1, 2, and 3, 

'!IU(rl' r 2 , ra) = 1/;(x
" 

YI) exp (iKi.!·r). 

The vector r is thus the position vector of the 
center of mass, and the vectors K; and K f denote, 
respectively, the initial and final total momenta 
of the three-body system, regarded as an elementary 
particle on the mass shell. 

Taking the variables r, Xl, and YI as variables of 
integration instead of r l , r 2 , and ra, which variable 
transformation may be carried out by aid of the 
relations (9), we may carry out the integration over 
r and obtain 

for some constant C, and with 

X exp (i'Y 4. ,x I ), (89) 

where the constant 'Y is given by 

'Y = (m2 + ma)I/2[2Boml(ml + m2 + ma)r l
/

2
• (90) 

Because the ground-state wave function 1/;(XI' YI) 
falls off exponentially, the "vertex operator" Mo(4.) 
can be analytically continued, as a function of the 
momentum transfer 4., into a tube region in complex 
three-dimensional space. This tube region may be 
determined either from the estimates in Theorem II , 
or directly from the facts stated in Theorem III. 
The result is: 

The function Mo(4.), as a function of complex 
momentum transfer 4., is analytic in the tube region 

14."1 < 2g1 , 

where 4." = 1m (4.), and where 

gl = (mJM I ) min {[2M1(Bo - B1)J'/\ 

[(m2 + ma)/m2][2M2(Bo - B2)],/2, 

(91) 

[(m2 + ma)/m"][2Ma(Bo - Ba)]1I2 1. (92) 

The function Mo(4.) is essentially the charge form 
factor. The charge distribution for the particle at 
rest is given by 

This function then satisfies the inequality 

for every 0 such that 1 > 0 > 0, where C"(O) is 
some constant which may depend on O. 

The formula (92), whereby gl is determined, has 
a simple physical interpretation, and is, in the 
opinion of the authors, entirely in accordance with 
what one might expect on the basis of intuitive 
physical considerations. We shall support this as­
sertion by considering some examples in Sec. VIII. 

If we assume that the potentials are invariant 
under rotations, the function C(~l) will be a function 
of l!:llJ only since the ground state is nondegenerate. 
If, furthermore, the bound expressed by inequality 
(94) is indeed the best possible, in the sense that it 
fails for any 0 > 1, then the tube, defined by in­
equality (91), in which Mo(4.) is analytic is the 
largest possible. Actually Mo(4.) is a function of 
4.2 only, and as a function of this variable it must 
exhibit a singularity at the point 4.2 = -4gi. This 
corresponds, in the theory of the vertex function in 
quantum field theory, to what has become known 
as an "anomalous threshold."s The authors wish 
to express the opinion that this singularity is a 
"nonrelativistic form" of a singularity which will 
always be present in the vertex function of any 
particle, in the framework of field theory; although 
the vertex function may, of course, have other 
singularities which occur for smaller values of - 4. 2. 

For the study of form factors we believe one is 
permitted to regard any stable particle as the 
"bound state" of any set of particles into which it 
could decay, through interactions which exist in 
nature, and in conformity with selection rules, 
given the necessary extra energy. For further dis­
cussion of these and related questions we refer the 
reader to the literature. 6

•
7 

We wish to emphasize, however, that a knowledge 
of the asymptotic form of the charge distribution of 
a particle can be no substitute for the kind of de­
tailed knowledge which only a detailed dynamical 
theory can provide. The methods of this paper can 
at most tell us that a slowly falling-off exponential 
"tail" may be present, but they fail to give any 
information about the size of the coefficient which 
multiplies this exponential function. 

VIII. CONSIDERATION OF SOME EXAMPLES 

In this section we shall consider some specific 
examples of the function B(z) in physically interest-

6 This terminology is somewhat unfortunate since nothing 
could be ~~re. "normal" th~n a form factor computed from 
a nonrelatlvlstIc wave functIon when a nonrelativistic model 
seems permissible. 

6 R. Karplus, C. Sommerfield, and E. H. Wichmann 
Phys. Rev. 111, 1187 (1958). ' 

7 R. Oehme, Nuovo cimento, 13, 778 (1959). 
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ing cases. Or rather, we study a function F(z) which 
has the same asymptotic exponential behavior as 
B(z), but which has the advantage that it can be 
represented by a single and simple analytic ex­
pression. 

Let us thus define the function F(x, Y; b), where 
1 > b ;;;; 0, by 

F(x, Y; b) = [exp (-(1 - b)l/z Ixl) 

+ exp (-lxI2/Izi)][exp (b1/ 2 [yl) 

+ exp (lyI 2/IziWI. (95) 

It is easily seen that the asymptotic behavior of 
the function F(x, Y; b) is similar to the asymptotic 
behavior of the function E(x, y, b), defined in Eq. 
(54) in Sec. IV. We may therefore regard the function 

F(z) = F(x l , YI; bl) + F(X2, Y2; b2) 

+ F(x3 , Y3; b3) (96) 

as a function which characterizes the asymptotic 
exponential behavior of the wave function, since 
for every 0 such that 1 > 0 > ° there exists a 
constant K(O) such that 

!¢'(z) I < K(O)F(Oz). (97) 

It should be noted, however, that our discussion 
is defective in the sense that we have not proved, 
for the cases which we are going to consider, that 
there does not exist a "better" estimate than the 
one given in inequality (97). 

Let us now consider the expression (96) quali­
tatively, employing a physical language which we 
believe has a considerable intuitive appeal. We 
first examine the function F(XI' YI; bl ), and remind 
the reader that Xl, which we may call the" separation 
coordinate," is essentially the distance of particle 
1 from the center of mass of the 2-3 system, whereas 
YI, which we may call the" internal coordinate," is 
essentially the vector joining particles 2 and 3. 
The quantity bl is the binding energy of the ground 
state of the 2-3 system, measured in units of Bo, 

the binding energy of the ground state of the three­
body system. The quantity (1 - bl) is then the 
separation energy, or the binding energy of particle 
1 to the ground state of the 2-3 system. We may 
therefore expect that when the separation coordinate 
Xl is large compared to the internal coordinate YI 
the wavefunction should behave like the product 

exp ( - W2 !YI!) exp [ - (1 - bl)I/2 /xl /]. (98) 

This is indeed the asymptotic behavior of the func­
tion F(xl, YI; bl ) whenever /YI/ z < bl(/Xl /z + /YI/ Z

), 

However, as the ratio /YI/lxli grows larger the 

behavior of the wave function changes, and we have 

F(xl , YI; bl) "-' exp [-(lxI1
2 + IYI12)1/2] (99) 

whenever IYl1
2 

;;;; bl (lxl 1

2 + IYln. 
It is clear that the behavior of the function F 

must undergo a change of this nature, since for IYII 
large compared to IXII one can hardly think about 
the system as a bound state in which particle 1 is 
bound to the "particle" formed by the ground state 
of the 2-3 system. This is particularly clear in the 
case where b1 = 0. We may say that the more 
loosely bound is the 2-3 system the more easily 
does it lose its individuality as a "particle." 

Suppose now that we wish to study the distribu­
tion of particle 1 in space, disregarding the location 
of particles 2 and 3. This means that we study the 
asymptotic behavior of F(z) as a function of XI! but 
with YI arbitrary; in particular Yl could be a func­
tion of XI' At first sight it appears natural to think 
that the required asymptotic distribution of particle 
1 is given by the "product wave function" in ex­
pression (98), in which case the extension of the 
distribution would be determined by the separation 
energy (1 - bl ) (and, of course, by the various 
masses). It may, however, happen that one of the 
other separation energies, say (1 - bz) is very 
small, which means that the binding energy of the 
1-3 system is large. In this case we expect the three­
body system to have an extended structure, and the 
particle 1 may have an extended distribution in 
space as a component of the bound 1-3 system. If 
we now consider Eq. (92) in Sec. VIII we see that 
the somewhat complicated expression for the con­
stant gI, which describes the distribution of particle 
1, has a very simple and natural physical inter­
pretation. 

We may summarize this discussion by saying that 
to determine the asymptotic exponential behavior 
of the three-body system one must consider all 
possible virtual disintegrations of the system into 
two or three separated particles. The exponential 
bounds may then be computed in a trivial fashion 
from the binding energies and the masses. 

Before we consider specific examples we may note 
that the function F(z) is invariant under simul­
taneous rotations of XI and Yl, and is therefore, a 
function only of the three invariants which can be 
formed from these vectors. The ground-state wave 
function for the case of spherically symmetric po­
tentials haR the same property. As the three in­
variants we may select the quantities IYll z

, IYzI 2
, 

and IY3I z
• The three vectors YI, Y2, and Y3 are, of 

course, not independent, but satisfy the identity 
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YlfJ.;1/2 + Y2fJ.;1/2 + YafJ.;1/2 = 0, (100) 

and we may, therefore, express the scalar product 
of any two of the vectors y u in terms of their squares. 
We quote a number of relations which hold between 
the various invariants, following the notation in 
Sec. II. 

!Z12 = (ml + m" + m~)-lr[YI ["(m2 + ma) 

+ IY2[2(ma + ml) + !Ya!2(ml + m2)] 

= 2B,,(m 1 + m 2 + m3)-I[iVI2[2m1m.2 

+ [Vn1
2 

mema + i val1
2 

m3 m l ]; 

Ix,!" = (ml + me + mJ-I[ly,l e (m, + mt) 

+ [YtI Z (m, + m,) - IYr!2 m,] 

= 2Bom,(m 1 + m" + m3)-1[lv,.,l z m, 

+ IVlrl" m, - Iv." 12 fJ.,]. 

(101) 

(102) 

The three invariants IVrsl 2
, which are simply the 

squares of the sides of the triangle formed by 
particles], 2, and 3, have the advantage of having 
a very direct geometric meaning. It is worthwhile 
to restate, in terms of these invariants, the conditions 
which determine whether F(x" y,; b,) has the form 
given in expression (9S) or the form given in ex­
pression (99). 

vVe thus have two cases: 
Case A: 

1(1,,1" [(1 - bt) + mtCm r + m,r l
] 

~ bt[[v"i" (m,/m,) + IV,tI
2 (mt/m,)], 

in which case 

£l(x" Yt; b,) "-' exp (-Izl). 

Case B: 

Iv,,1 2 [(1 - bt) + mt(m r + m.)-I) 

< b,[lv,,1
2 (mt/m,) + Iv,,1

2 (mt/m,)], 

in which case 

(103a) 

(103b) 

F(xt,Yt; b,)"-'exp [_b I/2 Iy,! - (l- b,) 1I2 Ix,I]. 

Let us now consider the case of the neutral helium 
atom. We label the two electrons by the indices 1 
and 2, and the nucleus by the index 3. We thus 
have ml = m2 = m = the electronic mass; to 
simplify the discussion we shall assume that the 
nucleus is infinitely heavy. In this limit we have 

IXII = IY21 = the distance of 
electron 1 from the nucleus; 

IX21 = Iyli = the distance of 
electron 2 from the nucleus; 

The binding energies are: BI = B2 = 54.3 e V, 
which is the approximate ionization potential of 
the singly ionized ion; B3 = 0, and Bo = BI + 24.S 
e V, where the number 24.S e V is the approximate 
ionization potential of the atom. We thus have, 
approximately, bl = b2 = b = 0.69; ba = O. Selecting 
0.41 X ao as the unit of length, where ao is thc 
Bohr radius in hydrogen, we thus obtain the follow­
ing expression for the function F(z);8 

F(z) = exp(-(1-I~)1/2 Ixli) + exp(:lxI1
2
/lz l) 

. exp (b 1 Ix2 1) + exp (lxz!-/Izl) 

where 

+ ~~l~_j - Cl_--=,}) ~/2 IX2 [) + c~p (-;- I XI" I 2/ Iz i) 
exp (b - !xll) + exp ~IX11-/lz!) 

+ cxp (- ix3 1) + exp (-lx"l" / lill (104) 
1 + exp (iY31

2
/lz!) 

Ix~12 = (XI + X2)2/2 , 

IYal
2 = (XI - x2?/2. 

As a second example we consider the cases of the 
H3 and He3 nuclei. 9 We neglect the proton-neutron 
mass difference and, thus, have ml = m 2 = ma = m. 
Let the deuteron binding energy be BI = B2 = 
2.2 MeV. Two neutrons or two protons do not bind 
and we thus have Ba = O. In the case of tritium 
the proton is indexed by 3, whereas in the case of 
Hea the neutron is so indexed. The binding energies 
are Bo=S.5 MeV for H a, (hence, b[ =b2 =b=0.26), 
and Bo=7.7 MeV for Hea, (hence, bl =b2 =b=0.29). 

Letting c = (2Bom/3) 1/2 and employing the 
notation 

z = C(IVI2I
Z + [ 12 + I 12)112 ,V23 IQal , 

XI = C(IV1212 + I 12 I I 12)112 Val - 2 Vn , 

X2 = C(IQ2al
z + I 12 1 I 12)112 VI2 - 2 V31 , 

Xa = C( I !.I~ I 12 + I 12 1 1 n1l2 
V23 - 2 !.II2 , 

YI = c(3/2)1/2 IVnl, Y2 = c(3/2)1/2 i Vall, 

p = (l - b)1/2, q = bl
/

2
, 

S The last term in the expression for F(z) may be ignored 
as it is easily seen that it does not affect the asymptotic 
exponential behavior of F(z). 

9 Wave functions for H3 have been studied in great detail 
by G. H. Derrick, Nuclear Phys. 16,405 (1959) and references 
therein. In particular, he finds restrictions on the behavior 
of the wave function near the in line and equilateral con­
figurations. 
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we then have 8 

F(z) = 
exp (-PX1) + exp (-xUz) 
-----;;p (qYl) ~ + exp (yUz) 

exp (-px2 ) + exp (-x;/z) 
+ exp (QY2) + exp (y;/z) 

+ exp l~x~) + exp (-x;/z). 
1 + exp (yUz) 

IX. SOME REMARKS ON 
VARIATIONAL COMPUTATIONS 

We wish to comment briefly on the relevancy of 
our results for the computation of energy levels and 
wave functions by variational methods. 

As far as the authors know, no variational com­
putation involving a three-body system has ever 
been carried out in such a way that each element 
in the set of trial functions would satisfy the asymp­
totic conditions which we have derived. As an 
example, we may cite the computations of the 
energy and wave function for the ground state of 
the helium atom. As we can see from Eq. (104) in 
Sec. VIII, the asymptotic behavior of the ground­
state wave function will not be correctly described 
by a single exponential like exp (-elzl), nor by an 
exponential function like exp (-elxII - elx2 !), 
where IXII and IX21 are the distances between the 
electrons and the nucleus. The latter form is as­
sumed, for instance, in the computation carried out 
by Pekeris. lO We wish to emphasize strongly, how­
ever that the fact that the trial functions have the , 
"wrong" asymptotic behavior by no means implies 
that the variational computation of the energy 
would be wrong in principle. All that is required 
for the success of a variational computation of a 
ground-state energy is that the expectation values 
of the Hamiltonian operator evaluated over the 
set of trial functions should have the true energy 
as the greatest lower bound. The asymptotic be­
havior is of no great consequence. In fact it is 
perfectly possible, for Schrodinger equations of the 
kind we have considered, to construct a sequence of 
wave functions, each one of which goes asymptotic­
ally like, say 1/lzI5, but such that the expectation 
value of the Hamiltonian converges to - Bo, the 
ground-state energy. We believe these facts to be 
well known, and we will, therefore, not elaborate. 

In spite of what has been said about the unim­
portance in principle of the asymptotic behavior of 
the trial functions in a variational computation, 
the possibility remains that an improvement, from a 
practical computational standpoint, can be achieved 

10 C. L. Pekeris, Phys. Rev. 112, 1649 (1959). 

by selecting trial functions which have a realistic 
asymptotic behavior. For instance, in the case of 
the helium atom referred to earlier the trial functions 
are polynomials in the position vectors multiplied 
by the exponential function quoted. It is tempting 
to say, very loosely, that the polynomials may be 
"partly wasted in correcting the asymptotic be­
havior," the implication being that it might be in 
the interest of computational economy to replace 
the exponential function actually used by one which 
better conforms to reality. This may in particular 
be the case if one desires to compute the ground­
state wave function rather than the energy. On the 
other hand, it is undeniable that a function like 
the one exhibited in expression (104) in Sec. VIII 
is more complicated than a simple exponential 
function, and any advantage gained in the sense of 
faster convergence may be nullified by the increased 
difficulty in the evaluation of expectation values of 
the Hamiltonian. It is clear that in selecting the 
proper computational procedure it is essential to 
take the behavior of the potentials into account, 
since they determine the relative importance of 
the various regions in configuration space. We 
have not studied any concrete cases and we therefore 
do not know whether the above suggestions have 
any merit. We feel, however, that it is of interest 
to consider these matters in connection with varia­
ational computations. In this connection we wish 
to refer the reader to a variational computation on 
the hyper-triton carried out by Downs and Dalitz. l1 

These authors discuss the asymptotic behavior of 
the wave function, and comment upon the relative 
merits of various kinds of trial functions. 

X. POSSIBLE GENERALIZATIONS 

In this section we shall comment briefly upon a 
number of possible generalizations of our investi­
gation. 

(a) First of all, we note that in deriving Theorem 
II we have not really made use of the fact that 
1{/(z) is the ground-state wave function. Theorem II, 
therefore, holds for any bound state of the three­
body system, of energy - Bo, where Bo > B, for 
t = 1,2 and 3. 

(b) That the conditions which we have assumed 
the potentials to satisfy are unnecessarily severe is 
suggested by our discussion of the simple case of a 
particle bound in a potential, in Sec. III. 

Although our theory applies to most of the three-

11 B. W. Downs and R. H. Dalitz, Phys. Rev. 114, 593 
(1959). 
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body problems defined in terms of potentials which 
seem to be physically meaningful, nevertheless there 
is a notable exception, namely, the case in which 
the forces become infinitely repulsive at small 
distances, "too rapidly" for our conditions to hold. 
It may, of course, be argued, and we are willing to 
subscribe to this opinion, that force fields of this 
kind derivable from a static potential do not occur 
in nature and are therefore meaningless physically. 
Since, however, potentials of this kind have often 
been considered in models of interparticle inter­
actions, particularly in nuclear theory, it would 
nevertheless be interesting to know whether our 
results, as expressed in Theorem II, remain valid. 
Our results certainly hold for finite repulsive cores, 
no matter how strongly repulsive. The methods 
which we have employed cannot, however, without 
modifications be applied to the case of an infinitely 
repulsive core described by a potential which be­
comes infinite at some finite interparticle separa­
tion. The authors believe, but have not proved, that 
the necessary modifications can be made, and that 
Theorem II continues to hold in the case of an 
infinitely repulsive core also. 

(c) Our procedure may be readily generalized to 
the case when the particles have spins, and where 
the interaction is described by a Hermitian matrix 
acting on spin space, the matrix elements of which 
are functions of the position vectors which satisfy 
the conditions which we have imposed on the 
potentials. In carrying out this generalization we 
would study, in place of our wave function if;(z) , 
that spin or component which is largest in absolute 
value. The Green's functions G .. (z, z'; -1) would 
be replaced by matrices. The modifications intro­
duced by the spins are not of an essential nature, 
and they do not affect the validity of Theorem II. 
The discussion in Appendices III and IV cannot, 
however, be generalized in such a trivial fashion. 

Cd) If we consider the method whereby Theorem 
II was proved, we may also note that this method 
applies to some problems in which the interactions 
cannot be described by potentials at all. Let us, 
for instance, consider the modification arising when 
a potential V(y) [or rather, the operation of multi­
plying the wave function by V(y)], is replaced by 
an integral transform on the wave function where 
the kernel V(y, y') satisfies the condition 

I V(y, y') I < Q(lyl + !y' [) exp (-0 Iy - y'!), 
where Q(q), as before, is a function which satisfies 
the conditions (5) in Sec.!. We claim, but shall not 
prove, that if a > 1, then Theorem II holds and 

may be proved by a minor modification of the 
method which we have used. We are not here 
claiming that kernel functions of the above kind 
are of physical interest, but we merely wish to point 
out that it is not essential for the success of our 
methods that the interaction can be described by 
a static potential. 

(e) Concerning the generalization to a relativistic 
theory. the situation is somewhat obscure. It does 
not appear particularly meaningful to try to consider 
relativistic wave equations describing a finite num­
ber of particles, since creation and destruction 
phenomena play an essential role whenever the 
particles have energies in the relativistic region. 
Problems of this nature belong to the realm of 
quantum field theory. One may, however, expect 
that some of our results can be looked upon as 
nonrelativistic limits of some features in field theory, 
especially since our results can be regarded as being 
essentially of a kinematical and geometrical nature. 

(f) The question arises whether our methods can 
be readily generalized to the case of more than three 
particles. The nature of the results for the case of 
three particles suggests that this can be done, and 
that the asymptotic behavior of a many-body wave 
function is always determined, insofar as the ex­
ponential falloff is concerned, by the masses and the 
binding energies appropriate to the different modes 
in which the particle can be broken up. For instance, 
in the case of a bound state of four particles we 
would have to consider the breaking up of the system 
into two, three, and four fragments, where the 
fragments themselves may be bound states of a 
smaller number of particles. 

Concerning the generalization of our methods, 
it seems likely to us that the generalization can be 
carried out step by step as follows: Suppose that 
exponential bounds have been determined for n­
particle wave functions, where n ~ N for some N. 
Then it should also be possible to determine ex­
ponential bounds, like the ones we have found, 
on the n-particle Green's functions, when the com­
plex energy parameter is outside the spectrum of 
the Hamiltonian for the n-particle system. If this 
can be done, one may trivially determine exponential 
bounds on the Green's functions which describe a 
system of particles consisting of two subsystems 
between which there is no interaction, and such 
that the number of particles in each subsystem 
does not exceed N. These last-mentioned Green's 
functions occur as factors in the integrands of a 
number of integral equations satisfied by the wave 
function (or Green's function) for a system of 
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N + 1 interacting particles, and it seems reasonable 
that these integral equations can be used to derive 
exponential bounds on the (N + I)-particle wave 
functions or Green's functions. 

The path to an extension of the procedure to any 
number of particles thus seems clear. We have not. 
however, investigated the question in detail, and 
we, therefore, do not wish to assert that an un­
foreseen complication cannot arise. 
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APPENDIX I 

In this Appendix we shall prove Lemma II, 

G'(y, y'; 1]) 
exp (i1}I!2ly - y'l) 

41l' IY - Y': 

stated in Sec. IV. We follow the notation of Sec. IV. 
The Green's function G'(1]), defined in Eqs. (43), 

satisfies a well-known integral equation which we 
may write symbolically as 

(H{, - 1})' 

(105a) 

where 1] is a complex number not in the spectrum 
of H~; 1} will then also be outside the spectrum of 
- \7;. 

More explicitly we may write the integral equation 
in the form 

_ J d3( ) V(Yo) exp fi1}1/2(IY - Yol + Iy' - Yol)l 
(00) Yo (41l')2 Iy - Yol IY' - Yol 

+ J d3 (· ) d3( ') V(Yo) V(Yb)G'(yo, Yb; 1}) exp ri11
112

(ly - Yol + Iy' - Ybl)] 
(00) Yo . Yo (41l')2 Iy - Yo! Iy' - Y~I (105b) 

In the above equation we have selected that branch 
of the function 1}1/2 for which 

(106) 

We select a fixed constant ° such that 1 > ° > 0, 
and define two functions, m(y, y'; 0, 1}) and 
hey, y'; 0, p), by 

( ,. ) - I b {~YO - Ybl my, Y , 0, 1] - .u.,' 1 + i _ 'I 
Yo.Yo ,Yo Yo 

X IG'(yo, Yb; 1])1 

X exp [- Op(IY - Yol + Iy' - Ybl)]}; (107) 

hey, y'; 0, p) = J d\yo) d
3
(Yb) 

(00) 

X Iy - Y'I (1 + IYo - y~i)Q(IYol)Q(iYbl) 
(411l iy - Yol IY' - Y~I (1 + Iy - Y' /) IYo - Y~I 

X exp [-(1 - O)p(IY - Yol + Iy' - Ybl)], (108) 

where p is given by Eq. (106). We shall take it for 
granted that the function m(y, y'; 0, 1]) always 
exists. It is easy to see, by inspection of the inte­
grand in Eq. (108), that the function hey, y'; 0, p) 
exists. 

Making use of the above definitions, as well as of 

the estimate on the potential given in inequality 
(41) of Sec. IV. we may derive, from the integral 
equation (105b), the inequality 

IY-Y'I, IG'(y Y" )1 
1 + Iy - Y I ,,1} 

~ h(y,y'; 0, p)m(y,y'; 0, 1]) 

+ A(O, p} exp (-Op !Y - y'I), (109) 

where 

A(O, p) = 4
1 + l.u.b. {f d

3
(yo) 

7r y,y' (00) 

X Q(IYol) iy - Y'I 
(41l')2 Iy - Yol Iy' - Yol (1 + Iy - y'l) 

X exp [-p(ly - Yo! + Iy' - Yol) + Op Iy - Y'IJ}. 

(110) 

It is easy to see that the number A(O, p) exists 
for all ° and p, such that 1 > ° > 0 and p > 0, 
and that it furthermore satisfies the condition 

A(O, p) < Al + Ad(l - O)p, (111) 

where Al and A2 are constants independent of 8 
and p. 

We next derive an estimate on the function 
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hey, y'; 0, p), defined in Eq. (108). Let 0 be a fixed 
constant such that 

(1 - O)p ;;:;; 2 0 > 0, (112) 

and let the function g(y; 0) be defined by 

g(y; 0) 

_ {Q(IYoIUtJ I I} - l.~:b. 1 + IYol exp (-oy - Yo) , (113) 

and let J (0) be defined by 

J(o) l~u;? {fool d
3
(yo) d3(y~) exp [- o(ly - yol + Iy' - y~I)J 

X Iy - y'l (1 + Iyo - y~I)(l + IYol)(1 + lyW }. 
(4'11/ Iyo! ly~1 Iy - Yol Iy' - y~1 \Yo - y~1 (1 + Iy - y'\) 

(114) 

By inspection of the integral in this definition one 
sees that the integral is a bounded function of y 
and y', and the quantity J(o), therefore, exists. 

Using the definitions (113) and (114) we may 
now derive, from the defining equation (108), the 
following estimate: 

h(y, y'; 0, p) ~ g(y; o)g(y'; o)J(o). (115) 

It follows, however, from the conditions (5) on the 
function Q(q), that the function g(y; 0), which 
depends on y only through Iyl, tends to zero as Iyl 
tends to infinity. Since g(y; 0) is furthermore obvi­
ously bounded, we may conclude that for eyery 
o > 0 there exists a number r, such that 

hey, y'; 0, p) < 1/2. (116) 

whenever 

Iyl + Iy'l ;;:;; ra, and (1 - O)p ;;:;; o. 

Taking into account all the facts established so 
far in this Appendix, we may now derive, by a 
minor modification of the procedure employed in 
Sec. III to derive Eq. (35), the following inequality: 

m(y, y'; 0, TJ) < A(O, p) 

X exp (-Op Iy - y'i) + !m(y, y'; 0, TJ) 

+ I b { IYo-y~i IG'C ' 'I .u.. 1 + I _ " I Yo, Yo; TJ) 
(Yo,Yo')ER, Yo Yol 

X exp [- Op(ly - yol + Iy' - ymJ} , (117) 

where R, is so defined that (Yo, y~) is in R, if and 
only if IYol + IY~I < roo 

In the remainder of this Appendix v,e confine TJ 
to the half-plane 

Re (TJ) ~ -r < -b, (118) 

where r is a fixed constant. This half-plane is the 
union of t,vo disjoint regions Ri and R, which we 
define by 

(11gb) 

Given any Po > 0, we may always select r l so large 
that 

(120) 

for all TJ in R e • 

Let us now consider the case when TJ is in R i • 

From the inequality (111) follows that the quantity 
A(O, p) is bounded (for 0 fixed) when TJ is in Ro. 
Furthermore, we may select a number 0 such that 
the inequality (112) is satisfied for all TJ in R i • 

We shall take it for granted that 

I b { IYo-y~1 IG'r ' )I} .u.. 1 + I 'I I So, Yo; TJ 
(yo.yo')ER, Yo - Yo 

TJERi 

exists, and we may then conclude that there exists 
a constant K' such that 

m(y, Y'; 0, TJ) < K' exp (-op !y - y'l) (121) 

for all TJ in R i , and for all y and y'. The constant K' 
depends, of course, on 0 and on R;, i.e., on rand r i • 

It then follows, from the definition (107) of the 
function m(y, y'; 0, TJ), that 

IG'(y, y'; TJ)1 < K' J + iy - Y'I 
Iy - Y'l 

Xexp(-Oply-y'l) (122) 

for all y and y' and for all TJ in R i • 

To complete the proof of Lemma II we must show 
that an estimate like the one above also holds for 
TJ in Re. To do this we exploit the fact that for a 
sufficiently large rl the Liouville-Neumann ex­
pansion for G' (TJ), given symbolically by 

00 

G'(TJ) = (-V! - TJ)-l L [- V(-V~ - TJ)-l]", (123) 
n=O 

will converge for all TJ in R e • 

Let us write 

(124) 
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It is obvious that for any finite N there exists a 
KN such that 

I ~ G~(y, y'; 7)\ 

< I KN'lexP(-(Jply-y'l) (125) 
,Y - Y 

for all TJ in Re. To examine the remainder we select 
N = 2 and n > N. We then have the estimate 

IG~(Y,Y';TJ)I ~ In(y,y';(I - (J)po) 

where 

exp (-(Jp !y - y'l) 
X I 'I ' ,Y-Y 

In(y, y'; (I - (J)po) = Iy - y'l 

X f d
3
(Yl)'" d\Yn)(4'IlT"Q(IYl/) 

("') 

X Q(iy,,!)[ly - Yll IYl - Y21 ... 

X IYn-J - Ynl iYn - y'lr
1 

(l26a) 

X exp [-(1 - O)Po(ly - Yll + IYl - Y21 + 
+ IYn-1 - Ynl + IYn - y'I)], (l26b) 

and where we have selected Po > ° to be such that 
for all 7) in Re we have p ~ Po. Now, by selecting r 1 

sufficiently large we may select Po so large «(J is, of 
course, fixed) that 

'" L In(y, y'; (1 - (J)po) < KR (127) 
n=3 

for some K R , for all Y and y'. 
It follows that 

K +K 
IG'(y,y';TJ)I< 12 ,jexP(-Oply-Y'I) (128) y-y 

for all 7) in Re. Combining the results expressed in 
inequalities (122) and (128), we thus obtain, finally, 
the result that for every (J such that 1 > (J > 0, 
and for every r > b, there exists a constant K(O, r) 
such that 

sentation for the function G(z, z'; -1), given in 
Eqs. (47) in Sec. IV. Let us regard Eq. (47b) as 
defining a function G(z, z'; -1) for the region 

Ix - x'i > 0, Iy - y'l > 0. (130) 

Let us define, in the region defined by inequalities 
(130), two additional functions, Gn(z, z'; -1, s) 
and GL(z, z'; -1, s), by 

Gn.L(z,z'; -1,s) = f 
~7rl 

X f d7)(H~ - TJ)-l(H~' + 1 + 7)-\ (131) 
OR.L(') 

where s > ° is a constant, and where the contour 
CL(S) goes from the point TJ = -1 - s - i·O to the 
point TJ = -1 - s + i·O in such a way that the 
contour intersects the real axis only at some point 
7) = -r, where 1 > r > b. Similarly the contour 
CnCs) goes from TJ = s - i·O to TJ = s + i·O, inter­
secting the real axis only at the point 7) = -r. 

Then it is easy to see that for fixed Z and z' 
satisfying the conditions in inequality (130) we have 

lim Gn(z, z'; -1, s) 

= limGL(z,z'; -l,s) = G(z,z'; -1). (132) 

We may furthermore see that if we multiply the 
members in Eq. (132) by the factors Ix-x'l, Iy-y'l 
we may relax the conditions (130) on z and z', 
and we then have 

lim Ix - x'i GL(z, z'; -1, s) 

= Ix - x'! G(z, z'; -1), 

for Ix - x'i ~ 0, Iy - y'l > 0; 

lim Iy - y'l GR(z, z'; -1, s) 

= Iy - y'l G(z, z'; -1), 

for Ix - x'i > 0, Iy - y'l ~ O. 

(I 33a) 

(133b) 

IG'( ,. ),<K(O,r)(I+ly-y'!) 
y, y , 7), I Iy _ y'l 

X exp ( - 0 p Iy - y' /) 

We next note that the functions Gn and GL 

satisfy inhomogeneous differential equations which 
(129) we may write in the form 

for every TJ such that Re (TJ) ~ -r, and where 
p = 1m (TJ1 /2). 

Lemma II follows trivially from the estimate in 
inequality (129). 

APPENDIX II 

In this Appendix we shall discuss, in a partly 
heuristic fashion, the validity of the integral repre-

(H~ + H~' + l)GR (z, z'; -1, s) 

(IMa) 

(H~ + H~' + l)(h(z, z'; -1, s) 
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The two integrals define projection operators which 
in the limit as s tends to infinity become the identity 
operators on the Hilbert spaces on which H~ and 
H~' act, respectively. We may thus write, sym­
bolically, 

limGR(z,z'; -1,s) = limGL(z,z'; -l,s) 

= (H~ + H~' + 1)-1. (135) 

The functions GR(s) and GL(s) are, of course, to be 
interpreted as representing transformation on suf­
ficiently well-behaved square integrable functions 
of x and y, and the formula (135) thus says that 
the transformations GR(s) and GL(s) tend to the 
transformation (H~ + H~' + 1)-1 as s tends to 
infinity. This latter transformation is again repre­
sentable by the Green's function associated with the 
differential operator (H~ + H~'). We may now 
conclude that whenever Eqs. (133) apply the func­
tion G(z, z'; -1), as defined by Eq. (47b), is indeed 
the Green's function claimed. This concludes our 
"demonstration" since we do not regard it as our 
duty to discuss expansion theorems and related 
delicate questions. 

APPENDIX III 

In this Appendix we shall present a very simple 
alternative proof of the assertion contained in 
inequality (27) of Sec. III, concerning exponential 
bounds on the ground-state wave function for a 
single particle bound in a potential field of force. 
We follow the notation of Sec. III. The argument 
goes as follows: The ground-state wave function 
¢(x) is real and nodeless, and we may assume it to 
be positive. Let 8 be any number such that 
1 > 8> O. Let 

if;M(X) = cf>(x) - (M/lx!) exp (-8 Ix!), 

and let 

cf>M(X) = Hl/;M(X) + Il/;M(x)!), 

where M is a positive constant. Let RM be the region 
in which if;M(X) is positive; hence, the region in 
which cf>M(X) does not vanish. We shall show that 
for a sufficiently large M the region RM must be 
empty. 

Let x be in R M • Then 

[- V! + V(X)]cf>M(X) = -cf>M(X) 

- [1 - (i + V(x)](M/lxl) exp (-8 Ix!). (136) 

By selecting M sufficiently large, the distance of RM 
to the origin can be made as large as we please, 

and since the potential tends to zero as x tends to 
infinity, we may select M such that 

1 - 82 + Vex) > 0 (137) 

throughout RM, unless RM is empty. 
Now, if RM is not empty, we evaluate the ex­

pectation value of the "Hamiltonian" for the trial 
function cf>M(X), selecting M so large that the con­
dition (137) holds. Since cf>M(X) is positive in RM, it 
follows from Eq. (136) that 

(cf>M I(-V; + V(X» I cf>M) < -l(cf>M I cf>M), (138) 

which contradicts the assumption that the lowest 
eigenvalue of the operator in question equals -1. 
RM , therefore, must be empty. It follows that for 
a sufficiently large M 

!cf>(X) I < (M/lx!) exp (-8 Ixi). (139) 

The constant M depends in general on 8. However, 
if the potential is positive outside some bounded 
region, we see that the condition (137) can be 
satisfied for 8 = 1, and an inequality like (139) 
then holds for 8 = 1. 

It seems to the authors that it should be possible 
to treat the case of the three-body ground-state 
wave function in an analogous fashion. One is, 
however, then faced with the difficulty of construct­
ing a suitable analog to the function cf>M(X), 

For the case where the potential is spherically 
symmetric, we have, of course, available a number 
of simple methods of determining the asymptotic 
behavior of the wave function, since we may then 
consider the radial equation which is an ordinary 
differential equation. Our purpose in presenting 
methods which are applicable also in the admittedly 
somewhat academic general case was to illustrate 
procedures which may be generalized to many­
body problems. 

We shall finally show that for 8 > 1 no inequality 
like (139) can hold. Let 8 > 1. We consider 

x(x) = (m/lxl) exp (-8 Ix!) - cf>(x). 

This function is positive in some neighborhood con­
taining the origin. Let Ro be the largest such open 
region. Let R_ be the region in which x(x) is nega­
tive. By selecting m sufficiently small, we can arrange 
it so that R_ contains the surface of a sphere centered 
at the origin such that Ro is in the interior of this 
sphere. Let R+ be the complement of the union 
of Ro and R_. By selecting m sufficiently small, we 
can make the distance of R+ from the origin as large 
as we please. We may then select as a" trial function" 
a function which agrees with x(x) on R+, and is 



                                                                                                                                    

966 E. L. SLAGGIE A)),D E. H. WICHMA);N 

zero elsewhere. By a procedure analogous to the one 
leading to inequality (138), we establish that for 
sufficiently small m the region R+ must be empty. 
We thus have the result: For every e > 1 there 
exists a constant m > ° such that 

1¢(x) I > m exp (- e Ix!) (140) 

for all x. 

APPENDIX IV 

In this Appendix we shall show that the ex~ 
ponential bound stated in Theorem II is the best 
possible that can be obtained in general, i.e., with­
out further assumptions on the potentials. 

To do this we consider the particular case when 
all four potentials Vrs(z) and V 123 (z) are non­
positive. We may restrict our discussion to the 
case where none of the two-body potentials Vrs(z) 
is identically zero. 

Since we deal with the ground-state wave function 
for spinless particles, we may assume that the 
wave function 1{;(z) is positive in G. If we now ex­
amine the integral equation (22a), we note that the 
contribution to the right-hand side from the inte­
g,mtion over any region in 8 is positive. It follows 
that for every 0 > 1 there exists a constant m(e) > 0 
such that 

11{;(z) I > m(O) exp (-e ;z[). (141) 

In certain directions in G the function B(z) equals 
exp (-Iz/), whereas for certain other directions B(z) 
is larger, i.e., falls off more slowly, than exp (-Izi). 
Let us, therefore, consider a direction in G for which 
B(z) is larger than exp (-Izi); B(z) is then equal to 
the largest one of the functions E, (z) along the 
direction in question. If we now recall definition 
(54) in Sec. IV of the function E(x, y; b), we note 
that if, in a given direction, E(x, y; b) > exp (-Izi), 
then we must have b > 0, and furthermore E(x, y; b) 
for that direction must be of the form 

E(x, y; b) = exp [_b'/2 Iyl - (1 - b)1/2 Ixl]. (142) 

Let us now consider our derivation in Sec. IV 
of an exponential bound on the Green's function 
G(z, z'; -1), and let us consider the estimate in 
inequality (49) which holds for all r such that 
1 > r > b. Our procedure consisted in selecting the 
"most favorable" constant r, and we see that for 
a fixed direction such that E(x, y; b) is given by 
Eq. (142), we get the best bound by letting r tend 
to b, and we would get a still better bound if we 
could choose r smaller than b. We are, however, 
prevented from doing this because that would mean 

our contour of integration C has been moved past 
the pole of the function G'(y, y'; f/) occurring at 
'f/ = -b, which is the ground-state eigenvalue of 
the operator H~. Suppose, however, that we do 
shift the COlltOur C past the pole, and that we then 
select the best possible new point f/ = - r at which 
C intersects the real axis. 12 The resulting integral 
will then have a more rapid exponential falloff than 
the function E(x, y; b). 

The Green's function G(z, Zl; -1) is equal to the 
sum of the new contour integral and - 27ri times 
the residue of the integrand in Eq. (47b) at the 
point f/ = -b. This latter term is, thus, of the form 

R = ¢( )¢*( ') exp [-(1 - W/2 !x - x'IJ 
y y 47r !x - x I ' (l4B) 

since the ground state of the operator H~ is non­
degenerate. The function ¢(y) is the ground-state 
wave function. 

From our results in Appendix III we can now 
conclude that the positive term R must dominate the 
Green's function G(z, z'; -1) in the direction which 
we are considering in the (z - z') space, if y' is small. 
The wave function ¢(y) satisfies, according to the 
result expressed by inequality (140) in Appendix III, 
the condition that for any e > 1 there exists an 
m(e) such that 

I¢(y)! > m(O) exp (_Ob 1
!2 /yl). 

We may summarize these results by saying that 
for any direction in the (z - z') space for which 
E,(z - z') > exp (-Iz - zll) the Green's function 
Grs(z, z'; -1) must, for z' in some bounded region 
and for any e > 1, satisfy the condition 

IGr.(Z,Z'i -1)1> m,(e)E,[e(z - Zl)], (144) 

as a function of z, where m, (e) is a constant which 
may depend on e. 

It is then an easy matter to apply the estimate in 
inequality (144) to derive from the integral equations 
(22) the following result [taking inequality (141) 
into account): 

Theorem IV. If the potentials V T8 (z) are non­
positive and do not vanish identically, and if V1zaCz) 
is nonpositive, then for every () > 1 there exists a 
constant c(O) > ° such that for all z 

If(z) 1 > c(e)B(ez), (145) 

where the notation is as in Theorem II. 

12 If there is more than one bound state the new point of 
intersection must be selected between TJ = -b and the pole 
closest to -b. 
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APPENDIX V 

In this Appendix we shall consider the relation­
ship between the rate of exponential falloff of a 
function and the tube of analyticity of its Fourier 
transform. We shall omit all proofs; some of the 
facts listed are quite trivial and, we believe, well 
known. 

Definitions. 

(1) Let Ifn be the n-dimensional real Euclidean 
space. A point in Rn v,ill be denoted by z, where this 
symbol stands for the position vector of the point 
with respect to a fixed origin. The absolute magni­
tude of the vector z is denoted JzJ. 

(2) Let M be the set of all continuous functions 
p(z) satisfying 

(a) p(Xz) = Xp(z) , for X ~ 0; 

(b) p(z) ~ 0, for all z in Rn. 

The functions in ill are, thus, nonnegative and 
homogeneous of degree one. A function in lVl is 
determined on any ray in Rn by its value at any 
point on the ray. 

(3) Let il,l be the set of all functions in M which 
satisfy the further condition that 

p(z) > 0, whenever z ~ 0. 

(4) For every p(z) in M, let C;(-p(z» be the 
set of all functions fez) such that for every 0 satis­
fying 1 > 0 ~ 0 the function fez) exp lOpez)] is 
bounded for all z in Rn. 

We have selected this notation for obvious mnemo­
technic reasons. Thus, the function exp [- p(z)] 
in particular belongs to C;( - p(z», and so does 
every function which decays at the same or at a 
faster rate at infinity. 

(5) For any function p(z) in 1M, let S(p(z» be 
the set of all points in Rn for which p(z) < 1. This 
set is clearly a bounded open region containing the 
origin, and star-like with respect to the origin. 

Every function p(z) in 1M thus defines a region 
S(p(z», and conversely every bounded open region 
with a continuous boundary which is star-like with 
respect to, and contains, the origin, defines a func­
tion p(z) in iiI. 

(6) Let PI (z) and P2(Z) be two functions in 1M, 
and let S, = S(Pl(Z» and S2 = S(P2(Z» be the 
corresponding regions in Rn , defined as in definition 
(5). Let S = S, ® S2 be the set of all points z in 
Rn which can be written in the form 

where 1 ~ 0 ~ 0, and where z, is in S, and Zz is in 
S2. We may call S the joint envelope of S, and S2. 
The region S is clearly bounded; it has a continuous 
boundary, and it contains and is star like with re­
spect to the origin. Therefore, there is associated a 
function p(z) with S, and for this function we may 
employ the notation 

p(z) = P, (z) ® P2(Z). 

We now make the following assertions. 

Assertions. 

(1) Let Pl(Z) and pz(z) be any two functions in 
iiI, and let, with the notation in definition (6), 
p(z) = p,(z) ® P2(Z). Then 

p(z) = g.l.h. (PJ(z') + p,(z - z')}. 
z' 

(2) Let p(z) be a function in 1M. Let the region 
1'(p) in Rn be defined by the condition that a point 
k" is in T(p) if and only if 

p(z) - k"·z > 0, for all z ~ ° in Rn. 

Let le be a vector in complex n-dimensional space, 
and let le' = Re (k) and le" = 1m (k). The vectors 
le' and le" are, thus, elements of R". Let Te(P) be 
the tube region in complex n-dimensional space such 
that k" is in 1'(p). Then 

(a) The region 1'(p) is convex and contains the 
point le" = 0; 

(b) For any function fez) ill C;(-p(z» which is 
integrable over every bounded subregion of Rn the 
integral 

¢(k) = (211")- nI2 1 d"(z)f(z) exp(-ik·z) (146) 
(00) 

exists and defines an analytic function of k when­
ever k is in 1'e(P). 

(c) For any point ko on the boundary of 1'e(P) 
there exists a function fez) in C;[ - p(z)] such that 
the corresponding function ¢(k), defined by Eq. 
(146), fails to be analytic at ko• 

(3) Let p(z) be a function in 1M, and let the region 
S(p) be defined as in definition (5), and let the region 
T(p) be defined as in the preceding assertion. Then 

(a) Ie" is in T(p) if and only if 

]/\k"\ > l.u.b. (k"·z/p(z) jle"JI 
I z I ~1 

(b) If Se is the convex envelope of the region S, 
and if Pe(z) is the function in 1M defined by Se, and 
hence Se = S(Pe(z», then 

T(p) = T(p.) , 
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and the region T(p) is, thus, determined by the 
convex envelope of S(p). 

Let us now comment briefly on the relevancy of 
these definitions and assertions to the discussion in 
the main body of the paper. 

A characteristic problem in our discussion is the 
following: Given the positive functions 11 (z) and 
Mz) which fall off exponentially at infinity. We 
desire to place an exponential bound on the function 
I(z) defined by 

I(z) = l.u.b. {!I(z')Mz - z')}. 
z' 

We may now reformulate this problem as follows: 
The functions ft(z) and Mz) belong to the "ex­
ponential classes" 8( -Pl(Z)) and 8( -P2(Z)), re­
spectively, for some functions PI and P2 in M. We 
desire to find a function p(z) in M such that I(z) 
is in the exponential class 8(-p(z)). From asser­
tion (1) we get the answer very simply: p(z) = 
PI (z) @ P2 (z) , or, stated differently, the region S 

which defines p(z) is the joint envelope of the 
regions SI and S2 associated with the functions p. 

and P2' With this geometrical interpretation the 
proofs of Lemmas IV and VI are almost trivial1 

The relevance of assertions (2) and (3) in this 
Appendix to the discussion in Sec. VI is quite 
obvious. Suppose that the ground-state wave func­
tion if;(z) belongs to the exponential class 8( - p(z)) 
for some p(z) in M. Then the Fourier transform of 
if;(z) is analytic in the region Te(P), which region 
is the intersection of all regions of analyticity of the 
Fourier transforms of all functions in the class 
8( -p(z)). We have shown that the wave function 
belongs to the exponential class 8(1n [B(z)]). The 
region S defined by -In [(B(z)] < 1 is, however, in 
general not convex, and is, thus, smaller than the 
convex envelope Se of S. The region Te (S) is, 
however, the same as the region Te(Se), and our 
Theorem II is, therefore, in general, stronger than 
our Theorem III. 
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by Projection Operator Formalism* 
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The partitioning technique for solving secular equations is briefly reviewed. It is then reformulated 
in terms of an operator language in order to permit a discussion of the various methods of solving the 
SchrOdinger equation. The total space is divided into two parts by means of a self-adjoint projection 
operator O. Introducing the symbolic inverse T = (1-0)/(E-H), one can show that there exists an 
operator fl = 0 + THO, which is an idempotent eigenoperator to H and satisfies the relations Hfl = 
Efl and fl' = fl. This operator is not normal but has a form which directly corresponds to infinite-order 
perturbation theory. Both the Brillouin- and Schrodinger-type formulas may be derived by power 
series expansion of T, even if other forms are perhaps more natural. The concept of the reaction 
operator is discussed, and upper and lower bounds for the true eigenvalues are finally derived. 

1. INTRODUCTION 

AFUNDAMENTALproblem in quantum chemis­
try and solid-state physics is the solution of 

the Schrodinger equation 

H'I' = E'I' (1) 

for the stationary states. One of the strongest tools 
for treating this problem is the so-called partitioning 
technique, since it contains many of the conven­
tional methods as special cases, particularly the 
variation principle and the perturbation theory. In 
pure mathematics, the partitioning technique seems 
to be a well-known tool in determinant 1 and matrix 
theory.2 In wave mechanics, it was early used in 
Dirac theory3 for separating the two large com­
ponents from the two small components in the 
spinor wave function. In radiation theory, it has 
been used effectively by Gora,4 and, during the 
years 1948-51, several authors6 became independ­
ently interested in the technique as a simple and 

* The research reported in this paper has been sponsored 
in part by the King Gustaf VI Adolf's 70-Years Fund for 
Swedish Culture, Knut and Alice Wallenberg's Foundation, 
The Swedish Natural Science Research Council, and in part 
by the Chemistry Research Branch, ARL, AFRD, of the 
Air Research and Development Command, U. S. Air Force, 
through its European Office. 

1 M. Arnaldi, Giornale di Mat. Battaglini 34, 209 (1896). 
2 See, e.g., E. Bodewig, Matrix Calculus (North-Holland 

Publishing Company, Amsterdam, 1959), 2nd ed. 

valuable alternative to the conventional perturba­
tion theory. 

This development has continued, and it has turned 
out that the partitioning technique is highly con­
venient for the applications to quantum chemistry.6 
It renders an excellent numerical tool for solving 
secular equations of high order; the eigenvalues E 
are not explicitly obtained but are implicitly given 
as solutions to an equation of the type E = f(E) , 
which is conveniently solved by iteration. The 
various types of iteration procedures and their 
convergency have also been studied, and the con­
nection with the variation principle as well as with 
the perturbation theory has been investigated.7 

The purpose of this paper is to rewrite the basic 
formulas in the partitioning technique in terms of 
a projection-operator formalism, which gives a 
simple and condensed form of the entire approach 
and shows the connection with the infinite-order 
perturbation theory and the iteration-variation 
methods in a highly transparent way. Both the 
Brillouin-Wigner and the Schrodinger forms of 
perturbation theory will be studied in this way, and 
the formalism will further be used to derive an 
explicit form for the so-called reaction operator, 
the expectation value of which gives the true 
energy shift under a perturbation. This operator 

a See W. Pauli in Handbuch der Physik, edited by S. Flugge 6 J. O. Hirschfelder, and P. O. Lowdin, Technical Note 
(Springer Verlag, Berlin, 1933), Vo!' 24, p. 236. No.3, Uppsala Quantum Chemistry Group, 1957 (unpub-

'E. Gora, Z. Physik 120, 121 (1942-43). lished); Molecular Physics 2, 229 (1959); H. Shull and W. T. 
6 H. A. Kramers, Courant Anniversary Vo!., 205 (1948); Simpson, J. Chem. Phys. 28, 925 (1958). 

S. Sueoka, J. Phys. Soc. Japan 4, 361 (1949); W. Kohn, J. 7 P. O. Liiwdin, Technical Note No. 11, Uppsala Quantum 
Chem. Phys. 17, 670(1949); M. H. L. Pryce, Proc. Phys. Soc. Chemistry Group 1958 (unpublished); Advances in Chemical 
(London) A63, 25 (1950); S. F. Boys, Proc. Roy. Soc. (Lon- Physics (Interscience Publishers, Inc., New York, 1959), Vo!. 
don) A201, 125 (1950); M. Lax, Phys. Rev. 79, 200 A (1950); 2, p. 270f; Technical Note No. 28, Uppsala Quantum Chem-
P. O. Liiwdin, J. Chem. Phys. 19, 1396 (1951). istry Group 1959 (unpublished). 
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will in a following paper be utilized for developing 
an exact self-consistent-field theory, which bridges 
the gap between the independent-particle model 
and the exact many-particle theory. 

2. PARTITIONING TECHNIQUE IN SOLVING 
SECULAR EQUATIONS 

In order to familiarize ourselves with an operator 
formalism which otherwise may seem unnecessarily 
abstract, we will start out with a brief review of the . 
partitioning technique as a numerical tool for 
80lving the secular equations connected with the 
eigenvalue problem (1). In using Ritz's method,S 
we will introduce a complete orthonormal basis 
lfll and write the eigenfunction in the form 
'l' = LI flcl, where the coefficients {cil form a 
column vector c. Introducing the energy matrix H 
having the elements Hkl = (fk IHI fl), one obtains 
from (1) the matrix equation 

Hc = Ec, (2) 

which is simply the transform of the original 
Schrodinger equation in the discrete representation 
chosen. 

Let us now divide or "partition" the complete 
basis (fd into two subsets (a) and (b). For the sake 
of simplicity, we choose the subset (a) so that it 
contains only a finite number of functions. The 
matrix H and the vector may now be written in 
the form 

c = [:J 
and, instead of (2), we obtain two equations: 

Haaca + HabCb = Eca, 

Hbaca + HbbCb = Ecb, 

(3) 

(4) 

(5) 

which can now be treated in slightly different ways. 

Solution of Equation System 

We start by reviewing the method used in the 
numerical applications. In studying both non­
degenerate and degenerate levels E, it is convenient 
to choose the subset (a) to consist of a single func­
tion, say fl' and to put C. = CI = 1. The approach 
then gives all eigenvalues except those for which 
accidentally CI = o. Starting from a trial value 
E = E(O), we then determine the corresponding 
vector cia) by solving Eq. (5) leading to the system: 

(6) 

Substitution of cia) into (4) gives a new value E(!) 

8 W. Ritz, Z. reine angew. Math. 135, 1 (1909). 

defined by the relation 

E(I) = Hll + HlbciO). (7) 

The right-hand member defines a function feE) for 
E = E(O), which has the property that l' (E) = 
-c:(E) ·cb(E). Repeating the procedure starting 
from E(I) instead of E(O), we obtain a new value 
E(2), etc. The Eqs. (6) and (7) define together a 
first-order iteration process,9 leading to a series 
of numbers E(O), EO), E(2), E(3), ... , with the 
property that any two consecutive numbers E(k) 

and E(k+lJ bracket a true eigenvalue E. The series 
E(O), EO), E(2), ... is convergent if C:Cb < 1 and 
divergent if C:Cb > 1. In both cases the first-order 
process may be replaced by a second-order process 
based on the formula: 

EO) _ E(O) 

E* - E(O) + (8) 
- 1 + ciO)tciO) , 

and we note that the right-hand member is equiva­
lent to the expectation value of H with respect to 
the vector c (0) having the components CI = 1 and 
ciO), which gives the connection with the variation 
principle. The numerical process based on (6)-(8) 
is very convenient, as each step renders an upper 
and lower bound E(O) and E(O as well as a second­
order approximation E* to a true eigenvalue E. 
The process is very rapidly convergent, since the 
error in each step is proportional to the square of 
the error in the preceding step. 

The numerical procedure does not distinguish 
between degenerate and nondegenerate eigenvalues 
E but, in order to obtain all eigenvectors c associated 
with a degenerate level, one has to solve the equation 
system (H - E ·l)c = 0, once the E value has 
been determined. 

Solution by Inverse Matrix 

One may determine Cb explicitly from (5) m the 
form 

(9) 

provided that the inverse matrix (E ·l bb Hbb)-I 
exists for the E value under consideration. Substitu­
tion of (9) into (4) leads to the relation 

(10) 

where 

Raa = Haa + Hab(E ·lbb - H".)-'Hba- (11) 

9 For the general classification of iteration procedures, see 
E. Schroder, Math. Ann. 2, 317 (1870); D. R. Hartree, Proc. 
Cambridge Phil. Soc. 45, 230 (1949). Compare also P. O. 
Lowdin, Technical note No. 11, Uppsala Quantum Chemistry 
Group, 1958 (unpublished), particularly the Appendix. 
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Equation (10) has exactly the same form as the 
original eigenvalue problem (2), but the total 
matrix H is now condensed into a finite matrix 
Hao given by (11). This technique is of importance 
in many physical and chemical problems, since 
it enables us to concentrate our interest on a certain 
part (a) of a system, whereas the influence of the 
other parts (b) may be considered as a "perturba­
tion" represented by the second term in the right­
hand member of (11). 

In treating an eigenvalue E having a degeneracy 
of finite order g, we choose the subset (a) to contain 
g functions, since the inverse matrix (E ·l bb - Hbb)-I 

will then exist. For a nondegenerate level, one has 
g = 1, and we will then choose Ca = CI = 1. From 
(10), we obtain E = H 11, or 

E = HJl + H ,b(E·l bb - Hbb)-IHbl , (12) 

which relation corresponds to (7). The right-hand 
member gives an explicit expression for the function 
fCE), and we note that this function becomes infinite 
for the E values which are eigenvalues to Hbb but 
not simultaneously eigenvalues to H. On the other 
hand, the function fee) is regular also for those 
E values which correspond to degenerate eigenvalues 
of H. The matrix (E ·l bb - Hbb)-I does not exist 
in this case, but the singularity is actually removed 
by the effect of the two factors Hlb and H bl . 

The equation E = fee) may again be solved by 
iteration procedures of first and second order. The 
curve y = E - fee) is graphically illustrated in 
Fig. 1 together with the construction of the values 
EO) and E* from the starting value E(O). Even for 
the abstract operator formalism developed later, 
it is of value to keep the general shape of this curve 
in mind. 

For a degenerate level of order g, we now return 
to the original approach in which we chose the 
subset (a) to consist of g functions. The vector Ca 

now contains g elements and, since there are g 
linearly independent vectors c, these g elements are 
independent of each other. It is hence possible to 
make the following simple choice: 

c = a 

1 

o 
o 
1 

o 
o 

o ' 0' 1 ' 

o 
o 

, 0 

1 

(13) 

Substitution into (10) gives immediately H11 = E, 
Hll = 0, and more generally Hkk = E, Hkl = 0 for 

FIG. 1. The function y = E - f(E) and the graphical con­
struction of E(I) and E* from E(O). 

k 7"" l, and k, l = 1,2, ... g. The matrix Haa is hpllce 
diagonal of order g: 

( 1-1-) 

Hgg 
with all the diagonal elements equal: H11 Hn 
... = Hoa = E. For the energy we obtain ill thi" 
way: 

E = HJl + H ,b(E·l bb - Hbb)-IHbl , ,I."») 

which relation is identical to (12) with the differClleP 
that the subspace (b) has now been reduced to such 
an extent-by removing g rows and columns fr~)]n 
H-that the inverse matrix (E·l bb - H,.,J-l 
actually exists. It may be shown that (15) may 1)(' 
derived from (12) by a limiting procedure. Eqllatioll 
(12) is hence the general one but, in those ("~l"(," 
when we would like to manipulate with the illyprsp 
matrix, the special form (15) is preferablp. Om 
analysis shows that it is feasible to develop the 
partitioning technique for the non degenerate ]pvds 
and then extend the basic energy formula (1:2) to 
the degenerate levels, too, by a simple reinterprpta­
tion of the last term in the right-hand memb('r. 

Partitioning by Projection 

In this section we carry through the partitioning 
of the vectors and matrices involved in the pigen­
value problem (2) by means of the two projPctioll 
matrices: 

( I (i) 



                                                                                                                                    

972 PER-OLOV LOWDIN 

which are self-adjoint and idempotent and fulfill 
the relations e + P = 1, eP = Pe = O. One has 

c = (0 + THe)C, 

where C is an arbitrary vector having eC 
immediately particular interest is the matrix 

c~ = ec = [;a] , ct = Pc = [:J' (17) 0 = e + THe, 

(22) 

~ O. Of 

i.e., c~ and c~ are the complete vectors having Co and 
Cb, respectively, as the essential nonvanishing parts. 
For the energy matrix, we obtain similarly: 

H~a = eHe = [:aa :], 

[: :ab] , 
(18) 

The primed matrices are convenient to work with 
since they are defined in the total space, and they 
can hence be added and subtracted, so that, e.g., 
c = c~ + c~, H = H~a + H~b + H', + H'b' etc. 
Of essential importance in the theory is the "inverse 
of the corner" defined by the relation: 

T'b = [0 0 ], (19) 
o (E·l b • - Hbb)-l 

and the question is how it should be represented 
in terms of e and P. Starting out from the equation 

[
a'Olaa 0 J-l 

(E ·lbb - Hob) 

[
a-l'la, 0 ] (20) 

= 0 (E ·l bb - Hbb)-l 

which is valid for all values of the constant a ~ 0, 
and multiplying to the left and the right by P, we 
obtain 

Tbb = P[a· e + PCE·1 - H)pr1p, (21) 

where the operator T~b is entirely independent of 
the value of a ~ O. For the sake of simplicity, it may 
be tempting to put a = 0, but this leads actually 
to an improper notation, which will nevertheless 
.often be used in the following, since it is now clear 
how this operator should be defined. 

Using the projection matrices and (9), we will 
now drop the primes and write the eigenvector c 
n the form: 

(23) 

which applied to an arbitrary vector C gives an 
eigenvector c, i.e., C = OC. Since it satisfies the 
eigenvalue relation HOC = EOC for arbitrary 
vectors C, it is an eigenmatrix to H, satisfying the 
relation HO = EO. It is further idempotent, so 
that 0 2 = 0, but it is neither self-adjoint nor 
normal. Using (10) and (11), we obtain finally for 
the energy: 

Ee = e(H + HTH)e. (24) 

Formulas (23) and (24) are of such a general nature 
that they can be carried over into an abstract 
operator formalism which is independent of the 
choice of any specific representation based on a 
complete set Ifl}. 

3. PROJECTION OPERATOR FORMALISM FOR 
SOLVING THE SCHRODINGER EQUATION 

In this section, we will develop the partitioning 
technique in terms of a simple operator formalism, 
Let 0 be a self-adjoint projection operator which 
defines a certain subspace (a) of order g in the total 
Hilbert space, so that 

0 2 = 0; ot 0; Tr (0) = g. (25) 

The operator P = 1 - 0 satisfies the relations 
p 2 

= P, pt = P, and OP = PO = 0 and defines 
a subspace (b), which we will call the orthogonal 
complement to the subspace (a). 

Let us further introduce the operator T, which 
corresponds to the "inverse of the corner" (19) in 
matrix theory, by the definition: 

T = P[a·O + peE - H)Pf1p, (26) 

where a ~ 0 is an arbitrary number. The inverse 
operator in this expression exists for a r! 0 and, 
since aT/aa == 0, the operator T is entirely inde­
pendent of the value of a. As before, it is hence 
tempting to put a = 0 for the sake of simplicity, 
but this leads to a somewhat improper notation. In 
the following, we will often use the symbolic notation 

T = PICE - H), (27) 

instead of the complete expression (26). For the 
development of the theory, it is essential that T 
fulfills the following relations: 

PCE - If)T = P, (28) 

OT = TO = O. (29) 



                                                                                                                                    

STUDIES IN PERTURBATION THEORY. IV 973 

The first one is obtained from the equation 

[a·O + peE - H)P][a·O + peE - H)pr 1 
= 1 

by multiplying to the left and to the right by P, 
and the second one follows from the fact that 
OP = PO = O. 

Let us now consider the operator n defined by 
the relation 

n = 0 + THO (30) 

analogous to (23). We will prove that this operator 
is an eigenoperator to H, so that Hn = En, provided 
that E fulfills a certain condition. Using (28), we 
obtain the identity 

P(H - E)n = P(H - E)O 

+ P(H - E)THO = PHO - PHO = 0, 

for all values of E. Hence we have 

(H - E)n = (0 + P)(H - E)n 

= O(H - E)n = O(H - E)(O + THO) 

= O(H + HTH - E)O = 0, 

which gives the condition: 

OEO = O(H + HTH)O. (31) 

This relation is completely analogous to (24). 
Formulas (30) and (31) form together the basis 
for the theory. 

The operator n defined by (30) is an idempotent 
eigenoperator to H satisfying the relations 

Hn = En, Tr (n) = g. (32) 

The idempotency follows from the fact that, 
according to (29), 

n2 = (0 + THO) ·(0 + THO) = 0 2 + OTHO 

+ TH02 + THO THO = 0 + THO = n. 

For the trace of n we have further 

Tr (n) = Tr (0 + THO) = Tr (0) + Tr (OTH) = g. 

The operator n is hence a projection operator but 
not of the conventional orthogonal type. It is 
neither self-adjoint nor normal, which is easily 
checked by considering the adjoint operator 
nt = 0 + OHT. The operator n has actually a 
rather complicated character, and we note that it 
is a sum of an idempotent term 0 and a nilpotent 
term THO, satisfying the relation (THO)2 = O. 
In addition to n, every operator of the type 
n' = n + nA (1 - n) is actually an idempotent 
eigenoperator to H. The particular importance of 

the form (30) comes from the connection with the 
perturbation theory. It fulfills further the simple 
relations: 

On = 0; 

pn = n - 0; 

nO = n; 

np = o. 
(33) 

We will now use the eigenoperator n to construct 
the eigenfunctions 'It associated with the Hamil­
tonian H. Let us start by considering a nondegen­
erate level E, and let us choose g = 1 so that 0 is 
a one-dimensional projection operator which always 
(except for a constant factor) selects one and the 
same function. Let further <I> be an arbitrary trial 
function or "model" function which has a non­
vanishing projection with respect to O. Let us put 
0<1> = cp, and let us normalize this projection so 
that (cplcp) = 1, or (<I> 101 <1» = 1. The function 

(34) 

is now an exact eigenfunction to H since, according 
to (32), we have H'lt = Hn<l> = En<l> = E'lt. The 
eigenoperator n will hence from the trial function 
<I> project out the exact solution. This solution is 
characterized by a normalization condition of the 
type (cpl'lt) = (O<l>ln<l» = (<I> 101 <1», i.e., 

(cp I 'It) = 1, (35) 

whereas for the actual normalization integral we 
obtain ('ltl'lt) = (<I> Intnl <1» = (<I> 10 + OHT2HOI <1», 
i.e., 

('It l'lt) = (cp 11 + HT2HI cp). (36) 

Multiplying the relation (31) to the left by <1>* and 
to the right by <I> and integrating, we obtain 

E = <cp IH + H E ~ H HI cp), (37) 

which equation is analogous to (12) and corresponds 
to the Schrodinger-Brillouin10 formula in perturba­
tion theory; the latter may be derived from (37) 
by expressing the inverse operator in T by means 
of a convenient power-series expansion. The corre­
sponding wave function is given by (34) . We note, 
however, that these power series expansions have 
to be convergent, whereas the condensed forms (34) 
and (37) are not subiect to such a restriction and 
represent forceful alternatives to infinite-order 
perturbation theory. 

In treating a degenerate level E of order g, we 
start out from a g-dimensional projection operator 
o and its orthogonal complement P = 1 - o. The 

10 L. Brillouin, J. phys. radium 33, 373 (1932). 
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eigenoperator il defined by (30) will now project 
on the eigenspace of order 9 connected with the 
degeneracy. In order to follow the development 
previously sketched in the matrix formalism, we 
will now resolve 0 into 9 orthogonal components: 

(38) 

which are all one-dimensional projection operators 
fulfilling the relations: 

(39) 

OkOZ = 0 for k ~ 1. 

For il we obtain the resolution il = Lk ilk, where the 
components ilk = ilOk for k = 1, 2, ... 9 form a set 
of eigenoperators to H satisfying the relations: 

ilk = Ok + THOk, (40) 

(41) 

Multiplying the energy relation (31) to the left and 
to the right by Ok and Ok, and by Ok and Oz respec­
tively, we obtain 

OkEOk = Ok(H + HTH)Ok, (42) 

Ok(H + HTH)Oz = 0, (43) 

which corresponds to the diagonalization achieved in 
(14). From (29), we get similarly OkT = TO k = 0 
which relation is useful in the following. 

In order to derive the eigenfunctions to H, we 
will let the projection operators 0], O2 , ••• O. 
select a set of orthogonal functions 'PI, 'P2, ... 'P. 
which will be chosen normalized so that ('Pkl'P/) = Okl. 
In the applications, the projection operators Ok are 
often defined essentially by means of these functions, 
which may here be chosen quite arbitrarily. How­
ever, once the set 'PI, 'P2, ... 'Po is fixed, it defines 
also the orthogonal complement and the operators 
P and T. Let us now consider the 9 functions 

'Ifk = ilk'Pk = 'Pk + TH'Pk, (44) 

which are eigenfunctions to H according to (41). 
Since ('Pkl'lr I) = Ok/, it is easily shown that the func­
tions 'If 1, 'If 2, '" 'If. are linearly independent. How­
ever, they are usually not orthonormal, as is shown 
by their metric integral: 

('Ifk 1'If1) = ('Pk 11 + HT2HI 'PI)' (45) 

From (42) and (43), we obtain further 

E = <'Pi< jH + H E !:. H HI 'Pk) (46) 

and 

(lPk IH + HTHI 'PI) = o. (47) 

We note that formulas (44) and (46) are completely 
identical with (34) and (37) in the nondegenerate 
case ,vith the difference that the projection operator 
P defining the "orthogonal complement" is here 
reduced to such an extent that the inverse operator 
in the definition (26) of T actually exists. Keeping 
this in mind, we will in the following not distinguish 
between degenerate and nondegenerate levels in 
discussing Eqs. (34) and (37) or the analogous 
Eqs. (44) and (46). 

Iteration Procedures 

In (37) and (46), the eigenvalue problem is given 
into an implicit form E = feE), where 

teE) == <'P IH + H E !:. H HI 'P)' (48) 

It is natural to try to solve this problem by iteration 
procedures. These will be essentially the same as in 
the matrix representation, and they will be only 
briefly reviewed here in terms of the operator 
formalism. Of basic importance is the fact that the 
first derivative 

feE) 
(49) 

-(THIP I TH'P) :::; 0, 

is always negative; it equals the normalization 
integral of the second term in the wave function 
(34) with negative sign. The higher derivatives are 
also easily determined: 

t n
) (E) = (- It n! (IP I HTn

+] H lIP); (50) 

they are useful in constructing iteration procedures 
of higher orders than the second. 

The formula E(k+]) = f{E(k) I leads to a first-

order iteration procedure and a series of number 
E(o>, E(l), E(2), E(3), .. , , which may be convergent 
or divergent. Substitution of these numbers into 
the right-hand member of (48) leads to an expression 
for E in terms of a continued fraction. This expression 
is actually much more complicated than the classical 
continued fractions, since it involves operators and 
the formation of expectation values, but it pre­
serves one very important feature of these fractions, 
since it approaches the limit E both from below and 
from above, if it is convergent. It is easy to study 
the series of numbers E(O), EO), E(2), ••• directly, 
and we will put E(k) = E + E(k), where E(k) is the 
error in the kth iteration. Using the mean-value 
theorem 
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whrre 0 ::::; 0 ::::; 1, one obtains 

/k+ O = €(k). f' {E + O/k) I. (51) 

Since l' is always negative according to (-19), the 
errors €(k) ,yill alternate in sign, and this implies 
that the successive values of E(k) "will alternately 
be upper and lower bounds to E. Between two con­
secutive values E(k) and E(k+l), there will hence 
always be at least one eigenvalue E, and we ,vill 
refer to this as the bracketing theorem. The process 
will be convE'rgent if 11'1 < 1, and divergent if 
If'l > 1. 

Irrespective of whether the first-order process is 
convergent or divergent, one can easily go over to 
second-order iteration procedures having a much 
faster convergence, since the error in each step will 
be proportional to the .square of the error in the 
preceding step. One can, for instance, solve the 
equation y = E - feE) = 0 by the well-known 
N ewton-Raphson procedure: 

(0) E'(O) 1<,(1) 

E* = E
CO

) - ~(ijT = E(O) - 1" _ f~F;(O>f ' (52) 

which eorresponds to the tangential construction 
in Fig. 1. The derivative 1'(E) is given by (49), and 
it is anyway evaluated in normalizing the eigen­
function. Introducing the approximate solution 

(0) P H 
0/ = rp + E(O) _ H rp, (53) 

one can transform (52) into the expectation value 

(0/(0) IH I 0/(0» 
E* = (o/(OTI 0/(0)) (54) 

order 2n + 1. The explicit relations are easily shown 
by the operator formalism. 

Let 8 be a trial value for the energy E, and 
let ::I be a certain approximation of the matrix 
T = P / (8 - H) properly defined by (26). It is 
easily shown [see Appendix, (AlO)] that, if ::I is 
affectE'd by an error of the first order, then 

3* = 2J - ::1(8 - IJ)J (55) 

is a better approximation with an error of the second 
order. If, e.g., 3 is a power series expansion including 
terms up to order n, then ::1* is represented by the 
same expansion including terms up to order 
(2n + 1); see (AI2). Instead of the operator n 
associated with the trial value 8, we have now the 
two approximate operators: 

Q = 0 + 3HO, Q* = 0 + ::I*HO. 

They fulfill the following basic formulas 

QtQ = 0(1 + H3)(1 + 3H)O 

= 0 + OH3
2
HO, 

and 

Qt(H - 8)Q = 0(1 + H3)(H - 8)(1 + 3H)O 

= O[(H - 8) + H::I(H - 8) 

+ (H - 8)::IH + H3(H - 8)3HJO 

O[(H - 8) + H{2::1 - 3(8 - H)31HJO 

O[H - 8 + H3*HJO = O[HQ* - 8JO, 

(56) 

(57) 

(.58) 

which are used in calculating the expectation value 
of H with respect to the approximate wave function: 

which shows the connection with the variation ~ = ~1<1> = rp + 3Hrp. (59) 

principle. We obtain directly 

Extension of Wigner's Theorem. 

In Brillouin's perturbation theory,'0 there is a 
famous theorem by \Vigner" which gives a connec­
tion between the perturbation formulas and the 
variation principle of a some"what different type. 
We will here derive an extension and generalization 
of this theorem in terms of the operator formalism. 

The variation principle says that, if the wave 
function is affected by an error of the first order, the 
expectation value (H) is affected by an error of the 
second order. This implies that if the wave function 
in a perturbation calculation is correct up to order n 
with an error of order (n + 1), the energy error is 
of order 2(n + 1) and (H) is hence correct up to 

11 E. Wigner, Math. naturw. Anz. ungar. Akad. Wiss. 
53,477 (1935). 

(II _ 8) = (~ I~ -_81 ~) = (<I> IQt(H - 8)QI <1» 

(0/ 10/) (<I> [QtQ[ <1» 

i.e., 

(<I> lOCH + H3*H - 8)01 <1» 

(<I> [0(1 + H::I 2H)O[ <1» 

(rp [H + H::I*H[ rp) - 8 . 
(rp [1 + H3 2H[ rp) (60) 

(H) = 8 + (rp IH + H::I*H[ rp) - 8 (61) 
(rp 11 + H3 2H[ rp) , 

which relation holds for any trial value 8 for the 
energy. There is one specific 8 value, for which this 
relation takes a particularly elegant form, namely 
the value for which the numerator in the second 
term vanishes, so that 
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G = ('P IH + H'J*HI 'P), (62) 

since then (H) = G for the wave function ~ = 'P+ 'JH 'P. 
In the special case, when 'J is approximated by a 
power series up to order n, this gives Wigner's 
theorem. For practical purposes, however, the 
general form (61) is much more useful, since it is 
valid for all values of the parameter G. 

4. PERTURBATION THEORY 

Let us now consider the case, when H = Ho + V, 
where H 0 is the "unperturbed" Hamiltonian and 
V is an arbitrary, weak or strong "perturbation." 
It is now convenient to choose 0 as the eigenoperator 
to H 0 associated with the state under consideration, 
so that HoO = OHo = EoO, and 0 will hence project 
out the unperturbed eigenfunction 'Po. This means 
that, whenever Ho is standing close to the operator 
0, it can be replaced by the number Eo. We note 
that we here introduce a single eigenfunction to Ho 
and not the complete set of all its eigenfunctions, 
which is an essential simplification in both the 
theory and the applications. The "orthogonal 
complement" to 'Po characterized by P may be 
introduced by orthogonalizing any complete set 
towards 'Po. According to (30) and (31), we now 
obtain 

n = 0 + THO = 0 + T(Eo + V)O 

= (1 + TV)O; (63) 

OEO = O(H + HTH)O 

= O(Eo + V + VTV)O. (64) 

Of particular interest is here the operator W = 
1 + TV, which is called the wave operator, and the 
operator 

t = V + VTV, (65) 

which is called the reaction operator associated with 
the perturbation V, the unperturbed Hamiltonian 
Ho, and the state under consideration. Using (37) 
and (64), we obtain 

(66) 

i.e., the energy shift is simply the expectation value 
(t)o of the reaction operator with respect to the 
unperturbed state. We note further the relations 
n = WO and t = VW. 

Brillouin-Type Formulas 

These expansions are treated here mainly for 
historical reasons and to show the connection with 
other approaches. They are characterized by having 

denominators of the "mixed" type (E - Ho) 
intermediate between the type (E - H) treated 
previously and the type (Eo - Ho) used in the 
Schrodinger theory. Let us introduce the operator 

To = P[a·O + P(E - Ho)prlp, (67) 

for which we will also use the symbolic notation 

To = P/(E - Ho). (68) 

Using the identity [see Appendix, (AI)] 

(A - B)-I = A -I + A -IB(A - B)-I, (69) 

for A = a·O + P(E - Ho)P and B = PVP, and 
multiplying to the left and to the right by P, we 
obtain 

T = To + ToVT = To(1 + VT) (70) 

TV = To(V + VTV) = Tot, (71) 

and 

t = V + V'l'ot. (72) 

This relation corresponds actually to the Lippmann­
Schwinger12 integral equation in scattering theory.13 
For t one finds the solution 

t = (1 - VToflV 
(73) 

= V + VTo V + VTo VTo V + 
and this solution is still not explicit, since each 
denominator in To contains the energy E = Eo + (t)o. 
The inverse operator in To should further exist for 
the E value under consideration, and the power 
series should be convergent. Substitution of (73) 
into (63) and (64) gives the formal expansions: 

n = (1 + Tot)O 

(1 + ToV + ToVToV 

+ To VTo VTo V + .. ·)0, (74) 

OEO = O(Eo + V + VToV 

+ VTo VTo V + .. ·)0. (75) 

Hence, we obtain for the eigenfunction 'l1 and the 
associated eigenvalue E: 

'l1 = (1 + ToV + ToVToV + .. ·)'Po, 

E = Eo + ('Po IV + VTo V 

+ VToVToV + ···1 'Po), 

(76) 

(77) 

12 B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 
(1950). 

13 This derivation of the Lippmann-Schwinger equation 
using the partitioning technique was actually given by Dr. 
Kimio Ohno, Tokyo University, in a lecture in Uppsala in 
1957 (unpublished). 
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which expansions are of Brillouin type. These 
formulas have the disadvantage that the total 
energy E occurs in the denominators (E - H 0) to 
all the factors To, which gives a rather complicated 
implicit expression for the energy. A still more 
serious disadvantage comes from the fact that, in 
nuclear theory,14 one has found that the terms in 
(77), do not stay proportional to the number N of 
particles when N ........ (X) , but diverge. The use of the 
Brillouin type of formulas has for these reasons to 
large extent been abandoned. 

Schrodinger-Type Formulas 

Let us now study the possibilities of obtaining an 
explicit expression for the reaction operator t defined 
by (65). The denominator (E - H) in T may be 
written in the form (Eo + (t)o - Ho - V), and hence 
we obtain 

P 
t = V + V Eo _ Ho _ V + (t)o V, (78) 

which formula forms the basis for our discussion of 
the Schrodinger-type perturbation theory. For the 
energy shift, one gets directly: 

(t)o = (V)o + < V Eo _ Ho ~ V + (t)o V)o' (79) 

The natural expression for the energy shift seems 
hence to be a continued fraction of the generalized 
type discussed previously in connection with the 
energy formula E = feE) and relation (48). We 
note, however, that the use of such a fraction is 
actually equivalent to the use of a first-order iteration 
procedure based on the formula X

lk
+

1
) = g{X

lk
)}, 

where 

g(x) == (V)o + < V Eo _ Ho ~ V + x V)o' (80) 

and x is a real variable such that the solution of the 
equation x = g(x) will give the true energy shift 
(t)o. Since g(x) = fCEo + x) - Eo, the discussion 
in connection with the Eqs. (48)-(54) is valid also 
here. Again there will be a "bracketing theorem" 
saying that any two consecutive numbers in the 
series x(O), XlI), xl2l, ... will bracket the true energy 
shift (t)o. This theorem will be used below in dis­
cussing upper and lower bounds to (t)o. According 
to (36), the normalization integral for the eigen­
function '-IF takes the form 

14 See, e.g., K. A. Brueckner and C. A. Levinson, Phys. 
Rev. 97, 1344 (1955); J. Goldstone, Proc. Roy. Soc. (London) 
A239, 267 (1957); L. S. Rodberg, Ann. Phys. 2, 199 (1957). 

and, since the second term is identical to -g', the 
first-order iteration procedure and the corresponding 
continued fraction will be convergent if ('-IFj'-IF) < 2, 
whereas they will be divergent if ('-IFI'-IF) is larger than 
2. 

Irrespective of whether the first-order procedure 
is convergent or divergent, one can easily go over to 
a second order procedure analogous to (52): 

(82) 

and we note that the expression in the middle is 
equivalent to the expectation value (54) used in the 
variation principle. In both the first- and second­
order procedure, we have assumed that the inverse 
matrices occurring in T have been evaluated exactly, 
but later we will make us free from this restriction. 

In order to get the connection with the conven­
tional Schrodinger theory, we will now evaluate T 
and t by meanS of power-series expansions con­
taining the denominator (Eo - Ho). For this 
purpose, we will introduce the operator 

which exists for a ~ 0 and which is independent of 
the particular value of a. In the following, we will 
also use the symbolic expression 

Ro = P/(Eo - Ho). (84) 

For the sake of simplicity, we will assume that both 
the unperturbed and perturbed levels under con­
sideration are nondegenerate, and the degenerate 
case will be discussed later. Using the identity (69) 
for A = a·a + P(Eo - Ho)P and B = PV'P, where 

V' = V - (t)o, (85) 

we obtain 

T = Ro + Ro V'T, (86) 

which is the "integral equation" for the operator T. 
The solution 

= Ro + Ro V'Ro + Ro V'Ro V'Ro + (88) 

may be expressed as a power series in Ro V', only 
if I(Ro V')I < 1 for all trial functions. Substitution 
of expansion (88) into (63) and (65) gives for the 
eigenoperator n and the reaction operator t the 
formal expressions 
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n = (I + Ra V + Ro V'Ro V 

+ Ro V'Ro V'Ro V + ···)0, (89) 

and 

t = V + VRo V + VRo V'RO V 

+ VRo V'RO V'RO V + 
00 

V + VRo L (V'Ro)kV. (90) 
k=O 

We note that, since V' contains (t)o, the formulas 
have an implicit character and have to be solved 
by iteration. Conventionally the results are arranged 
after powers of V and, in order to obtain t correct 
to at least the order n, one has to take n terms of 
the right-hand member of (90) and express (t)o 
correct at least up to the order (n - 2). By using 
the partitioning of the integers, one can further 
easily collect the terms of various orders and obtain: 

t = I, + 12 + t~ + t4 + 
I, V, 

f3 = VRo(V - (V)o)Ro V, (91) 
t4 VRo( V - CIl)o)Ro( V - (V)o)Ro V 

-(VRaV)VR~V, 

For the wave operator W = 1 + TV, one gets 
correspondingly: 

W = 1 + W, + W 2 + TV3 + 
(W, = Ror, 

W 2 = Roell - (V)o)Ro V, 

W3 = Ro(V - (V)o)l(o(V - (V)o)Ro V 

- (VRo V)R~V, 

(92) 

and we note that t = VW and tk = VWk ; the 
eigenoperator is given by the relation n = WOo The 
energy shift (t)o may now be written in the form 

(/)0 = E, + E2 + E3 + E4 + ... , (93) 

where Ek = (<Po Itkl <Po) is the kth-order term. 
We have in this way obtained condensed expres­

sions which correspond to the basic formulas in 
Schrodinger's perturbation theory.'5 In order to get 

'6 E. Schr6dinger, Ann. Physik (4) 80, 437 (1926); for the 
explicit form of the third- and fourth-order terms, see K. F. 
Niessen, Phys. Rev. 34, 253 (1929); compare also K. A. 
Brueckner, ibid. 100,36 (1955). 

the conventional relations, one has further to choose 
the "orthogonal complement" to <Po characterized 
by the projection operator P = 1 - 0 to consist 
of all the remaining eigenfunctions <PI, <P2, <P3, ••• to 
the unperturbed Hamiltonian H o, provided the 
entire set is complete. In this representation the 
operator Ro is diagonal, and, denoting the eigen­
value of Ho associated with <Pk by E~O), we obtain 

P 
Ro = -m--- = 

Eo - Ho 

(94) 

Substitution of this expression for Ro into (91) and 
(92) leads to the conventional Schrodinger formulas, 
and we obtain, for instance, 

where V ak = (<Po IVI 'Pk)' We note that the relations 
(91) and (92) have a more general character than 
the standard formulas, since the former are valid 
for any orthogonal complement to 'PO.

16 

Let us now discuss the normalization problem. 
According to (35), the eigenfunction 'It = n<I> 
determined by the eigenoperator n = WO satisfies 
the normalization condition ('Pol'lt) = 1. Using (36), 
we obtain the actual normalization integral 

which contains the operator 

VT 2 V = VRo(1 - V'Ra) -'Ro(I - V'Ro) -, V 

VR~ V + VR~ V'Ra V + VRo V'm V 

+ VR~V'Ro V'Ro Y 

+ VRo V'R~ V'Ro V + (97) 

This operator is easily systematized after powers of 
V, and we obtain 

('It I 'It) = 1 + O2 + 03 + 04 + 

1

02 = (VR~V)o, 

03 = (VR;(V - (V)o)Ro: 

+ VRo( V - (V)o)Ro V)o, 
(98) 

These relations will later be of importance in using 
the variation principle. 

In concluding this section, we note that we have 
here considered a state which is nondegenerate both 

16 Compare, P. O. L6wdin, Technical Note 28, Uppsala 
Quantum Chemistry Group 1959 (unpublished). 
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in the unperturbed and perturbed system. When 
power-series expansions of T are used, the treatment 
of a degeneracy is complicated by the fact that the 
inverse matrices in both operators 

T = PI(E - H), (99) 

defined by (26) and (83), respectively, should exist. 
Starting out from an unperturbed level Eo which 
has a degeneracy of order g, one has to choose 
the basic projection operator 0 to be of order g 
so that Ro exists. It is feasible to introduce a resolu­
tion of 0 into g orthogonal components 0 1 , O2 , ••• o. 
according to (38), and we will denote the corre­
sponding functions by CP01, CP02, ... CPo •. They are all 
eigenfunctions to Ho associated with the level Eo. 
If also the perturbed level has a degeneracy of 
order g, there are no further complications, we can 
directly apply formulas (42) and (43), and the 
expansion relations (88)-(98) are valid in an un­
changed form. However, if there is a splitting of the 
degeneracy which is usually the case the matrix 
- ' H defined by (11) and having the elements 

flkl = (CPOk lEo + V + V E ~ H vi cpo) (100) 

is no longer diagonal. This leads to a secular equation 
(10) of order g, which may again be conveniently 
treated by partitioning. This "repeated-partitioning" 
technique is actually of practical importance also 
in other connections. 

Upper and Lower Bounds in Perturbation Theory 

In connection with relation (51) in the general 
theory, we discussed a "bracketing" theorem which 
provided upper and lower bounds for the true 
eigenvalues E, and we will now study whether it is 
possible to apply this theorem in the case when 
H = Ho + V. For the sake of simplicity, we will 
start by considering the ground state, for which one 
always has 

(101) 

for all trial functions. For the zero-order function CPo, 
one obtains in particular 

(102) 

which relation also tells us that the sum E2 + Ea + 
E4 + ... must be negative. Using (94), one can 
easily conclude that the term E2 is negative, but 
the signs of the higher terms are usually harder to 
obtain. 

Upper bounds with successively increased accu­
racy may further be derived by observing that 

formula (61) is valid for all values of e. Let us start 
by considering the series expansion of the operator 

_P_- p 
e - H (Eo - Ho) - (V - e + Eo) (103) 

= Ro[1 - (V - e + Eo)Ror1 

in terms of powers of (V - e + Eo)Ro, and let us 
introduce the partial sum 

n 

3. = Ro L [( V - e + Eo)Ro]k. (104) 
k~O 

Application of (55) gives immediately 3~ 32.+1, 
and formula (61) takes now the form 

(H) = e + (CPo lEo + V + V32n + 1 VI CPo) - 8 (105) 
av (CPo 11 + V3~VI CPo) 

for arbitrary values of 8, which parameter, therefore 
could be varied. Putting n = 0, we find that th~ 
right-hand member is independent of e and the 
result 

as an improved upper bound. One sees often in the 
literature17 the statement that all the odd-order 
energies Eo + E 1, Eo + E1 + E2 + E a, ••• etc. 
would form upper bounds to the true energy. Hmv­
ever, from (106) one could derive the inequality 
(H) < Eo + E1 + E2 + E 3 , only if the sum (E2+E3 ) 

is positive which seldom seems to be the case. 
Instead of minimizing the expression (105) with 

respect to 8, it is often simpler to choose 8 equal to 
energy E correct to order n, so that 8 = Eo + E1 + 
E2 + ... + En. Application of (105) gives then (H) 
equal to the energy correct to order (2n + 1) plus 
small correction terms of order (2n + 2) and 
(2n + 3); the latter may be omitted only if one 
definitely knows that the total correction is negative. 

Let us now turn to the more difficult problem of 
evaluating a lower bound to the energy. Choosing 
e = (H), substituting this value in the function 
feE), and applying the bracketing theorem one 
obtains ' 

E:::: (cp IH + H (HI P_ H HI cp). (107) 

The right-hand member gives a better lower bound 
than the Temple value,18 which is easily derived 
from the expression. By improving the value for 

17 Se~, e.g., \. M. Morse and H. Feshbach, Methods of 
Theoret1cal Physlcs (McGraw-Hill Book Company, Inc., New 
York, 1953), Vol. 2, p. 1120; O. Sinanoglu Phys Rev 122 
493 (1961). ' . . , 

18 G. Temple, Proc. Roy. Soc. (London) A1l9, 276) (1928). 
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(H) according to (105), one can also improve this 
lower bound indefinitely. Putting H = Ho + V, 
one obtains particularly 

E 2:: Eo + El 

quantities 

El = (<Po IVI <Po), E2 = (<Po IVRoVI <Po), 

E3 = (<Po IVRo VRo VI <Po) - E 1(<po IVR~VI <Po), 

etc., 

+ (<po Iv (H) _ ~o _ V vi <po), (108) and the d' t' t th correspon mg correc IOns 0 e wave 

where the last term is always negative. It seems as 
if formula (108) would form a good starting point 
for further research. 

So far, our discussion concerning upper and lower 
bounds is valid only for the ground state. However, 
we can now make us free from this restriction and 
consider any state if we observe that, with a proper 
choice of the parameter e, the two quantities (105) 
and (108) will bracket any true eigenvalue E. One 
of the quantities gives an upper bound and the 
other one a lower bound, and the order may vary 
from state to state. 

In conclusion, it should be added that a great 
deal of researchl9 has recently been carried out on 
the problem of the lower bounds in the special case 
when the perturbation V is positive definite. 

Conclusions 

This study of the eigenvalue problem shows that 
one can get a detailed insight into the structure of 
the various types of perturbation theories and their 
connection with the more condensed forms based 
on the use of inverse matrices of type (26) by means 
of the partitioning technique. The operator for­
malism is particularly transparent, but the analysis 
has, of course, only a formal character. We have 
made no attempts to analyze the nature of the 
eigenvalue spectrum itself or to prove any exist­
ence theorems. In certain connections, the formalism 
may seem to be too abstract, and it is then worth­
while to remember that the theory has been de­
veloped from a highly practical numerical method 
for solving secular equations. The approach is 
applicable both to one- and many-particle systems, 
but the special problems connected with the latter 
will further be discussed in a following paper. 

APPENDIX. 
CALCULATION OF AN INVERSE MATRIX 

It is clear that, if one is only interested in eval­
uating the corrections in Schrodinger's perturbation 
theory up to a certain finite order, i.e., the energy 

19 N. W. Bazley, Proc. Nat!. Acad. Sci. U. S. 45, 850 
(1959); Phys. Rev. 120, 144 (1960); N. W. Bazley and D. W. 
Fox, Reports CF-2911 and CF-2928, Johns Hopkins Applied 
Physics Laboratory (1961) (unpublished). 

function, one does not have to invert any matrices 
or to solve any eigenvalue problems in addition to 
the unperturbed problem Ho<Po = Eo<Po for the 
specific state under consideration. If one introduces 
a complete discrete representation consisting of <Po 
and a conveniently chosen form of its orthogonal 
complement, the results desired may be obtained by 
solving a series of equation systems with fixed coeffi­
cients rendering a set of vectors representing the 
functions Ro V <Po, R~V <Po, Ro VRo V <Po, '" in the 
discrete basis.20 The mathematical theory for the 
treatment of linear equation systems of infinite 
order is then valid. 

However, if one is interested in obtaining a solu­
tion which would correspond to 00 -order perturba­
tion theory, one has to evaluate the inverse matrix 
T defined by (26). This is a more difficult problem, 
and we will here briefly review some of the methods 
which are available for this purpose. 

(a) Fundamental Identity 

Let A and B be two arbitrary operators which 
usually do not commute. For the inverse of (A - B), 
one has always the identity: 

(A - B)-1 A -I + A -IB(A _ B)-l 

A-I + (A - B)-IBA-I , 

(AI) 

(A2) 

provided that the inverse operators involved really 
exist. The identity is easily proven by multiplying 
it to the right (respectively, to the left) by (A - B). 
Since the two right-hand members are equal, one 
has the relation 

(A3) 

which is useful in moving the factor (A - B)-I in 
long products. In perturbation theory, the relations 
(AI) and (A2) are often called "integral equations" 
depending on the fact that in a continuous repre­
sentation, the operator products in the last term 
are evaluated by means of integrals. 

(b) Power-Series Expansion 

By repeated use of (AI) and (A2) , we obtain 

20 See, e.g., P. O. L6wdin, Technical Note No. 28, Part 
III, Uppsala Quantum Chemistry Group 1959 (unpublished). 
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(A - B)-I 

A-I + A -IBA -I + A -IBA -IB(A - B)-I 

A-I + A -IBA-I + A -IB(A _ B)-IBA-I 

where the three forms of the remainder are equal 
according to (A4). Repeating the procedure, one 
gets the well-known power-series expansion including 
a remainder term. The infinite series 

(A - B)-I = A-I + A-IBA-I 

one is using both the power series method for the 
expansion in V and the eigenvalue method for 
evaluating Ro• 

C e) Second-Order Iteration Procedure 

Let ::I be an approximation to the inverse 
(A - B)-t, so that ::I = (A - B)-I + E, where E 
is a first-order correction. For the new operator 
::1*, defined by the relation 

::1* = 2::1 - ::I(A - B)::I, (AlO) 

one obtains ::1* = (A - B)-I - E(A B)E, i.e., 
+ A-1BA-IBA-I + (A5) ::1* is now correct to the second order. This leads to 

is convergent, if and only if, the absolute magnitude 
of all expectation values (BA -I) are less than 1: 

(A5) 

The power series has hence a limited range of 
applicability. In perturbation theory, it is used in 
deriving both the Brillouin-type and the Schro­
dinger-type expansions. 

(c) Modified Power Series 

Putting A - B = Al - BI = A2 - B2 = , 

a convenient second-order iteration procedure for 
evaluating an inverse matrix. Formula (AlO) is 
used in deriving the extension of Wigner's theorem 
given in (51). 

If one chooses ::I to be the power series (A5) 
truncated at order n: 

n 

::In = A -I L (BA -I)k, (All) 
k~O 

application of (AlO) gives immediately 

(AI2) 

one can modify the power series including remainder i.e.,::1* equals the same power series up to order 
at any stage of the expansion: (2n + 1). 

(A - B)-I = A -I + A -IBA~I 

+ A -IBA~IBIA;I + (A7) 

This relation may be useful in identifying modifica­
tions of perturbation theory derived by other 
methods, since a great deal of variety is apparently 
possible. 

(d) Eigenvalue Transformation 

Let us now consider the special case when (A-B) 
is an Hermitian or normal operator, and let U denote 
the unitary transformation which brings (A - B) to 
diagonal form A, so that U t (A - B) U A. This 
gives immediately 

(A8) 

which relation may be used for evaluating the 
inverse. In a discrete representation, one obtains 

This method for calculating the inverse is charac­
teristic for a large part of the conventional perturba­
tion theory, but it is often rather cumbersome, 
particularly if A has a partly continuous spectrum. 
We note that, in deriving the Schrodinger form, 

(f) Infinite Product 

Putting ::I = A -I and using the iteration formula 
(AlO), one obtains the infinite product 

(A - B)-I 

= A -1(1 + BA -1)(1 + BA -IBA -I) 

X (1 + BA -IBA -IBA -IBA -I) 

'" = A -I II {1 + (BA -1)2'). 
k~O 

(A13) 

The partial products equal the partial sums ::10, ::II, 
~"la, :3 7, ::115, ... defined by (All), and the infinite 
product is convergent and divergent at the same 
time as the infinite series (A5). 

(g) Determinant Formula 

If one introduces a discrete basis, the calculation 
of an inverse matrix is actually equivalent to the 
solution of a series of equation systems. In this 
connection, it is also worthwhile to remember the 
formula 

(A - B)"i:ll = IIA - Blllk/IIA - BII, (A14) 

where IIA - BII is the determinant of (A - B) and 
the numerator is one of its minors. For an infinite 
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basis, one has to apply the theory for infinite deter­
minants, and at least the quotient has to be con­
vergent. 

(h) Successive Partitioning 

In quantum-mechanical applications to atoms, 
molecules, and solid-state, one has so far to a large 
extent used basic sets which have becn truncated 
to finite orders. In this case, it is of importance to 
extend the basis, and this is conveniently done in 
the method of "successive partitioning" in which 
one utilizes the previously obtained results. For 
the inverse matrix, the method is based on the 
formula21 : 

where 

K I-I 
12 ! 

KJ 
rIC: + K12I?;~K21; 
l -lC~K21 

KI2 = IC:Klz , K21 = K2JC:, 

K22 = K22 - K2 JC:K I2 • 

(AI5) 

(AI 6) 

One starts out in the upper left corner, adds one 
row and one column at a time, so that K22 stays 
one dimensional, and notes that K~: has been 
evaluated in the preceding step of the calculation. 
The formula is easily derived by solving the equation 
K·x = 1 by partitioning. The final result will 
actually be the same as if one applied the method 
of successive partitioning directly to the eigenvalue 
problem in the form (10). 

(i) Chebyshev Expansions 

Since this method has been treated in full else­
where,22 we will here make only a few comments. 
If a and x are two real numbers, one has the two 
expansions 

(a - x)-' = [r/(l - r2)][1 + rCI(x) 

+ r 2C2 (x) + ... + rncn(x) + ... ] 
= r[l + rSI(x) 

+ r 2S2(x) + ... + rnSn(X) + ., 'J, (Al7) 

2J See, e.g., A. S. Householder, Principles of TNumerical 
Analysis (McGraw-Hill Book Company, Inc., New York, 
1(53) p. 78; J. O. Hirschfelder and P. O. L6wdin, Molecular 
Phys. 2, 229 (1959). 

22 P. O. L6wdin, R. Pauncz, and J. de Heer, J. Math. Phys. 
1, 461 (1960). 

where 1 + r2 = ar, 

r = Ha - (a 2 
- 4)1/2] = 2[a + (a 2 

- 4)1/2r', (AI8) 

and Cn(x) and Sn(x) are the standard Chebyshev 
polynomials 

Cn(x) = 2 cos ne, 
S,,(x) = sin (n + I)e/sin e, (AI9) 

with x = 2 cos e. The relations (AI7) are easily 
derived from the expansion (1 - reiO)-1 = Lk rke ikO 

by separating it into its real and imaginary parts; 
they are convergent, if r < 1 and e is real, i.e., 
lal > 2 and Ixl < 2. 

It is now possible to apply this technique to the 
operator (A - B)-I in several different ways. In 
the case when A -I exists, ,ve may write (A - B)-I = 
A -1(1 - BA -1)-1 and consider the series expansion 
for the second factor. In the case when I(BA-')I :::; 
q < 1, we will choose a parameter a situated in the 
interval 2 < a :::; 2/q and use the formula: 

(1 - BA-')-I = a(a - aBA- I)-' (A20) 

= -~'i [1 + f rkCk(aBA -I)J 
1 - r k~l 

ro 

= ar L rkSk(aBA-') , (A2l) 
k=o 

where r is given by (Al8). We note that the right­
hand members are independent of the value of a 
as long as the series are convergent. If the power­
series (AS) have a quotient maximized by q, the 
Chebyshev expansions are characterized by a value 
of r which may be chosen as low as 

r = q/[I + (1 - q")1/2]; 

the convergence is hence essentially improved. 
Even combinations of the two formulas may be 

useful. The Chebyshev expansions are particularly 
convenient in treating operators and matrices having 
cyclic character, since they lead to nice closed 
expressions22 that are then valid also outside the 
range of convergence of the original expansions. 

In conclusion, we note that only a few of the 
methods described here have so far been used to 
investigate the various types of "perturbation 
theory" that could be obtained from the funda­
mental formulas of type (34) and (37) containing 
the matrix T by treating the inverse matrix in 
(26) in different ways. Particularly the Chebyshev 
expansions seem to offer an interesting starting 
point for further research. 
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Thermodynamical functions for classical and quantum systems are expressed in terms of the 
one-particle density nl and the two-particle correlation matrix C I • (or quantities in direct relation 
to them). Use is made of topological relations valid for the diagram representations of the grand 
partition function expansions. The result considered as a functional of nl and CI2 is stationary under 
independent variations linl and liC\2. In particular, the entropy functional of a classical system no 
longer contains any reference to the equilibrium parameters (or to the interactions) and the second 
functional derivative is a negative definite matrix. The entropy functional of a quantum system 
conserves traces of the equilibrium parameters in the Lee-Yang formulation; the Green's function 
formulation does not, but in this case the second functional derivative is no longer a negative definite 
matrix. 

INTRODUCTION 

I N the past three years, there have been several 
successful attemptsl

-
5 to express the thermo­

dynamical functions of quantum-mechanical sys­
tems as explicit functionals of one-body functions 
bearing a more or less direct relation to the average 
occupation number. These formulations l

,5 remind 
us, in character, of the classical virial expansion6 in 
terms of the one-particle density, and could be 
expected to present the same type of interest for 
the study of phase transitions, although some of 
these formulations2

-
4 appear, in some respects, more 

like generalizations of usual zero-temperature 
(ground-state) expansions.7 All of them, however 
share in common a variational property that was 
first established by Lee and Yang l

; namely, that 
the grand partition function of the system is 
stationary under variations of the one-body func­
tion considered. This common feature has been 
traced back to a topological relation5

.
8 satisfied by 

the various diagramatic representations and directly 
linked to the tree structure of these diagrams. 

* Supported in part by the Air Force Office of Scientific 
Research (ARDC), under contract number A.F. 49 (638)-589. 

t On leave of absence from Service de Physique Mathe­
matique, Centre d'Etudes Nucleaires de Saclay, Seine et 
Oise, France. 

IT. D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959); 
117, 22 (1960). Hereafter we shall refer to the last reference 
as (L-Y). See also M. S. Green, Phys. Rev. Letters 1, 409 
(1958). 

2 P. Martin and J. Schwinger, Phys. Rev. 115, 1342 
(1959). 

3 R. Balian and C. De Dominicis, Nuclear Phys. 16, 502 
(1960); Compt. rend. 250, 3285, 4111 (1960). 

4 J. Luttinger and J. Ward, Phys. Rev. 118, 1417 (1960). 
• R. Balian, C. Bloch, and C. De Dominicis, Compt. 

Rend. 250, 2850 (1960); Nuclear Phys. 25, 529 (1961); 27, 
294 (1961). 

6 H. UrseH, Proc. Cambridge Phil. Soc. 23, 685 (1927); 
J. Yvon, Actualites sci. et indo 203 (1935); J. Mayer, J. Chern. 
Phys. 5, 67 (1937). 

7 J. Goldstone, Proc. Roy. Soc. (London) A 239,267 (1957). 
8 C. Bloch, Physic a 26, 562 (1960). 

The next question ansmg naturally is whether 
analogous formulations exist in terms of one- and 
two-body functions (or matrices) directly related 
to the one- and two-particle density matrices.9 Again, 
besides the advantages brought by their variational 
character, such formulations would be of particular 
interest in characterizing and studying second-order 
phase transitions. 

The purpose of this work is to answer that 
question. For both the classicallo

-
12 and the quantum 

systems, the grand partition function is written as 
a stationary expression in terms of the one- and 
two-particle densities (or quantities in direct rela­
tion to them). 

In Sec. I(i) a classical grand canonical ensemble 
is considered and we recall how its grand partition 
function In Z(a, (3) can be expressed as a stationary 
functional of the one-particle density through the 
use of a topological relation valid for Yvon-Mayer 
diagrams. This section is essentially a repetition 
of Sec. 13 Vr.1 of the last paper quoted in reference 5. 

In Sec. I(ii) the interaction potential is expressed 

9 Notice that one could easily express the pressure in 
terms of the one- and two-particle density through the use 
of the vi rial theorem. Such an expression, however, has no 
stationarity property. 

10 T. Morita and K. Hiroike, Progr. Theoret. Phys. (Kyoto) 
25,537 (1961). 

1! M. S. Green, J. Chern. Phys. 33, 1403 (1960). 
12 The work of Morita and Hiroike (reference 10) was 

brought to the attention of the author by Professor Uhlen­
beck, after this work had been completed. Morita and 
Hiroike study classical systems and establish Eq. (1.50). 
The method used here, however, covers both the classical 
and quantum cases by exhibiting the topological relation 
which underlies the stationarity properties; a feature par­
ticular to the entropy expression for classical systems which 
seems to have escaped Morita and Hiroike's attention is 
also discussed. 

The functional expression derived for the grand partition 
function of classical systems in reference 11 is stationary 
but not maximal. 

13 Several results of that section are already contained in 
some early work of J. Yvon (1935). 
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as a functional of the two-particle density following, 
with slight variations, an analysis made by several 
authors. 10

•
H Then a new topological relation is used 

to express In Z(a, (J) as a stationary functional of 
both the one and two particle densities. An interest­
ing feature of the expression for the entropy is 
pointed out, with its hypothetical relation to a 
generalized expression for the Boltzmann H function. 
The effect of the introduction of many body forces 
is discussed. 

In Sec. lI(i), quantum systems are considered in 
the Lee-Yang formulation, which is described from 
the point of view introduced in Sec. I(i). 

In Sec. II(ii) the results of Sec. I(ii) are extended 
to quantum systems in the Lee-Yang formulation. 
Similar results for the Green's function formula­
tion2

•
4 are quoted. 

I. CLASSICAL SYSTEMS 

i. Formulation in Terms of the 
One-Particle Density 

a. Definitions, Yvon-M ayer Diagrams 

(1.6) 

Yvon-Mayer diagrams are then a convenient way 
of representing expansion (1.3). A labeled Yvon­
Mayer diagram of order N is a set of N points, 
labeled 1, 2 ... N, and of single lines joining some 
pairs of these points. To each diagram is associated 
an algebraic quantity calculated with the following 
rule (A): 

(i) to each point i associate a factor n~, 
(ii) to each line linking points i and j associate 

a factor (I;;, 
(iii) integrate independently over N points with 

a weight (N!)-I. 

Z(a, (3) is then given by the sum of the con­
tributions associated with all distinct, labeled, 
Yvon-Mayer diagrams. 

Densities: They are defined as the average of the 
density operators, over the grand canonical en­
semble; the one- and two-particle densities are 
expressed as 

A classical system of N identical particles 
characterized by its Hamiltonian is n(r) = Z-\a, fJ)[~ (N ~ I)! J dr1 '" drN+l 

]V N 

H]V = L: [p~ + u(rJ] + L: v(ri-r ,) , (1.1) 
i>i 

where Pi and r i are the momentum and position of 
the ith particle; u(ri) is a (one-body) external 
potential, v(ri-r;) is a two-body interaction 
potential (for shortness we shall also use u, and 
Vii); and the mass is taken as m = t. 

Grand partition function: It is defined by 

Z(a, (J) 

= i: e~~ J dr1 ... drN dp1 ... dpN e-P11N 

N=O N. 

'" 1 J ]V N 
= L: N' dr1 ··· drN II n~ U (1 + (Iii)' 

N=O .. l Z>J 

(1.2) 

(1.3) 

Here e" = z is the (absolute) chemical activity, 
/3-1 = kT is the temperature (times the Boltzmann 
constant) and we have 

(Iii = gCri - r,) = exp [-(Jv(r, - r;)] - 1 (1.4) 

x-a exp [a - (Ju(rt )] (1.5) 

14 J. Van I,euwen, J. Groeneveld, and J. de Boer, Physica 
25, 792 (1959). E. Meeron, Phys. Fluids 1, 246 (1958); 
J. Math. Phys. 1, 192 (1960). M. S. Green, Hugues Aircraft 
Company Report (1959) (unpublished). T. Morita and 
K. Hiroike, Progr. Theoret. Phys. (Kyoto) 23, 1003 (1960). 
(To quote only the papers where a complete analysis of the 
two-particle density is performed). Early work in the same 
direction may be found in J. Yvon: Rev. BCi. 662 (1939); 
Nuovo cimento Supp!. 9, 144, (1958). 

X Xi n~ g (1 + gii{~ oCr - ri») ] (1.7) 

n(r, r') = Z-l(a, /3) 

X [~ (N ~ 2)! J dr1 

N+2 
'" drN+2 II n~ 

11'+2 (N+2 )] 
X U (1 + (I;,) I: oCr - r i ) oCr' - r i ) • 

1>1 1,061 

(1.8) 

The expansion of nCr, r')Z(a, (J) for example is 
represented by all distinct Yvon-Mayer diagrams 
with N + 2 points, of which N are labeled and two 
are distinguished and held fixed at r, r'. These points 
are the roots of the diagram and the diagram is a 
2-rooted diagram (or a 2-diagram for short). The 
algebraic quantity associated with an N-Iabeled, 
2-diagram, is calculated with the formally unchanged 
rule (A), as seen from inspection of (1.8). 

A diagram is connected if there exists at least one 
continuous line between any two points; a 2-diagram 
is root-connected if it is made of two disconnected 
parts, each one of them connected to a different 
root. Simple combinatorial arguments showls that: 
(i) in (1.7) and (1.8) the denominator Z(a, (3) 
eliminates the contributions of all nonconnected 

15 J. Mayer and M. Mayer, Statistical Mechanics (John 
Wiley & Sons, Inc., New York); see also, G. Ulhenbeck and 
G. Ford, Studies in Stat. Mech. 1 (1962). 
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(or non-root-connected) diagrams, (ii) In Z(a, {3) 
is given by the sum of the contributions associated 
with the connected diagrams only. 

In Z(a, {3), nCr), nCr, r') are then represented by 
all the distinct, connected, (or root-connected) 
N-Iabeled, t-diagrams, with t= 0, 1, 2, respec­
tively. These quantities may also be represented 
in terms of the distinct, free (i.e., nonlabeled), 
(root-) connected t-diagrams. The weight (N!)-l is 
then replaced by (s,)-\ where s, is a symmetry 
factor for a r-diagram. 16 For example we represent 
the grand partition function expansion as 

In Z (a,/3) , - + 1\ + A + f:", + n + ]":J + 0 + .... (1.9) 

Notice that if we consider Z(a, {3) as a functional 
of n~ we havel7 (rl ~ r2) 

n(r.) = nO(r.)[%nO(rl)] In Z(a, {3), 

n(rl ; r 2) = nO(rl)nO(r2) [02
/ onO(rl) onO(r2)] 

X In Z(a, {3) + n(rl)n(r2). 

(1.10) 

(1.11) 

From now on, unless specified, we deal with 
connected t-diagrams. We analyze t-diagrams using 
the following definitions: 

An articulation point of multiplicity m(m > 1) 
is such that by cutting a t-diagram at this point, 
we can separate at most m connected parts. IS 

A I-irreducible t-diagram is such that it has 
no articulation point. The I-irreducible O-diagrams 
are also known as stars, and a general O-diagram is 
then a tree of stars.15 We call x(I) Inn the con­
tribution of all the 1-irreducible O-diagrams. The 
contribution of all the I-irreducible I-diagrams is 
then 

nO(rl)K(I) {rl ; n~l = nO(r l ) [%nO(rl)] x (1) {n~l. (1.12) 

We now proceed to express In Z(a, {3), n(rl), 
n(r l ; r 2) as functionals of the one-particle density. 

b. Densities 

Consider the contribution to n(r l ) of the I-dia­
grams where only r l is allowed to be an articulation 

16 The number of N-Iabeled I-diagrams corresponding to 
one given free I-diagram is N!/s ,. The symmetry number 8f is the order of the permutation group of the N free points 
o the diagram, which leaves the connections invariant. 
Labeled diagrams are useful for detailed proofs, free diagrams 
handier to describe representations of expansions and are 
used throughout the text. 

17 For convenience, in the following we use nCrl), nCrl' r2), 
or nl, nl2 instead of nCr), nCr, r/). 

18 m-l of these look like I-diagrams, one like a CI + 1)­
diagram Cor a I-diagram if the articulation point considered 
is a root). 

point, we get 

(1.13) 

where m is the multiplicity of the articulation point 
r l . A general I-diagram can be generated then by 
making the most general insertion at each point i 
other than the root r 1 of these diagrams. This has 
the effect of replacing the factor nO(r;) by nCr;) 
(cf. Appendix A) and yields the Yvon equationl3 

(1.14) 

x(I) {n;) or X(I) {r l ; n;) are now functionals of 
n(r;) and are represented by all distinct I-irreducible, 
0- or I-diagrams: 

~'llnil' ..-.. + b. + D + rsJ + •• , (1.15) 

(1.16) 

Associated contributions are now calculated with a 
rule (B) differing from rule (A) through point (i) 
which now reads: 

B(i) to a root (represented by an empty dot) 
associate a factor of unity; to each point i 
(represented by a heavy dot) associate a 
factor n;. 

Naturally (1.16) is obtained by taking the functional 
derivative of (1.15) 

(1.17) 

Similarly we may build the general 2-diagram by 
considering first the class of I-irreducible 2-diagrams 
and by making the most general insertion at each 
point (including the root r l and r 2). If we write 

(1.18) 

the first term represents the root-connected con­
tributions, the second the connected one. C(r l ; r 2 ) 

is called the correlation function and we have 

C(r,;r2)'O--<> + A + L, + n + N + N 
12: 1212121221 

(1.19) 

C(r l ; r 2) is represented by all the distinct, (con­
nected), I-irreducible, 2-diagrams, the contributions 
of which are calculated with rule (B). 
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c. Grand Partition Function 

Of course, it could be obtained by direct integra­
tion of (1.14) since we have 

(1.20) 

We rather use a more detailed analysis which will 
eventually give more insight into the variational 
properties still to be established. In Z (a, (3) is 
represented by the sum of distinct O-diagrams 
(calculated with rule A) and we wish to express it 
in terms of n(r.). 

To that effect we consider the three following 
expressions: 

(a) (1.21) 

gram contributing to (1.23) carries an extra weight 
N(p·m) as compared with its contribution to 
In Z(a, (3). 

We use now a general relation between the 
introduced weights, 

N(p) - N(p ·m) + N(X(l) = + 1. (1.24) 

This relation valid for a tree of I-irreducible parts 
is easily shown by induction5

•
8

•
l9 ; it allows us to 

construct the proper weight for O-diagrams con­
tributing to In Z(a, (3) out of (1,21), (1.22), and 
(1.23), thereby yielding In Z(a, (3) in terms of nCr;); 

In Z(a, (3) = J drln(rl) 

- J drln(rl)K(!) Irl ; n i } + X(1) In i }. (1.25) 

This quantity can be thought of as represented by Using (1.5), (1.6), and (1.14) we get 
O-diagrams (calculated with rule A) but with one 

point distinguished at r l, i.e., the contribution to In Z(a, (3) = J drln(rl)[1 - Inn(rl) + a 
(1.21) of the class of diagrams with N(p) points 
is N(p) times that of the same class to In Z(a, (3). _ In ,,3 _ (3u(rl)] + x(1) In

i
}. 

This is also obvious from relation (1.10). 
(1.26) 

(b) x(1) Ini}' (1.22) 

This quantity is represented [see (1.15)] by 1-
irreducible O-diagrams where one has made the 
most general insertion at each point. But it can 
also be represented by the most general O-diagram 
(calculated with rule A) where one I-irreducible part 
has been distinguished. Let N(x(1) be the number 
of I-irreducible parts of a diagram (i.e., the number 
of separate parts obtained by cutting all the articula­
tion points of the diagram). The contribution of 
O-diagrams with N(x(1» I-irreducible parts to 
x(1) In i } is then N(x(1) times the contribution 
to In Z(a, (3). 

(c) Consider finally a general O-diagram where we 
distinguish one point at r l and one I-irreducible part 
rooted at r l). Such a diagram may be generated out 
of the distinguished I-irreducible part, making the 
most general insertion at all points other than r l 
(which provides a factor K(l) Irl ; nil) and at the 
root r 1 yielding 

J drln(rl)K(1) Ir,; n i }. (1.23) 

An ordinary point may be viewed as an articulation 
point with multiplicity m = 1. Let N (p ·m) be, 
in a diagram, the number of articulation points 
weighted by their multiplicity, which is also the 
number of ways one can choose a I-irreducible part 
rooted at a point r l on the diagram. Again, a O-dia-

A more suggestive form is obtained if one uses the 
one-particle density in phase space J.l(rl, PI) = J.ll with 
the result 

In Z(a, (3) = J dlJ.ll(1 - In J1.,) 

+ x(1)IJ1..} + J dlMl(a - (3pi - (3u J), (1.27) 

where dl stands for dr l dpl' 

d. Variational Properties 

Consider the right-hand side of (1.25) as a 
functional <I> II?;})} of an arbitrary function R(1) (r;) 
through the relation 

(1.28) 

it is verified that <I>IR;1)} has an extremum when 
(1.17) is satisfied, i.e., R(1)(rl) = K(1)lrl ; n.}. This 
stationary property is traced to relation (1.24), i.e., 
to the tree structure of the diagrams. 5

•
8 Indeed the 

three terms of the variation o<I>IR:1)} generated by 
oR(1) (r 1) may again be represented diagramatically 
in three different 'Nays as in points (a, b, c) above, but 
these diagrams now have an "external" I-irreduci­
ble part oR(1) Crl) rooted at r l. Such an "external" 
I-irreducible part cannot play the role of a dis­
tinguished I-irreducible part in generating diagrams 

19 G. Ford and G. Uhlenbeck, Proc. Nat!. Acad. Sei. 
U. S. 42,122 (1956). See also M. S. Green, J. Math. Phys. 1, 
391, (1960). 
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(point b) and hence for the diagrams representing 
o4>{K!l)} we have the relation 

N(p) - N(p·m) + N(X(l) = 0 

equivalent to the stationary condition 

[151 aK(l)(r,)]<f>(K!')} = 0, 

which yields 

K(l) Ir, ; nd 

4>IKil)} 

[alan(r,)]x(!) {n,j 

In Z(a, (3). 

(1.29) 

(1.30) 

(1.31) 

(1.32) 

The variational property is more conveniently 
expressed in terms of n(ri) [or /l(r,; Pi)]. Let the 
right-hand side of (1.26), regarded as a functional 
of n(ri), be wIn;}. It is then stationary with respect 
to variations an(rl) when n(rl) = n(r j ), and hence. 

wlni} = In Z(a, (3). (1.33) 

In the next section we shall see that this extremum 
is a maximum for In Z(a, (3). 

(ii) Formulation in Terms of the 
One- and Two-Particle Density 

a. Definitions 

In Z(a, (3), n(rl)' n(r l ; r 2 ) have been expressed 
in terms of nCr,) and represented by I-irreducible 
r-diagrams. In the following, unless mentioned 
explicitly we only deal with such I-irreducible 
r-diagrams. We introduce now the following defi­
nitions: 

An articulation pair of multiplicity /l(/l > 1) is 
such that by cutting the diagram at the points 
(i, j) of the pair, we can separate at most /l con­
nected parts. 20 A single line directly linking (i, j) 
is not counted as a separate part. 

A 2-irreducible r-diagram is such that it has no 
articulation pair. 

A simple 2-diagram is such that the roots r h r 2 

are not directly linked and do not constitute an articula­
tion pair. The contribution of simple 2-diagrams, is 
called 8lr j ; r z ; nil: 

Sfr, rz.nil:A+n+N+N 
f' I 2 I 2 I 2 2 I 

(1.34) 

Like GI2J 8 12 is a symmetrical function of r l and rz• 

20 J.L -1 of these parts look like 2-diagrams, one like a 
(r + 2)-diagram [a (r + 1)- or a r-diagram if the articula­
tion pair contains one or two roots]. 

b. Two-Particle Density 

We discard for the moment 2-diagrams containing 
a direct link between the roots r l , r2 [i.e., a factor 
g(r 1 - r 2)]; we write then the contribution of such 
2-diagrams where the pair (1, 2) is allowed to be 
an articulation pair of any multiplicity /l 

Adding the contribution of 2-diagrams with a direct 
(1, 2) link, we get for the correlation function 

GCr, ; r2) [1 + g(rl - r2)] 

X I exp [S(rl ; r2)] - I} + g(rl - r 2). (1.35) 

To further analyze SI2 we introduce the following 
definitions: A nodal point is such that if we cut a 
2-diagram at this point, we can separate two parts; 
one containing the root r h the other the root rz. 
A nodal diagram contains at least one nodal point. 
Simple diagrams fall into two classes: nodal and 
elementary (i.e., simple, non-nodal) diagrams. 

Nodal2-diagrams: Let N(r , ; rz) be their contribu­
tion. Between two successive nodal points i and j 
there is, by definition, a non-nodal part described by 
X(r;; r;) 

(1.36) 

The contribution of nodal diagrams can then be 
written in short, as the solution of the integral 
equation 

N(r, ; r 2) = J draX(r, ; ra)n(ra)X(ra ; r2) 

+ J draX(r, ; ra)n(ra)N(rs; rz). 

Substitution of (1.36) into (1.37) yields 

N(r!; r2) = J draG(r l ; ra)n(ra)C(ra; r2) 

- J draN(rl; ra)n(ra)C(ra; r 2), 

(1.37) 

(1.38) 

an equation expressing N12 in terms of ni and Gu . 

Notice that for a homogeneous system, ni is a 
constant, e;; = G(r; - r;), and the Fourier trans­
forms of (1.37, 38) reduce to algebraic equations 
linear in N(k) 0: f dr exp (ik·r)N(r). 

Elementary 2-diagrams: They can be generated 
from the 2-irreducible 2-diagrams K(21(rl ; r 2) (con­
taining no articulation pairs) by the following pro­
cedure: Replace each line directly linking any pair 
(i, j) by the most general insertion connecting (i, j); 
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algebraically it amounts to replace the factor gij by 
Co (cf. Appendix A). We thus have, diagramatically, 

(1.39) 

and by iteration of (1,38) we obtain the alternate 
series 

(1.40) 

Algebraic quantities associated with these 2-dia­
grams are calculated now with rule (C) differing 
from rule (B) through point (ii) which now reads: 

C(ii) to each heavy line linking the pair (i, j) asso-
ciate a factor Ci;' 

Notice that the series of diagrams giving Nl2 carries 
an extra weight (-y+l where p is the order of the 
diagram. 

We thus have expressed S 12 in terms of n; and 
C;;, 

S12{ni , Cid = N I2 {ni, Cd} + Kg) {ni' Ci;}, (1.41) 

and with (1.18, 35) the two-particle density itself 
in terms of ni and C;;. 

c. Grand Partition Function 

Direct integrations of n(r l ; r2 ) over a would be 
much less straightforward here. We use the same 
type of analysis as in Sec. lei), i.e., we list quantities 
easily expressed in terms of ni and C;; and repre­
sented by the same diagrams as In Z(a, fJ) except 
for varying weights: 

(a) f drl dr2 n(rl)n(r2)C(r1 ; r2); (1.42) 

This quantity can be thought of as represented by 
all (reducible or not) O-diagrams calculated with 
rule (A), but with one pair of points distinguished 
at r l , r 2 ; contribution to (1.42) of diagrams with 
N(-rr) pairs is N(7r) times that of the same diagrams 
contribution to In Z(a, (3) which is also obvious 
from (1.11). 

(b) In Sec. lei) we considered Kit) as a functional 
derivative of X(1), here we shall consider Nl2 and 
Kg) as related to functionals :n(n;; C;d and 
X(2) In;; Ci ;} in the following fashion (Appendix B) 

n(rl)n(r2)N{rl ;r2;ni; Ci;} 

= 2[ oj oC(rl ; r2)]:n{ni ; Cid 

n(rl)n(r2)K{2) {rl ; r 2 ; n i ; C;; } 

= 2[ojoC(r1 ; r2)]x(2) {ni; Ci;}. 

(1.43) 

(1.44) 

Diagramatically we have 

X{",,,} , L -D ' 6 -0 " "" 
J("'{n"C"I= ~ + ®+... 1i.461 

:n is represented by polygonal diagrams (with 
alternate signs) and X(2) by 2-irreducible diagrams, 
built with heavy dots and lines (which represent 
the most general insertions n; or C;;), and calculated 
with rule (C). Thus, S = :n + X(2) can also be 
represented by a general (reducible or not) O-dia­
gram, calculated with rule (A), with a polygonal or 
a 2-irreducible skeleton distinguished. Let N(:n) + 
N(X{2» be the number of ways this choice can be 
done, it is also the extra weight these diagrams carry 
as compared to the contribution of the same dia­
grams to In Z(a, m. 

(c) Consider a general (reducible or not) O-dia­
gram where we now distinguish one pair of points at 
r l , r 2 and one simple part rooted at r l , r 2 • These 
diagrams may be generated from a skeleton nodal 
or 2-irreducible 2-diagram, rooted at r l, r2, by 
making the most general insertion at all points 
and pairs except r l , r 2 (which provides a factor 
N l2 {ni , Ci;} + K~;) {ni' Cid = SI2{ni, C.,.}) and 
at the roots yielding 

f drl dr2 n(rl)n(r2) [1 + C(rl ; r 2)] 

(1.47) 

Let N(7r'fJ,) be, in a diagram, the number of articula­
tion pairs weighted by their multiplicity (an ordinary 
pair being viewed as an articulation pair with fJ, = 1). 
N(7r·J.!) is also the number of ways one can choose a 
simple part rooted at rlJ r 2 in the diagram, and a 
O-diagram contributing to (1.47) thus carries an 
extra weight N(7r'fJ,) as compared to with its con­
tribution to In Z(a, (3). 

The introduced weights can be shown (Appendix 
C) to satisfy a relation valid for any O-diagrams 

N(x(1» = HN(7r) - N(7r·J.!)J 

+ N(:n) + N(X(2». (1.48) 

With (1.13) we get 

N(P) - N(p·m) + UN(7r) - N(7r·J.!)] 

+ N(:n) + N(X{2» = +1, (1,49) 

which allows us to build the proper weight for 
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O-diagrams contributing to In Z(a, (3) as 

In Z(a, (3) = f drl n(rl) - f drl n(rl)K(1) {rl ; ni } 

+ ! J drl dr2 n(rl)n(rZ)[C(rl ; rz) 

- [1 + C(r l ;rz)]8{rl ;r2;ni; Cii}J 

(1.50) 

Expressed in another form, we see that relation 
(1.48) is equivalent to 

:;((1) {ni} = ! J dr l dr2 n(rl)n(r?) [C(rl ; r 2) 

- [1 + C(rl;r2)]8{rl,r2;niCi;}] + S{niCi;} , (1.51) 

where C(r l ; r2) can be considered as a functional of 
n, through repeated iterations of (1.35), which we 
rewrite as 

1.1.+ C(rl ;r2) = [1 + g(rl - r2)] 

X exp (8{rl ,r2;ni' Cii }). (1.52) 

Using this expression and (1.14) to eliminate 
8 1z and Ki l

), respectively, from (1.50), we get 

In::Z(a, (3) = J drl n(r l ) [1 - In n(rl) 

+ a - In A3 
- (3u(rl )] 

+ ! J dr! dr2 n(r!)n(r2{ C(rl ; r2) 

- [1 + C( . )] 1 1 + GCrl ; r2) ] r l , r2 n 1 + ( ) g rl - r2 

(1.53) 

If we introduce the one- and two-particle density in 
phase space I-'(rl, PI) and 

we get 

In Z(a, (3) = f dl 1-'1(I - In 1-'1) 

+ sin"~ Cii } 

+ J dl I-'l(a - (3pi - (31-'1) - ((3/2) J dl d2 U12V12' 

(1.55) 

d. Variational Properties 

Discussion of the stationarity properties of the 
right-hand side T of (1.50) could be carried out in 
very much the same way as it was done for (1.25) 
in Sec. lei). Here it would be necessary to consider 
variations of the quantity Sii' T{ii;, S,d being 
expressed in terms of iii and S;; through relation 
(1.52). Again the stationarity property 

[0/ oS(r1 ; r2)]T {iii, Sid = 0 (1.56) 

could be traced to the structure of the diagrams 
which entails (1.49). 

It is more convenient to consider the right-hand 
side of (1.53) as a functional Q{iii' Cid of iii and 
Cii . If we write the particular values n, and C;i of 
these functions which render n stationary with 
respect to independent variations on, and oC,; we 
obtain 

n(rl) = nO(r l ) exp {J dr2 n(rz{ C(r!, r 2) 

- [1 + C( )] 1 1 + C(rl , r 2) ] 
r 1 , r 2 n 1 + ( _ ) g r l r 2 

+ [8/on(r l )]S{ni' Cid} (1.57) 

1 + C(r1 ,r2) 

1 + g(rl - r2) 

= exp (2 C( 8 ) S{ni' C;; I) ; (1.58) 
8 r l ; r 2 

(1.57) is identical to the expression of n(r l ) in terms 
of n i and Cij obtained with (1.14), (1.17), and (1.50); 
(1.58) is identical to (1.52). The stationary value 
of the functional itself 

n{ni' Ci ;} = In Z(a, (3). (1.59) 

We determine now the sign of the second func­
tional derivatives. From expression (1.26) we get 

82 

----:---,-----:--:- 'It In· } 
on(r1) 8n(rz) .' 

Here X(rl' r 2) is the second functional derivative 
of :;(0) {n, I, i.e., it is represented by the I-irreducible, 
non-nodal, 2-diagrams, and hence identical with 
(1.36). From (1.36) and (1.38) we get an integral 
equation satisfied by X(rl' r2) (Yvon14

), 

X(rl , r2) = C(r1 , r 2) 

(1.61) 
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On the other hand, the number of particles fluctua­
tions, an essentially positive definite matrix IS 

given by 

~(r" r2) = < (~ oCr, - r,»)( ~ 0(r2 - rJ)} 

- < t oCr, - r;)}< ~ o(rz - rJ} , (1.62) 

where the average value is over the grand canonical 
ensemble, i.e., 

~(rl' r2) = nCr,) oCr] - r 2) + n(r,)n(r2)C(rl , r 2). (1.6:3) 

It is a straightforward matter to verify then, using 
(1.61), that the second functional derivative (1.60) is 
the inverse matrix of -~(rl' r 2), and hence a negative 
definite matrix. The extremum of \If {iii), where it 
takes the value In Z(a, (3), is thus a maximum. 

The second-order variation of the functional 
n/ii i , Cii ), around the extremum ii, = n i, Cd = Ci ;, 

is also shown (Appendix D) to be a npgative definite 
quadratic form in Oiii and aCi;. 

e. Entropy. Generalization to ~JJ1 any-Body Forces 

The entropy of the grand canonical ensemble 
has a particularly interesting form. From (1.55) 
we have 

S = In Z(a, (3) - a(N) + (3(H) 

= J dllt, (1 - In It,) + ! J dl d2 1t,1t2[C'2 

- (1 + C,z) In (1 + C'2)] + ~ + X(2). (1.64) 

Here ~ and X(2) are calculated with the series 
(l.45, 46) and rule (0), where n(r;) is replaced by 
It(r i , p,). Again we may consider the right-hand side 
of (1.64) as a functional Zlpi, CiiJ. If we variate 
p, and Cii with the constraints 

This raises the interesting question: Is it possible 
to give a physical interpretation to Z {Pi, CijJ outside 
its maximum? More precisely, is it possible to 
identifu - (S/k) with a generalized Boltzmann H 
function, for a system outside equilibrium, in its 
kinetic stage? \Ve do not know, as yet, the answer 
to this question. Assuming that il, and Cij depend 
upon the time t, the time derivative of S is written as 

-~7 = J dlln [ill exp ( - 0;' Slili, Cu I) ] (~t ill 
+ ! J dl d2 In [(1 + Cd 

- d -
X exp (-8 ,2 iil i , Ci;J)] dt [illil2(1 + CI2)] ( l.(ii) 

and may suggest evolution equations for il(r" PI, t) 
and C(r" rz, t) that imply (-dS/dt) ~ O. 

The introduction of 3-body forces in the Hamil­
tonian would render the entropy expression more 
complicated and (3 dependent. However it is pos­
sible to further refine the analysis of the diagrams 
by considering triplets of points, articulation triplets, 
3-irreducible diagrams and by the same method to 
recast Eq. (1.67) into the following form, now (3 

independent: 

S = J dlltJl - In Itl) + 2\ J dl d2 Itllt2 

X [C'2 - (l + G\2) In (1 + CI2 )] 

+ ;1 J dl d2 d3 Itllt2lta 

X (1 + C1Z)(1 + Cza)(1 + Cal) 

X [f123 - (1 + f 123) In (1 + f 123)] 

+ Jlni' Cii , fijd, (1.68) 

here we have defined the 3-particle density in phase 
(N) = J dllt, 

(H) = J dlltl (p~ + ll,) 

(1.65) space as 

+ ! J dl d2 1t,1t2(1 + CI2)V,Z, (1.66) 

Z has a maximum (equal to the entropy) for the 
values of It(r l , p,) and C(r!, r 2 ) obtained from (1.57) 
and (1.58). 

The potentials Ui and Vi; no longer appear ex­
plicitly in Zlili, Cid; perhaps more significant is the 
fact that the equilibrium parameters a and (3 have 
completely disappeared. Only the maximum value of 
Z, through the constraints (1.65, (6) and the La­
grange multipliers, will introduce explicitly those 
quantities. 

(1.69) 

J contains two classes of diagrams, one having some 
similarity with the polygonal diagrams ;n, the other 
being mainly made of 3-irreducible diagrams. 

II. QUANTUM SYSTEMS 

(i) Formulation in Terms of the 
One-Particle Density 

We now want to extend to quantum systems the 
results established so far. Among the various pos­
sible formulations of quantum statistical mechanics 
we shall consider a formulation of Lee and Yang,! 
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which, besides its simplicity, remains closer to the 
classical formulation. At the end we shall also quote 
the corresponding results for the Green's function 
formulation used by Luttinger and Ward.4 

In this section we use the same procedure as 
Sec. I(i) to rederive Lee and Yang's results, ex­
pressing the grand partition function as a stationary 
functional of a quantity in direct relation to the 
one-particle density. In the next section, the method 
is extended to produce a stationary expression of 
quantities directly related to the one and two 
particle densities. We have tried to keep the same 
symbols as in the classical case, for equivalent 
quantities. 

a. Definitions. Lee-Yang Diagrams 

We start from the Lee-Yang description of 
statistical mechanics of translationally invariant 
systems in terms of the (contracted) s--diagrams 
(L-Y Sec. IV), which, for short, we call S--diagrams. 
Such diagrams are built up with a-vertices con­
nected by lines bearing an arrow. An a-vertex 
(a ~ 2) connects a incoming lines and a outgoing 
lines. A s--diagram has S- incoming and S- outgoing 
external lines. We shall only be concerned with 
connected diagrams. We recall the rule giving the 
algebraic quantity associated with a labeled dia­
gram (rule A). Each of the N internal lines bears an 
integer i and a corresponding momentum ki' each 
external line (if any) bears a pregiven momentum: 

of all the initial coordinates into the final coordinates 
of all the vertex functions T a taken together. 

The grand partition function defined as 

Z(a, {3) = Tr exp (aN - ~H), (2.2) 

where Nand H are the number and the Hamiltonian 
operators, is then expressed as 

In Z(a, ~) = L E In [z-'m(k,)] 
k, 

+ L (all distinct O-diagrams). (2.:3) 

The one-particle density (diagonal) 1IIatn:x is defined 
as 

(ki In, I k,) = ok',k,n(k,) 

= Z-'(a, (3) Tr exp (aN - ~H)a~"ak" (2.4) 

where a~" ak, are the creation and annihilation 
operators for a particle in a state defined by its 
momentum k, (n = 1). It is conveniently expressed 
in terms of 

M(k,) = m(k,) 

+ m\k,) L (all distinct, I-diagrams). (2.6) 

Equations (2.1) to (2.6) are introduced or derived 
in L-Y and we shall consider them our starting 
point. We also introduce the two-particle density 
matrix as 

(i) associate to each internal line i a factor (k;k~ In,el k,k2 ) = Z-'(a, {3) 

m(k;) = z[l - EZ exp (-{3k:)r ' , (2.1) X Tr exp (aN - ~H)a~"a~,.ak,ak' (2.6) 

where E = +1 or -1 for Bose or Fermi systems' and express it in terms of Lee-Yang 2-diagrams 
respectively. 

(ii) associate to each a-vertex, a factor (kik~ In'21 k,k2) = (Ok"k, Ok',k, 

(kB' '" kB• ITa I kA' '" kAJ 

where kA and kB are momenta associated with the 
incoming and outgoing lines of the vertex. This 
factor can be said to describe the evolution of a 

particles between the values 0 and {3 of the inverse 
of the temperature, as if the rest of the medium 
were absent. It is defined in more detail for Bose or 
Fermi systems in L-Y. 

(iii) sum over all internal momenta with a weight 
(N!)-' (for labeled diagrams) or a weight (S,)-1 
(for free diagrams21

). 

(iv) assign a factor E
P where P is the order of 

the permutation 

21 Compare with footnote 16. 

+ E Ok',k, ok"k,)n(k,)n(k2) 

+ z -2 m(ki) m(k~) m(k) m(ke) 

(2.7) 

X L (all distinct, 2-diagrams). 

To analyze the diagrams, the following definitions 
are introduced: 

An articulation lace k1 of multiplicity m(m > 1; 
also called necklace in reference 5) is a sequence of 
lines bearing the same momentum k, (by virtue of 
momentum conservation) in a S--diagram. Removal 
of one articulation lace splits the diagram into m 
disconnected parts. A lace k1 is meant to be either 
an articulation lace k,(m > 1) or a nonrepeated 
line k , . 

A i-irreducible s--diagram contains no articulation 
lace. X(l) 1m;} is the class of I-irreducible O-dia-
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grams; the class of I-irreducible I-diagrams is then 
represented by 

K(1)/k1 ; m.} = [%m(k1)]X(l){m.}. (2.8) 

b. Densities 

One-particle density: The contribution to M(k1} 

of the I-diagrams where only kl is allowed to be an 
articulation lace, is given by 

m(k1{ 1 + t [EK CO {kJ; m;\ m(kJ)rJ ' (2.9) 

where m is the mulitplicity of the lace. The general 
I-diagram is generated by making the most general 
insertion at all lines other than kl with the effect 
of replacing m(kJ) by M(kJ}. 

M(k1) = m(k1} + Em(kJ)KCl) {kl; Mi }M(k1) (2.10) 

or 

M(kJ) = m(k1)(1 - Em(kJ)K(J) {kJ; Mdrl. (2.11) 

Relation (2.11) between M (kJ) and K(l) (k1) is 
homographic instead of exponential as in (1.14) 
because there is an ordering imposed at an articula­
tion lace which does not exist at an articulation 
point. XW {M;} or K W {k l ; M;} is given by the 
sum of I-irreducible 0- or I-diagrams 

X[~il '" ro + db +@ + ~+ ... (2.12) 

K"'{k,;M,}~ P+¢+¢+~+'" ".131 

calculated with rule (B) which differs from rule (A) 
through point (i): 

B(i) to each internal line i (drawn with a heavy 
line) associate a factor M;. 

Two-particle density: We have 

z2[<kik~ InJ21 ktk2) - (Ok',k. Ok'.k. 

+ E Ok'.k, Ok',k,)n(k1)n(k2)] 

= M(kDM(k~)<k~k~ IC! klk2)M(kl)M(k2)' (2.14) 

where the matrix CulM,} is represented by the 
sum of the I-irreducible 2-diagrams 

{k,k;IClk,k2), X * ~ + 0'+ R + R + ~ + .... 
I z. '2 I 2. t 2. I 2. 1 2 

\V5) 

calculated with rule (B). 

c. Grand Partition Function 

Instead of computing In Z(a, (3) by direct integra­
tion of Lk, n(k1) over a, we consider three expres-

sions which are also represented by O-diagrams (with 
some element distinguished) and expressed in terms 
of M(k1). 

(a) A general O-diagram with one lace kl dis­
tinguished, carries an extra weight N(Z) equal to its 
number of laces. The contribution of such diagrams 
• 22 
IS 

(2.16) 

where m is the multiplicity of the lace. 
(b) A general O-diagram with a l-irredudble part 

distinguished has an extra weight N(X w ). This 
number can be obtained in the following way: 
Suppress an articulation lace k J • close each one of 
these m parts obtained by a kl line, and repeat the 
operation inside each one of these m parts; the 
total number of I-irreducible parts obtained is 
N(x(l). Such diagrams are generated from x(l) {mil 
by making the most general insertion in all lines 
yielding 

(2.17) 

(c) Consider a general O-diagram with one single 
line kl distinguished, or equivalently with one lace 
kl and one l-irredudble part K{l} (k1) distinguished 
in the lace. Such a O-diagram carries an extra weight 
N(l·m), which is the number of laces weighted by 
their multiplicity (and also the number of lines). 
Since such diagrams are generated by starting from 
a I-irreducible part, making the most general 
insertion in all laces but kl (i.e., K(I) {k1 ; M.}) 
and then in the lace kl (i.e., M(k1», their con­
tribution is 

L: K CO {k1 ; M;}M(kl)' (2.18) 
k, 

These weights satisfy a simple relation which is 
immediately proven by induction and which follows 
from the tree structure of the diagrams 

N(Z) - N(l·m) + N(x(l) = +1. (2.19) 

Such a relation, together with Eqs. (2.16) to (2.18), 
implies 

In Z(a, (3) - L: E In (z-lm(k1» 
k, 

= - L E In [1 - eK(!) {k1 ; M;}m(kJ)] 

k, 

- L: K(1) {k1 ; M;}M(k1) + X(!} {M.}. (2.20) 
k, 

22 A diagram made of m I-irreducible parts K(1}(k1 ) 

connected by an articulation lace kl is invariant under 
circular permutation of these m parts giving rise to a sym­
metry number s = m. 
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Using relations (2.3) and (2.11) one gets [L-Y. 
Eq. (IV.32)] 

In Z(a, (3) = L E In (z-'M(k,)) - L E[M(k1) 
kl kl 

(2.21) 

The right-hand side <I> of (2.20), considered through 
(2.11) as a functional of K~l) [or the right-hand side 
'!r of (2.21) as a functional of M.l, is stationary 
under variations oK~l) (or oM.), a property which 
could be traced to relation (2.19). 

Using exactly the same method and argument as 
in the classical case [Sec. I(ii), the relevant matrix 
X ,2 is defined in the following section] it is shown 
that the functional '!rIM.} has a negative second 
derivative 1 at its extremum where ],1. = M •. It is 
to be remembered however that the proof of 
Appendix D does not apply as such to quantum 
systems; indeed, second functional derivatives of 
In Z(a, (3) with respect to potentials do not neces­
sarily behave like fluctuations, i.e., have no obvious 
negative definite character. 

(li) Formulation in Terms of the 
One- and Two-Particle Densities 

a. Definitions 

The grand partition function and the one- and 
two-particle densities are now expressed as func­
tionals of Mi and represented by I-irreducible 
t-diagrams calculated with rule (B) (in the fol­
lowing, unless mentioned, we only deal with I-irre­
ducible diagrams). We now introduce further defini­
tions along the same lines as in Sec. I(ii). 

Consider in a O-diagram a pair of lines (i, j) which 
we may think of as being cut open: k" k; for the 
incoming pieces, k~, k; for the outgoing pieces. 
Consider now all the possible pairs (i" j,), (i2, j2) .. " 
which after being further cut open, lead to a partition 
of the original diagram into two parts; one containing 
the incoming lines k i , k;, the other the outgoing lines k:, 
k;. The set of J.i, pairs of lines (i, j; i" jl; ... i"_l, j"-l) 
plays the same role as an articulation pair for the 
classical systems and is called an articulation 
sequence of pairs of laces or articulation sequence, 
of multiplicity J.i,. The same definition applies to 
a 2-diagram after the incoming external lines have 
been closed with the outgoing external lines yielding 
a O-diagram. 

A simple 2-diagram is such that the external lines 
considered as an opened pair are not part of an 
articulation sequence and the contribution of all 
the distinct, simple diagrams we represent by the 

Like C,2, the matrix S'2 is a symmetrical function 
of k" k2 (and of ki, kD. 

b. Two-Particle Density Matrix 

The contribution to <kik~ ICI k ,k2) of diagrams 
where the opened pair (kik~; k 1k 2) may be part of 
an articulation sequence of increasing multiplicity, 
is written in short as (Appendix A) 

S12[ 1 + ~ (tS12M,M2)" ] ' 

or equivalently, the matrix C'2 is expressed as the 
solution of the integral equation 

(kik~ ICI k ,k2) = (kik~ lSI k ,k2) 

+ t L (kik~ IS! 1112)M(l,)M(l2)(1112 IClk1k2). (2.24) 
Id2 

Further definitions are needed to analyze S,2: 
A nodal pair in a 2-diagram, is a pair of internal 
lines (i, j) such that by cutting them open, the 
2-diagram separates into two 2-diagrams each one 
containing one incoming external line (k, or k 2 ) and 
outgoing external line (ki or kO. A nodal diagram 
contains at least one nodal pair. Simple 2-diagrams 
are classified into nodal and elementary (i.e., simple, 
non-nodal) diagrams. 

Nodal diagrams: Let (kik~ Inl k ,k2) be the con­
tribution of those nodal 2-diagrams where by cutting 
a nodal pair one disconnects (klkD from (k2k~); the 
contribution of all nodal 2-diagrams is 

<kik~ INI k ,k2) = (kik~ Inl k1k2) + E(k~ki Inl k,k2)' 
(2.25) 

The matrix (kik~ Inl k,k2 ) is generated by iterating 
non-nodal parts described by the matrix 

<kik~ IXI k ,k2) = (kik~ ICI k ,k2) 

(2.26) 

In the iteration these non-nodal parts are connected 
by nodal pairs of lines. N 12 may be expressed as a 
solution of the integral equation 

(k,ki INI k2kD 

= L (k,ki IXI k3k~)M(k3)M(k~)(kak~ IXI k2kD 
k a k'3 

+ L (k,ki IXI k3kDM(k3)M(k~)(k3k~ INI k2kD, 
kak'a 

(2.27) 
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where we have 

(2.28) 

with (2.26) and (2.28) we can transform (2.27) into 

(klki IN I k2kD 

= L (klki lei k3k~)M(k3)M(kD(k3k~ lei kJrD 
kak'a 

- L (klki INI kakDM(k3)M(k~)(k3k~ lei k2kf) , 
ksk '3 

(2.29) 

thereby expressing N12 in terms of e12. 
Elementary diagrams: Here the analysis differs 

from the classical case because 3, 4 ... n-vertices 
may play the role of many-body interactions. We 
find convenient to distinguish two subclasses among 
the (simple, non-nodal) elementary 2-diagrams: 

(i) "2-vertex" -like 2-diagrams: They contain no 
articulation sequence. Their classical equivalent 
reduces to the direct link between points (1, 2) a 
diagram which was excluded from the class of 
simple 2-diagrams. Their contribution is written as 
(kik~ I VI k lk 2) and symbolized by a general 2-vertex 

x = X + \A+*+ ... 
1 2 1 2 {'}~' 2' 1 2 2' ~ 

+ +Ilfu+'*'.+»> 
1 ~ 12,2 

(2.50) 

(ii) 2-irreducible 2-diagrams: They contain no 
articulation sequence of multiplicity J.I. > 2. Notice 
that, as simple 2-diagrams, their external lines 
(considered as an opened pair) cannot be part of 
an articulation sequence, even with J.I. = 2. Classi­
cally this subtlety in the classification entered 
through the special treatment allowed to the direct 
(i, j) links. 

These 2-diagrams contribute a matrix 
(kik~ IK(2) I klk2)' They are built of parts playing 
the role of "effective" two-body forces and repre­
sented [Eq. (2.30)J as generalized 2-vertices and of 
parts corresponding to "effective" many-body forces. 

Elementary 2-diagrams which do not belong to the 
"2-vertex" subclass are obtained from the 2-irre­
ducible 2-diagrams by the following procedure: Each 
generalized 2-vertex part linking the four internal 
lines k:, k~ and ki' k; is replaced by the most general 
insertion connecting these lines; algebraically it 
amounts to replace each factor (k:kj I VI kik;) by 
(k:kj lei kik;) (Appendix A) which is represented 
as a heavy dot with two incoming k" k; and two 

outgoing k:, kj lines. In terms of diagrams we have 

(2.32) 

Contributions associated with these 2-diagrams are 
calculated with rule (C) differing from rule (B) 
through point (ii): 

C(ii) To each heavy dot 2-vertex, associate a 
matrix (k:kj lel kik;), where k:, k~ and ki' k; 
are the momenta of the outgoing and incoming lines; 
to each a-vertex (a > 2) associate a matrix Ta. 

The result of this section is summarized by the 
symbolic matrix equations 

el2 = (1 - tSI2111IM2)-IS12' 

S12{M i, ei;) = N I2 {M i , eid + VI2 {M,) 

+ K;;){M i , ei ;). 

c. Grand Partition Function 

(2.33) 

(2.34) 

Following the pattern used for the classical sys­
tems, we consider three expressions which are 
easily expressed as functionals of M, and e,i and 
represented by general O-diagrams with one element 
distinguished. 

(a) Consider a general O-diagram with one articula­
tion sequence (multiplicity J.I.) distinguished. As an 
iteration of simple parts its contribution, in terms of 
the matrix S12, is written,23 with obvious notations, 

Trl2 [S12MIM2 + 2 ± 1:. (tSI2MIM2Y]; (2.35) 
"~2 J.I. 

Compared with its contribution to In Z(a, (3), here 
a O-diagram carries an extra weight N ( (J') equal to 
its number of articulation sequences. 

(b) Just as we introduced the functionaIX(l) {M,), 
here we define functionals of the matrix e12, the 
derivative of which restores the matrices N 12, V 12, 
and Kg), namely (Appendix B), 

M(kDM(kD(kik~ INI klk2)M(k1)M(k2) 

= 4[0/ o(kik~ lei klkz)]:rr{Mi , eid (2.36) 

23 Compare with footnote 22 for the factor (IL)-I; see 
also Appendix A for factors 1/2. 
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M(kDM(k~)(kik~ i VI k1k 2)M(k1)M(k2) 

= 4[0/0(k;k~ IGI k1k 2)]'UIM i , Gid (2.37) 

M(kDM(k~)(k:k~ IK(2) I k 1k2)M(k1)M(k2) 

= 4[0/ o(k:k~ IGI k1k 2)]X(2) IM i , C.;}. (2.38) 

Diagrammatically we have 

.N[M;,C;i} = ® - @ .. 
'Y'{M; ,Cij} = \6) + 080 

(2.39) 

(2.40) 

X(r~ .. C(IJ = ~ + <0> + ..... ~ + ®.. + ... 
\5j) «J> \QSiJ W (2.411 

;n is represented by polygonal diagrams (with 
alternate signs), X(2) by 2-irreducible diagrams (no 
articulation pair of multiplicity p. > 2). 'U is defined 
as containing a term independent of the matrix 
G 12' Contributions of these diagrams are calculated 
with rule (C). The quantity S = ;n + 'U + X(2) is 
again represented by the most general O-diagram, 
since the heavy dots and lines are equivalent to 
the most general insertions, but now a nodal, 
2-vertex or 2-irreducible skeleton is distinguished. A 
general O-diagram thus carries a weight 

N( s) = N(;n) + N('U) + N(X(2) (2.42) 

counting the number of ways it can be generated 
out of nodal, 2-vertex or 2-irreducible skeletons, 
respectively. 

(c) Consider a general O-diagram where we 
distinguish one pair of laces, or equivalently, one 
articulation sequence and one simple part (e.g., the 
simple part 8 12 which follows the pair of laces 
distinguished). Such a O-diagram carries an extra 
weight N(fJ· p.) which is the number of articulation 
sequences weighted by their multiplicity, or also, 
the number of pair of laces (a pair of laces which is 
not part of an articulation sequence is counted with 
multiplicity p. = 1). These diagrams may be gener­
ated by making insertions in the simple part 
(812 IM" Gil}) and in the distinguished pair of 
laces yielding 

(2.43) 

We can then immediately construct the grand 
partition function as a functional of M i and Gil' 
To that effect we use a second topological relation­
ship valid for Lee-Yang diagrams (Appendix E) 
which relates the weights introduced in (a, b, c) to 

N(X(1) (number of ways a O-diagram may be 
generated out of 1-irreducible skeletons). 

N(x ll
) = UN(fJ) - N(fJ·p.)] 

+ N(;n) + N('U) + N(X(2). (2.44) 

Or equivalently, considering (2.19) we have 

N(Z) - N(l·m) + UN(fJ) - N(fJ·p.)] 

+ N(S) = +1. (2.45) 

Together with (2.20), (2.35), (2.39) to (2.41), and 
(2.43), this relation implies 

In Z(a, (:3) - Trl [E In (Z-l m1)] = 

Tr1 [- Eln(l - EK;l)m1) - K;l)M11 

+ Tr12 [- E In (I - !812M 1M 2) 

- !S12M1M2(1 + !G12M 1M 2)] 

+ SIMi, Gi ;}, 

SIMi, Gid = ;nIMi , Gii } + 'U{M;, Gu } 

+ X(2) {Mi' Gi ;}. 

(2.46) 

(2.47) 

Notice that (2.44) is equivalent to the relation 

x(l){M
i

} 

= -Tr12 [In (1 - !812 {M i , Gii }M1M 2) 

+ !812 {M i , Gi ;}M1M 2 (1 + !GI2M 1M 2)] 

+ SiMi, Gii }, (2.48) 

where in the right-hand side Gil may be considered 
as a functional of M i through repeated iterations 
of (2.26). Using (2.26) and (2.11) to eliminate Kil) 
and 8 12 from (2.47), we get the desired result: 

In Z(a, (3) = Trl [E In (z- IM 1) - E(M1/m1 - 1)] 

+ Tr12 [In (1 + !GI2M 1M 2) 

(2.49) 

d. Variational Properties 

The right-hand side of (2.47) can be verified to be 
stationary under changes of the functions K;l) and 
8ij in a way traceable to the diagram structure as 
in Sec. 1. We rather consider the right-hand side 
of (2.49) as a functional a{Mi' Ci ;} of the matrices 
ifi and Cij. The particular values M i , Cij of those 
matrices which render stationary a under variations 
oM i , OCil satisfy then the following equations: 

E(1/M1 - 1/m1) + Tr2 [G12M 2(1 + !GI2M 1M 2)-1 

(2.50) 
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Equation (2.50) together with (2.11) expresses Ki1) 
as a functional of Mi and Cil, an expression which 
could be also obtained from (2.48) and (2.26). 
Equation (2.51) is an immediate consequence of 
(2.16) and (2.39) to (2.41). For those particular 
values of i1., eii equal to the actual matrices M i , Cii 

immediately related to the one- and two-particle 
densities through (2.5) and (2.14), the functional n 
has an extremum equal to the grand partition 
function. The study of the quadratic form in oMi 
and Oeij representing the second-order variation 
of n is deferred to another paper. 

(iii) Other Formulations. Conclusions 

A stationary expression of In Z(a, (3) in terms of 
the one-particle Green's function has been derived 
by Luttinger and Ward.4 Analysis and proofs 
similar to the ones carried out above could be 
extended to this formalism resulting in a doubly 
stationary expression in terms of quantities directly 
related to the one- and two-particles densities. We 
shall just quote the results. 

We define the one- and two-particles Green's 
functions in the Fourier series representation2.4· 2

4 

and try to keep the same notations as before for 
equivalent quantities: 

G~ = (-WI + k; - a/(3)-1 

GI = G~ + G~K;l)GI 
G12 = GIG2(01l' 022' + E 012' 021') 

+ !GIG2S12GI2' 

(2.52) 

(2.53) 

(2.54) 

We have used shorthand notation GI for G(WI' k l ), 

GI2 for (wiki, w~k~ IGI wlkl, W2k2) etc ... . The 
energy variable W takes only discrete values 

W = i7r{3-1[2n + (1 - E)/2] , (2.55) 

n is a positive or negative integer, Kil) is the mass 
operator, !Sl2 the interaction operator. We introduce 
the correlation operator Cl2 by the equation 

(2.56) 

which after taking into account Eq. (2.54) and the 
E-symmetry of (wlkl' w2k~ lSI w1k1, W2k2) under 
exchange of 1, 2 of 1', 2', may be written as 

(2.57) 

- Trl2 [In (1 - !Sl2GlG2) + !Sl2(GlG2 

+ !GIG2CI2GlG2)] + S{G i , Cii }, 

with 

and 

m:{G i , Cid + 1l{Gi , Cid 

+ X(2){G i , Cii } 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

.(t.11I1 

Here the polygonal (m:) and the 2-irreducible (X(2» 
diagrams are Feynman diagrams constructed with 
heavy lines (associated with Gi ) and bubbles with 
two incoming and two outgoing lines (associated 
with matrices C;J. The vertex-like diagrams (1l) 
also contain a single dotted horizontal line (asso­
ciated with the original two-body potential matrix 
- ({3/2) (kik: Ivl kik i ». Algebraic contributions are 
calculated then by summing over momenta and 
energies (with conservation of these quantities 
through each vertex or bubble) as indicated else­
where.2

•
4 Equation (2.58) may also be rewritten as 

In Z(a, (3) 

= Trl E [In (G~l) + (WI - k~ + a/(3)GI] 

+ Trl2 [In (1 + !Cl2GlG2) 

- !Cl2G1G2] + S{G i , Cij}, (2.64) 

an expression stationary with respect to changes in 
G; and C;i' 

It is possible to eliminate the dependence upon 
the equilibrium parameters in the entropy func­
tional through a scale transformation. If we write 

(2.65) 

Using a topological relation between various weights rr 2GI2 = Ol2, 

24 E. Montroll and J. Ward, Phys. Fluids 1, 55 (1958). and also 
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(2.66) 

rlc12 C12 , 

we get for the entropy 

S = Trl € [In (Gl) + (;)16\] 
+ Tr12 [In (1 + ~Cj'}J]2) - ~C12G\G2] 

+ {G - (2) - -~ i, Cid + X {G i , Cid. (2.67) 

This expression is free of any reference to the 
equilibrium parameters (or the interactions) and is 
stationary with respect to variations of G1, C 12 under 
the constraints of constant particle number and 
energy 

(2.68) 

(H) = Trl k~Gl + ~ Tr12 vJl12; (2.69) 

the one- and two-particle Green's functions then 
satisfy their equilibrium equations [i32G12 for example 
satisfies (2.54), (2.57), and (2.59) to (2.63). However, 
the second functional derivative of (2.67) with re­
spect to Gl, C12 , is not a negative definite matrix25 as 
contrasted with the classical case. 

Doubly stationary expressions involving the 
average occupation number as in reference 5 and 
an average two-particle density matrix, are more 
involved to establish. They require extending the 
disentangling theorem6 to operators involving two 
creation or two annihilation operators. Such a 
formulation would presumably furnish the closest 
analog to the classical result towards which it 
would tend term by term as Ii tends to zero. An 
extension of the disentangling theorem would also 
furnish a doubly stationary formulation in terms 
of densities of "quasi-particles".3 Notice that the 
entropy as expressed in terms of "quasi-particle" 
occupation numbers, was formally identical to the 
entropy of "free" "quasi-particles," and hence 
independent of the equilibrium parameters (in 
contrast, the energy constraint contained a com­
plicated functional). Moreover, "quasi-particle" 
occupation numbers are not directly related to 
physical quantities (except at zero temperature and 
at the Fermi surface) and one would not expect any 
positive definiteness character for the second func­
tional derivatives. 

In this work we have thus given an answer to the 

": A expression eq';1iv!1lent to (2.21) in this formulation is 
statlOnary under VarlatlOns of Go but its second functional 
derivative is not n!'lcessarily :; positive definite matrix (con­
trary to an assertIOn made In reference 4). The reason is 
that.' her!'l' the m:;trix C 12 is not a fluctuation matrix. The 
statl?~anty equatIOn has to be supplemented by a stability 
condItIon. 

question raised in the introduction by explicitly 
writing the thermodynamical functions a,s doubly 
stationary functionals of the one- and two-particle 
densities (or quantities in direct relation to them). 
It is not clear whether the suggestive forms ob­
tained for the entropy (or yet to be derived in the 
formulations mentioned just above) will lead to a 
generalization of Boltzmann's H function. 

From a more practical point of view it is hoped 
that the doubly stationary expressions obtained will 
prove useful for the study of phase transitions of 
classical1o .ll and quantum systems. For example 
within the framework of Lee-Yang theory of super­
fluid transitions in bose systems, it would be neces­
sary first to rewrite the above results in the x­
ensemble formulation. 26 Superfluid transitions in a 
Fermi system would require, to take care of pair 
condensation, a generalization of the x-ensemble, 
which the doubly stationary formulations seem 
particularly suited to carry out. 27 
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APPENDIX A. INSERTIONS 

Classical systems: A general insertion made at 
points (i) or (i and j) on a skeleton diagram may 
be factorized and leads to the substitutions 
nO(rJ ~ n(rJ or28 g(ri - r;) ~ C(r" r;). We briefly 
mention the proof. 

A skeleton !: -diagram with N + !: points has N 
labeled points; the insertion, a diagram of N' + 1 
or N' + 2 points, is made at the labeled point(s) 
r. or r. and rio There are 

(N + N')! 
N!N'! 

26 T. Lee and C. Yang, Phys. Rev. 117, 897 (1960). 
27 C. N. Yang (private communication). 

(AI) 

28 Or multiplication by a factor Ci ; if in the skeleton the 
points (i, j) are not directly linked. 
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distinct labeled t-diagrams giving the same con­
tribution and obtained by permuting in every 
possible way the labels of the skeleton and those of 
the insertion. The definition of a t-diagram con­
tribution and the form of (AI) then lead to the 
factorization of the skeleton and the insertion con­
tributions (when fi or r i and r; are held fixed) and, 
therefore to the substitution mentioned above. 
The same sort of proof may be used when the roots 
of the skeleton play the role of ri, rio 

Quantum systems: Substitutions used in Sees. 
II(i) and (ii) are treated similarly. In particular the 
proof is the same for the insertions made on a line 
(i) leading to the substitution m(ki ) ~ M(ki ), and 
for insertions relative to the internal incoming 
(k;, k;) and outgoing (k~, kj) lines of a (generalized) 
2-vertex in a skeleton leading to the substitution 

A slight modification occurs, in a 2-diagram, when 
the pairs of lines involved belong to an articulation 
sequence comprising the external lines (k1k 2 ; k:kD 
like it occurs in relation (2.24). 

Consider the class of 2-diagrams with N' + N + 2 
internal lines containing two simple parts Siz and 
S12 with N' and N internal lines (which we symbolize 
in Fig. 1). For each diagram of this class there are 

(N' + N + 2)! 
(N' + 2)! N! 

(A2) 

distinct labeled 2-diagrams obtained by permuting 
the label of what we arbitrarily call the skeleton (e.g., 
simple part Si2 plus lines 111 12) and of the insertion 
(simple part SI2)' If, in the skeleton we do not 
distinguish diagrams where lines 11, lz bear different 
labels, we get a counting factor 

(N' + 2)(N' + 1) (N' + N + 2)1 
2 (N' + 2)! N! . 

(A3) 

The factor ! arises because, due to the symmetry 
of the simple parts, exchange of labels between 11, 
and 12 does not lead to distinct diagrams. Expression 
(A3) leads to the factorization 

FIG. 1. Class of diagrams with two simple 
parts S12' and S'2. 

! L: (kik~ IS'IIJ2)M(11)M(lz)(l,12 lSI k,k2 ) 
Id2 

and consequently to (2.24), (2.36), and (2.43). 

APPENDIX B: FUNCTIONAL DERIVATIVES 

Classical systems: Given a functional X (2) I C ii} of 
the symmetrical function C(r" r;), its functional 
derivative may be defined as 

limit [X(Z){C;;} - X(2){C;d] 
<\_0 A(rl , r2) 

(Bl) 

where 

x [o(rl - r i ) o(r~ - r;) + o(rl - r;) o(rz - ri)]' (B2) 

If X(2) is represented by O-diagrams [calculated 
with rule (C), for example], we show that twice the 
right-hand side of (Bl) is represented by the sum 
of all distinct 2-diagrams which can be generated 
out of the O-diagrams [calculated with rule (C)] by 
suppressing a link Cij and letting the pair (i, j) be 
fixed at (rl' r2)' 

Consider the family of (N + 2)-labeled, distinct, 
O-diagrams associated with a given free diagram.16 

Choose a pair of points (i, j) in the free diagram. 
In the family of (N + 2)-labeled, distinct, O-dia­
grams, that pair is labeled in (N + 2)(N + 1)/2 
ways if i and j play a symmetrical role, or in 
(N + 2)(N + 1) ways if i and j do not playa 
symmetrical role. But there is only one distinct way 
of identifying (i, j) with (r l • r 2) in the first case and 
two ways in the second. The original weight 
[(N + 2) !]-1 assigned to (N + 2)-labeled O-diagrams 
thus becomes 2(N!)-1 for the N-Iabeled, 2-diagrams 
generated in the fashion described above, which 
proves the assertion. 

Quantum systems: The extension to functionals of 
matrices (k~k~ ICI k,k;) is immediate. The matrix 
Cif is now invariant under exchange of (k" k;) or 
(k~, kn. The argument applied above to the pair 
(r" ri), applies here both to the incoming pair (ki' k j ) 

and to the outgoing pair (k~, kn. Consequently, if a 
functional X(2), of the matrix Cij. is represented by 
O-diagrams the sum of all distinct 2-diagrams which 
can be generated out of the O-diagrams by sup­
pressing a heavy dot C ii and letting the incoming 
pair (k'J k j ) and the outgoing pair (k;, kj) fixed, 
respectively, at (k1, k 2) and (kf, kD, represents 
four times the functional derivative. 
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APPENDIX C: PROOF OF RELATION (1.48) 

It suffices to prove that the relation 

![N(II') - N(1r·J.!)] + N(m) + N(X(2» = +1 (CI) 

is true for any I-irreducible O-diagram. Indeed con­
sider a O-diagram where we choose a pair of points 
(i, j) with i and j belonging to different I-irreducible 
parts. The pair (i, j) has then a multiplicity J.! = 1 
and only pairs inside the same I-irreducible part 
will contribute a nonvanishing [N(1r) - N(1r·J.!)] to 
(1.48). The quantity N(m) + N(X(2» counting the 
number of ways a diagram can be generated out of 
a polygonal skeleton (1.45) or a 2-irreducible 
skeleton (1.46) can also be broken up into contribu­
tions referring to each separate I-irreducible parts, 
since the generating diagrams (1.45) and (1.46) have 
no articulation points. As a consequence, the rela­
tion (1.48) itself can be broken into a sum of rela­
tions (CI), one for each I-irreducible part of the 
diagram. 

In the following we only consider I-irreducible 
O-diagrams. The proof is inductive. We assume that 
(CI) is verified for all I-irreducible O-diagrams of 
order up to p, we show that (C1) is still verified for 
diagrams of order p + 1. 

1. Consider in a O-diagram of order p' < p, a pair 
of points (i, j) connected by a direct link. We 
generate a O-diagram of order p + 1 by (Fig. 2) 

(a) inserting at (i, j) a 2-irreducible 2-diagram, or 
(b) replacing the direct link (i, j) by a 2-irre­

ducible, 2-diagram. 
Under transformations (a) or (b), the weights 

involved in relation (CI) undergo changes which 
we now examine. In either cases the multiplicity 
of the pair (i, j) is increased by one unit. Each new 
pair has multiplicity one. Thus, 

i 
• 

FIG. 2. Illustration by a simple example of substitution 1 
considered in Appendix C. 

oN(1r) = p. (C5) 

(i) Let m be that (p + I)th point of the new dia­
gram. The pair (i, j) has a multiplicity increased 
by one; any pair including point m has multiplicity 
one except when transformation (b) is applied to 
a pth-order diagram of the following character: 
after removal of the direct link (i, j), the remaining 
2-diagrams, rooted at points (i, j) is a nodal 2-dia­
gram. Excepting such a case for the moment, we have 

and obviously 

oN(1r·J.!) = P + 1, 

oN(m) = 1 

ON(X(2» = 0, 

which leaves relation (CI) invariant. 

(C6) 

(C7) 

(C8) 

(ii) We return to the exceptional case. The pth­
order diagram is obtained by adding a direct link 
(i, j) to the nodal 2-diagram rooted at (i, j). By 
virtue of the proofs given in operations 1 and 2(i) 
if suffices to consider the case of a pth-order poly­
gonal diagram. It is then just as easy to verify 
directly relation (CI) for any polygonal diagram. 
We have 

and obviously 

(C2) (C11) states that any pair of points has multiplicity 
2 except if the two points are adjacent summits (in 
which case it has multiplicity one). 

oN(m) = 0 (C3) 

(C4) 

Relation (CI) remains verified for the new diagram. 
2. Consider in a O-diagram of order p, a pair of 

points (i, j) connected by a direct link. We generate 
a O-diagram of order p + 1 by (Fig. 3) 

(a) inserting at (i, j) the nodal 2-diagram of 
lowest order, or 

(b) replacing the direct link (i, j) by the nodal 
2-diagram of lowest order. 

These transformations generate changes of the 
weights 

N(m) 

i 
• 

(CI2) 

-[ ~ (_ )0(;) ] 
+ [(!) - (~) + (~) ] 

= (!) - (~) + (~) ; (C13) 

60rAi 
FIG. 3. Illustration of substitution 2 considered in Appendix C. 
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(CI3) gives the number of ways one can generate 
such a diagram out of the polygonal diagrams (of 
order ::; p) of (1.45). Here it suffices to choose in 
in the p th-order diagram the summits we want to 
keep in the generating one. Successive terms in the 
first bracket corresponds to the choice of q summits 
with the factor (- )"+1 attached to polygonal dia­
grams in (1.45). The second bracket takes care of 
the fact that the lowest order polygonal diagram is 
of order 3. Expressions (ClO) to (CI3) again imply 
(CI). 

Clearly now we can generate a general O-diagram, 
of order p + 1, out of diagrams of lower order by 
applications of operations 1 or 2; relation (CI) being 
checked for the simplest diagram (p = 2) is valid 
for any diagram. 

APPENDIX D: SECOND VARIATIONS 

We show that, for classical systems, the quadratic 
form of the second variations obtained from the 
functional Z{ni, aid (or m is positive definite at 
the extremum ni = ni, ai ; = Ci ;. The proof follows 
some of the argument used in reference 5 for a single 
functional and a quantum system. 

From the definition of Z (1.64) we have 

oZ/on i = Wi (DI) 

(D2) 

where we have considered Z as a functional of 
ni, ni; and we let 

Wi = (3u i (D3) 

The second functional derivatives are given by the 
matrix 

(D4) 

where A = (i) or (ij). The quadratic form represent­
ing the second variation of Z is thus 

(D5) 

From the definition of In Z (1.3) we also have 

(D6) 

The second functional derivatives are given by the 
matrix 

onA/OWA' 

and give rise to a quadratic form 

(D7) 

(D8) 

This form is positive definite because successive 
functional derivatives of In Z with respect to W A 

give rise to successive fluctuations. It suffices to 
recognize that the matrix (D4) is the inverse and 
opposite of (D7), to prove that the quantity (Do) 
is negative definite. 

APPENDIX E: PROOF OF RELATION (2.44) 

It suffices to prove that relation 

UN(cr) - N(cr·,u)] + N(:JL) + N(u) 

+ N(X(2)) = +1 (EI) 

holds for any I-irreducible O-diagram. Consider two 
laces (i, j), each one belonging to a different I-irre­
ducible part of the diagram. Laces i and j cannot 
belong to an articulation sequence of multiplicity 
,u > 1: indeed after having cut open the lines i and 
j (k" k;) incoming lines; k;, k; outgoing lines), we 
may further separate the diagram into 2 pieces by 
separating away, for example, the I-irreducible part 
to which (ki' kD belong. We then have two pieces 
containing (ki' kD(k;, kj), respectively. The 2-dia­
gram obtained after opening the laces i and j thus 
had the structure of a nodal (simple) diagram. 
Hence, only pairs of laces belonging to the same 
I-irreducible part will contribute a nonvanishing 
[N(cr) - N(cr·,u)] to (2.37). Counting the number 
of ways a O-diagram can be generated out of the 
polygonal diagrams (2.39), the vertex-like diagrams 
(2.40) or the 2-irreducible diagrams (2.41) may also 
be broken up into contributions referring to each 
separate I-irreducible part, since the generating 
diagrams have no articulation lace. Consequently, 
(2.44) itself may be broken up into a sum of relations 
like (EI), one for each of the I-irreducible parts 
constituting the diagram. 

In the following we only consider I-irreducible 
O-diagrams the inductive proof given here follows 
closely the proof of Appendix C relative to classical 
systems. We assume that (EI) is valid for any 
I-irreducible diagram of order up to p (the order 
is the sum of the orders ai of each a-vertex). We 
show that (EI) is still verified for diagrams of order 
p+1. 

We consider the following possibilities of generat­
ing a O-diagram of order p out of a diagram of lower 
order. 

1. The diagram is obtained by replacing an 
ordinary 2-vertex by a generalized 2-vertex (Fig. 4). 
We label by m or n internal lines of the insertion, by s 
internal lines of the rest of the diagram. Insertion 
lines are labeled kik;, k;k;; considering only I-irre­
ducible diagrams these momenta must all be dif-
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ferent. We recall that a pair (m, n) is part of an 
articulation sequence (JJ- > 1) if, after cutting open 
(m, n) into incoming (km, kn) and outgoing (k~, k~) 
pieces, we can separate the diagram into two dis­
connected parts containing (km, kn) and (k~, k~), 

respectively, by cut.ting open one more pair only. 
From the definition of the generalized 2-vertex part 
no pair (m, n)(m, 8), (m, i), or (m, j) may be part 
of an articulation sequence (of mUltiplicity JJ- > 1) 
since it takes cutting more than four internal lines 
to split apart a generalized 2-vertex. 
We then have 

o[N(o-) - N(O"'JJ-)] = 0, (E2) 

and similarly 

oN('JL) = oNe\)~ = ON(X(2» = 0. (E3) 

Relation (E1) is thus unchanged under the con­
sidered operation. Naturally, substitution of a 
generalized 2-vertex by another one leads to the 
same conclusion. 

2. The diagram is obtained by replacing an 
ordinary 2-vertex by a 2-irreducible 2-diagram 
(Fig. 5). The 2-irreducible 2-diagram inserted may 
be thought as built with v generalized 2-vertices 
besides "effective" a-vertices (a > 2). 

By definition, no pair (m, n) may be part of the 
same articulation sequence as (ki' k;; k:, kD; but 
2v pairs (m, n), (m, i), or (m, j) form v articulation 
sequences of multiplicity 2. Further a pair (m, 8) 
cannot be part of an articulation sequence: Indeed, 
suppose we cut open the pair (m, 8); to separate 
the diagram into two parts containing (km, k,) and 
(k~, k:) we have to separate the inserted 2-irreducible 
diagram which requires cutting at least three more 
lines. Hence, we have 

o[N(O") - N(O"'JJ-)] = -v. (E4) 

The new diagram may be generated now in v - 1 
extra ways out of the diagrams of \), and one extra 
way out of the diagrams of X(2) 

oN('JL) = 0, 

oNe\)~ = v - 1, 

ON(X(2» = 1, 

leaving thus (E1) unchanged. 

(E5) 

(E6) 

(E7) 

3. The diagram is obtained by replacing an 
ordinary 2-vertex by two of them connected ladder­
wise (Fig. 6). The pair (m, n) is part of the articula­
tion sequence containing (ki' k;; k:, kD and its 
order is increased by one unit. A pair (m, i), (m, j), 
or (m, s) cannot be part of an articulation sequence: 

. X . FIG. 4. Illustration of 
kj kj substitution 1 in Appen-

dix E. The generalized 
ki kj 2-vertex is defined by 

(2.30). 

I J ~ I J a sImple example of Bub-
kl'Xkl. kl~kl' ~IG. 5. Illustration by 

k. . ----7' stitutiol! 2 considered in 
I kJ ki kj AppendIx E. 

Indeed, after having cut the line minto k m and k~, 
to separate into different parts k m from k~, we need 
to cut also the line n into kn, k~; thus, the only way 
the line m can be made part of an articulation 
sequence is by being paired with the line n. Hence 
the change in N(O") - N(O"· JJ-) reduces to 

(ES) 

Also we have one more possibility of generating the 
diagram out of \) 

oNe\)~ = 1, (E9) 

and 

(E10) 

thus leaving preserved relation (El). 
Notice that the substitution considered has no 

classical equivalent. 
4. The diagram is obtained by replacing an 

ordinary 2-vertex by two of them connected "node­
wise" (Fig. 7). Notice that we shall not need to 
consider apart the substitution corresponding to 
case 2(a) of Appendix C since it can be obtained by 
competition of operations 3 and 4. 

We consider two cases: 
(i) (ki' k;; k:, ki) are part of an articulation 

sequence of multiplicity JJ- > 2; the resulting dia­
gram has the structure shown in Fig. S for JJ- = 3, 
for example. Pairs (m, n) or (m, s) cannot be part 
of an articulation sequence. This is obvious for 
(m, n). For (m, 8), let us cut (m, s) open into (km , k,) 
and k~, k:); to put k m and k~ into different parts 
we certainly need to cut n open, then to perform 
the separation of the diagram into two parts, we 
shall need to cut more than one line. On the other 

k'iXkj ~ 
ki kj 

k'iQki 
m n 

ki kj 

FIG. 6. Illustration of 
substitution 3 considered 
in Appendix E. 

k"Xk" k'i~k'j 
I ) ====} ~ 

ki kj ki n kJ 

FIG. 7. Illustration of substitution 4 considered in AppendixE. 
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FIG. 8. Pairs of lines (k i k;) or 
(k/ k;') are part of an articulation 
sequence with p. = 3. The bubbles 
figure simple parts. 

hand the transformed diagram contains two more 
articulation sequences (km, k;; kn, k~) and (kn, k,; 
km' kD so that we have 

o[N(o) - N(u·,u)] = -2. (Ell) 

summits (2p lines), it is immediately found that 

!N(u) = (2~) 

!N(u',u) = [C~) - 2(!) ] + (!). 
Further, we have 

N('O) = (~) , 

N(X(2» = o. 
Thus 

(E14) 

(E15) 

(E16) 

(E17) 

But we also have one more possibility to generate 
the diagram out of '0 and out of m !(N(u) - N(u·,u» + N('O) 

oN(m) = oN('O) = 1, 

ON(X(2» = 0, 

which leaves (E1) unchanged. 

(E12) 

(E13) 

(li) (k" k;; k~, kj) is an articulation sequence 
oflmultiplicity ,u = 2. By virtue of points 1 to 3 
it suffices to consider the particular case of polygonal 
diagrams. It is then just as easy to show directly 
that relation (El) is satisfied. 

Consider a polygonal diagram (2.39) with p 

(ElB) 

The calculation for N(m) being exactly the same 
as for the classical case, relation (El) is thus proved 
for the polygonal diagrams. 

By using operations 1 to 4 we can build any 
diagram of order p + lout of diagrams of lower 
order and relation (El) being verified for the 
simplest diagram (single 2-vertex) is verified for 
any diagram. 
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The usefulness of the perturbation expansion and the Wigner-Kirkwood expansion of the quantum­
mechanical partition function is discussed for various interaction potentials. It is shown that, contrary 
to what is expected from the Wigner-Kirkwood expansion, quantum-mechanical diffraction correc­
tions at high temperature to the classical partition function may involve nonanalytic forms of h'. 
This occurs when the second-order perturbation term is finite in the classical limit, and the interaction 
potential has a cusp or singularity in any derivative. The second-order perturbation term is evaluated 
exactly for the exponential, screened Coulomb, and square barrier potentials, and the nonanalytic 
form (h2)"2 is found. For potentials more singular than l/r at the origin, the diffraction corrections 
are analytic in h2• 

A new method of deriving the Wigner-Kirkwood expansion from the perturbation expansion is 
given. The method allows one to subtract off any order of the perturbation expansion which may be 
evaluated separately, and is particularly useful for the screened Coulomb potential. 

The classical second virial coefficient and the O(h') and O(h4) diffraction corrections are evaluated 
for the singular potential, u(r) = (gp/rp)e- r / r ., by using the Mellin transform of e-~u. 

I. INTRODUCTION 

T HE problem of calculating small quantum cor­
rections at high temperature to classical thermo­

dynamic quantities has been discussed extensively 
during the three decades since the classic papers 
of Wigner and Kirkwood.! In this paper the same 
problem is considered again, but with the purpose 
of establishing the analytic properties of the partition 
function with respect to Planck's constant for 
various interaction potentials. The quantum cor­
rections to the classical partition function to be 
considered are those due to the operation of the 
uncertainty principle. Effects due to quantum 
statistics will not be treated here. Thus, we consider 
a gas of distinguishable particles interacting accord­
ing to the laws of wave mechanics. Such quantum 
corrections will be referred to as diffraction effects. 

The fundamental problem of quantum statistical 
mechanics is the evaluation of the partition function, 
Z = Tr exp (-{3H), where H = 2:, (- rN2mi)V! + 
Li<i u(rii), and (3 = l/kT is the reciprocal tempera­
ture. Since the partition function may be evaluated 
directly for only a very limited set of interaction 
potentials, it is necessary in general to resort to 
some expansion procedure. One method is to expand 
in powers of the interaction potential. Such a per­
turbation expansion is appropriate when u(r) is 
small in some sense compared with the kinetic 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

, E. P. Wigner, Phys. Rev. 40, 747 (1932); J. G. Kirkwood, 
ibid. 44, 31 (1933). 

energy. When the terms of the perturbation ex­
pansion are evaluated, the diffraction corrections 
to the classical limit of the nth order appear as some 
function of Ii multiplying the nth power of the 
coupling constant of the interaction. A second 
method in common use involves expanding in powers 
of li2V2; thus the kinetic energy is considered small 
compared with the potential energy. This second 
method is appropriate when u(r) is very singular 
at r = O. The expansion in powers of the kinetic 
energy is the well-known Wigner-Kirkwood ex­
pansion' (hereafter to be referred to as the WK 
expansion). Using the WK method, the partition 
function (written for one particle) is: 

T -PTl (27rmkT)3/2 J d~ -u re = -h-2- re 

X {I - ~~ (VUY + 1~0 [«(\7U)2)2 

- 8(\7U)2\72U + 12(\72U)2] - ... } , (1) 

where U = (3u(r) , and h = 1i/(2mkT)'/2 is the 
thermal de Broglie wavelength: The h4 term in 
Eq. (1) is the form obtained by Yaglom.3 The 
evaluation of the terms of the WK expansion is 

2 In . statistical-mechanics textbooks, the thermal wave­
length IS often defined a~ h/(21rmkT)'/2 and denoted by the 
symbol A, so that the Ideal gas partition function reads 
(V /A3)N. 

3 A. M. Yaglom, Teoriya Veroyatnostei i ee Primeniya 1 
161 (1956). For an English language summary of Yaglom'~ 
method see S. G. Brush, Revs. Modern Phys. 33, 79 (1961). 

1003 
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quite le11gthy and no terms beyond the }\4 term are 
known to exist in the literature. Equation (1) has 
had considerable practical application in the cal­
culation of quantum corrections to the equation of 
state of nonideal gases.4.5 

At first glance it would appear from the structure 
of Eq. (1) that the partition function is an analytic 
function of '11.

2
, and in consequence there seems to 

be a common and erroneous belief among physicists 
that diffraction corrections necessarily involve only 
even powers of Planck's constant. The argument 
for the nonideal gas calculations is that any reason­
able form of the intermolecular interaction potential 
is strongly repulsive near r 0; usually r-

12 is 
assumed. Hence e- u goes to zero much faster as 
T -7 0 than the terms of the expansion go to co, 

so that the configuration space integrals are finite. 
Although little is known about the convergence of 
the resulting series, it seems reasonable that at 
high temperature the first few terms give the 
diffraction corrections accurately. 

It is not true, however, that for all potential 
interactions the partition function is analytic in }\z. 

A simple counter example is the exponential po­
tential, u(r) = yoe- r

/
ro

• Since this potential form is 
finite at r = 0, one cannot depend on the e-

u factor 
for the existence of the coefficients of powers of '11.

2
• 

The mth term of the WK expansion includes 
('\7 2 u)m, and since '\7 2e- r = (1 - 2/r)e- r

, one 
sees that the coefficient of 'A2m includes at least one 
term of order r-me-mr

• Thus, after the integration 
over r the coefficients of }\2 and '11.

4 are finite, but 
that of }\6 is logarithmically divergent and all higher 
coefficients are more strongly divergent. The ex­
ponential potential is an example, albeit not very 
interesting for physical problems, for which the WK 
expansion may not be used. Instead, one must 
evaluate the terms of the perturbation expansion, 
and it will be found that the coefficient of each power 
of the coupling constant is a nonanalytic function 
of li2

• It will be shown that the nonanalyticity takes 
the form of terms of order (liZ) m+1/2 in addition to 
the expected terms of order liz,n. A more interesting, 
though less obvious example, is a potential with 
an r- 1 singUlarity at the origin. Evaluation of the 
second-order perturbation term for the screened 
Coulomb potential yields again a function with 
both even and odd powers of li in its expansion. In 
view of these examples it seems worthwhile to 

4 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Mo­
lecular Theory of Gases and Liquids (John Wiley & Sons, Inc., 
New York, 1954), Chap. 6, pp. 419-424. 

6 Oppenheim and A. S. Friedman, J. Chem. Phys. 35, 
35 (1961). 

examine the question of when the partition function 
is analytic in liz and when it is not. 

Before taking up the analyticity of Z as a function 
of liz, its analyticity with respect to two other 
quantities should be considered, namely, the particle 
number density p and the coupling constant of the 
interaction g. In this paper we will consider only 
potentials such that the cluster integrals of the 
Mayer cluster expansion exist. 6 With this restriction 
the pressure is an analytic function of p; i.e., it is 
given by a power series expansion in p, the usual 
virial expansion. 7 One is next interested in the 
analyticity of the virial coefficients as functions of 
g and liz. In this paper, only the second virial coef­
ficient will be studied since the methods used may 
be easily extended to the higher virial coefficients. 
The second virial coefficient is the sum of all two­
body interactions, and is defined as: 

B2 = - (41rX)3/[Tr e- f3 (Ho+u) _ Tr e-!1H ,] -7 _ 1.. 
2! . +,-.0 2! 

where H 0 = - (li2 /2J.!) '\72 and J.! is the reduced mass 
of the two interacting particles. 

We will be primarily interested in the evaluation 
of Bz for repulsive singular potentials of the form: 

(3) 

where the coupling constant gp has dimensions ELP
• 

The exponential screening function is chosen for 
mathematical convenience. Other screening functions 
such as the Gaussian form e- r

'/
ro

' may also be 
used. The analyticity of the classical form of Bz 
as a function of g is obvious for nonsingular po­
tentials, say, of the form rme- r

/
ro

• The first-order 
singularity, p = 1 in Eq. (3), is the very interesting 
case of the screened Coulomb potential. For this 
potential the first two terms of the perturbation 
expansion are finite because of the three-dimensional 
volume element 41rr2 dT. The third order is log­
arithmically divergent, and the higher orders more 
strongly divergent. The exact evaluation of B2 for 
the screened Coulomb potential yields: 

B2 = -21rr~{ -{Jgt/To + (1/4)({3g1/rO)2 

+ (lj6)({3gJro)3[ln ({:Jgi/To) + const] + ... }. (4) 

• 6 For the uns~reened Coulomb potential, the cluster 
mtegrals are all dIvergent becal!-se? the infinite range of 
e2/r. The correct pressure expressIOn mcludes the nonanalytic 
forms p3/2 (the Debye-Hiickel term) and p2ln p. 

1 T. E. Hill, Statistical Mechanics (McGraw-Hill Book 
Company, Inc., New York, 1956), pp. 141-144. 
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Thus, the divergence of the third and higher orders 
of the perturbation expansion gives rise to the 
nonanalytic form g~ In gl' For a second-order 
singularity, p = 2, the first term of the perturba­
tion expansion is finite, and all higher orders are 
divergent. The exact result for B2 contains the 
nonanalytic form g~ In g2' Similarly, for p = 3 
all orders of the perturbation expansion are in­
finite, and the exact result for B2 begins with 
g3 In g3' For p > 3, B2 begins with ({3gY/p. 

A simple dimensional analysis gives quickly some 
information about the analyticity of B2 as a func­
tion of Ji2. For the singular potentials defined by 
Eq. (3), the fundamental lengths which com­
pletely determine B2 are: the classical interaction 
length l = ({3gp)l/P, the thermal wavelength h = 
Ji({3/2m)1/2, and the screening length roo From these 
lengths we may form two independent dimension­
less parameters which will be taken to be any two 
of the ratios: 

A = llro, 7J = hll, 

By using Eqs. (1) and (2) the WK expansion of the 
second virial coefficient in terms of the parameters 
A and "1 is: 

B2 = -21TZS[Co(A) - 7J2Ct(A) + 7J4C2(A) - ... ], (5) 

where the expansion coefficients are: 

CoCA) = LO> x 2 dx (e- U 
- 1), 

(6) 

CI(A) = 1~ LO> x 2 dx e-U('VxU)\ 

with x = rll, and U = x-Pe-Ax. CoCA) gives the 
classical second virial coefficient. The coefficients 
of the diffraction corrections, CI(A) ... Cm(A), are 
finite for all p 2:: 1 in the limit of no screening, 
ro = CX) or A = O. From Eq. (5) we see that the 
parameter of smallness for the WK expansion is 7J2

• 

Since its dependence on the coupling constant is 
g;2IP, it is clear that the WK expansion is a strong 
coupling expansion in contrast to the perturbation 
expansion. The temperature dependence of 7J2 is 
{31-2/P, and hence the diffraction corrections vanish 
at high temperature when p 2:: 3. The radius of 
convergence of the power series in 7J2 of Eq. (5) is 
not known, but it seems clear that a third-order 
singularity in the potential is sufficient to guarantee 
that diffraction corrections at high temperature in­
volve only powers of 7J2, and hence only even powers 
of Ji2. 

The less singular cases, p = 2 and p = 1, must 
be considered separately from p 2:: 3. For p = 2, 

7J2 has no temperature dependence, and hence the 
WK expansion would indicate that diffraction cor­
rections do not depend on temperature. Finally, 
for p = 1, the screened Coulomb potential, the 
temperature dependence of "12 is (3-1. Note that 
for p 2:: 3 the thermal wavelength is small compared 
with the classical interaction length at high tem­
perature, whereas for p = 1 the order is reversed, 
h » l. Thus the terms of the WK expansion diverge 
in the high-temperature limit for p = 1. This 
behavior indicates that B2 cannot be an analytic 
function of Ji2 for p = 1. The r- 1 singularity at first 
appears to be too weak to allow an expansion in 
which the kinetic energy is treated as small com­
pared with u(r). It will be shown in Secs. III and V, 
however, that the nonanalyticity in Ji2 for p = 1 
appears only in the second-order perturbation term. 
The diffraction corrections involve I' = 7JA, and 
in the second-order theory both odd and even 
powers of I' appear. The diffraction corrections to 
the sum of all higher orders of the perturbation 
expansion involve only even powers of 1', and the 
coefficients may be calculated by a modification 
of the WK expansion. 

In Sec. II the perturbation expansion is developed 
in some detail, and a method of deriving the WK 
expansion from the perturbation expansion is given. 
In Sec. III the second-order perturbation term is 
evaluated explicitly for a number of different po­
tentials in order to illustrate the condition for which 
it is or is not analytic in 1'2. In Sec. IV some of the 
coefficients of the WK expansion are evaluated by 
a very convenient technique, the use of the Mellin 
transform. In Sec. V the special case of the screened 
Coulomb potential is considered in some detail. 

II. THE PERTURBATION EXPANSION AND ITS 
USE FOR DERIVING THE WK EXPANSION 

The perturbation expansion of B2 is most easily 
developed with the help of the resolvent operator. 
One uses 

e-PH = _1_ f dz e-
PH 

21Ti c z - H ' 

where the contour C goes from right to left in the 
upper half-plane and left to right in the lower half. 
Thus, it encloses the simple poles on the real axis 
at the eigenvalues of H when the .trace is taken. 
This method was used by Glassgold, Heckrotte. 
and Watson for the linked cluster expansion of the 
compiete partition function.8 If we put H = 

8 A. E. Glassgold, W. Heckrotte, and K. M. Watson, Phys. 
Rev. 115, 1374 (1959). 
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(H - Eo) + Eo, where Eo = p2/21J. is the unper­
turbed kinetic energy of relative motion, and use 
the resolvent of e-!3(H-E.), then the second virial 
coefficient is 

- _ (41TX2) 3/2 J d3
pe-!3E. --.L f -/I. 

B 2 - 2! C21TX)3 21Ti c dz e 

X (p Iz - (Ho ~ u - Eo) - z - (H~ - Eo) I p). 
(7) 

Expanding in powers of u gives 

(41TX2) 3/2 J d3pe-/iE. 1 
B2 = --2-! - ~ (21T1i)3 2m 

f dz e-!3
z < If 1 )nl ) 

X c -z- p \; - (Ho - Eo) u P 

= LB2". 

(8) 

Since Boltzmann statistics have been assumed, the 
individual particle momenta may be transformed 
to center-of-mass and relative momenta, and the 
center-of-mass momentum integrated out. Thus, Ho 
is the free-particle Hamiltonian for relative motion. 
Ho = -(li2/21J.)V 2, and Ip) indicates its eigen­
functions. 

The operator product in Eq. (8) is written out in 
momentum space to give the nth order of B2 as 

1 1 
X z _ (P!-t - p2)/21J. ... z - (Pi - p2)/21J.' (9) 

where 

PI = P + likl' .. " Pn-l = P + Ii(kl + ... + kn-l) , 

and 

is the Fourier transform of the potential. The 
quantities liklJ ... , lik" are the momentum transfers 
at the respective n interactions. The 0 function 
ensures momentum conservation in the final inter­
.action. The contour integration in Eq. (9) may be 
performed and the result represented as: 

1 f dz e-s, 1{3 l f3n 1{3, - -- ... = 0 d{3n 0 d{3n-l'" 0 d!31 21Ti c z 

X exp - [(8 .. - !3n-l)(P!-l - p2)/21J. 

+ '" ({32 - f3l)(Pi - p2)/2IJ.J. (10) 

The multiple integral form [Eq. (10)] is the nth 
term of the familiar ordered exponential expansion 
commonly used in field theory calculations and in 
recent years also in quantum statistical mechanics. 9 

Equation (10) shows the equivalence of the linked 
cluster expansion of the partition function in the 
resolvent operator formalisms and the work of Bloch 
and de Dominicis.1o 

The relative momentum integration may be 
readily performed when Eq. (10) is used in Eq. (9). 
The result is 

_ (-f3)" J vn d3k1 .. , d
3kn 

B2n = 2! (21T)3(n-ll 

X 8(kn - k t - ••• - kn - t ) 

X u(kt ) ••• u(kn)FneXkt , "', Xkn - t ) , 

where 

Fn(Xk t , "', Xkn - t ) = { dVn ... f'dV] 

X exp - X2{[(V2 - vt)k~ + ... 
+ (vn - vn-t)(kt + ... + kn_t)2J 

- [(V2 - vt)kt + .. , 

(11) 

+ (vn - vn-1)(kt + ... + kn-t)YI· (12) 

All quantum-mechanical diffraction effects are con­
tained in the functions Fn. The Fn are entire functions 
of X2. The first term of Fn when expanded in powers 
of X2 is l/n!, and consequently in the classical limit, 
~ ~ 0, Eq. (11) reduces to 

9 The first use of the ordered exponential expansion in 
statistical mechanics was by M. L. Goldberger and E. N. 
Adams, J. Chern. Phys. 20, 240 (1952). They pointed out that 
if a and b are any two operators, the expansion of e- (a+b) may 
be written as: 

e-a L (-1)" It dv" .. '1" dVt ea •• 
n-O 0 0 

X be-a(,.-O·-,)b ... be-a( .. -o,)be-ah• 
When b is chosen to be the kinetic energy operator and a the 
potentia! energy, the WK expansion is obtamed. Conversely, 
when b is the potential energy, the perturbation expansion is 
obtained. 

to C. Bloch and C. de Dominicis, Nuclear Phys. 7, 459 
(1959). Their work is much more general than this paper in 
that quantum statistics are included. Also, they develop the 
perturbation expansion of the grand partitIOn function, 
whereas in this paper only the expansion of the relative­
motion one-particle canonical partition function is needed for 
the second viria! coefficient. 
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B ( - (it f d3 ( )n 
2n cla •• ical = - 2n! r U r . 

Also since FI == 1, the first-order perturbation term 
has no diffraction effects. 

The actual evaluation of Eq. (11) for any given 
potential is tractable only in second order since 
for n = 2 there is only one integration variable. 
This integration for a few examples is discussed 
in the next section. For higher order terms the 
evaluation of Eq. (11) is very difficult because it 
requires integration over the n - 1 wave vectors, 
kl ... k n - I • Because of this complexity it may be 
wondered whether or not the integration is simpler 
in configuration space rather than in wave-number 
space. Two different forms may be obtained directly 
from Eq. (11). One of these is 

B 2n = _!(411'X2)3/2( -(3)" f ... f d3rl ••• d3rn 

x u(r l ) ••• n(r,,) { dVn •• , f'dVI 

exp [-(rl - rn)2/4X2(1 - Vn + v,)] 
X [411'~2(1 - Vn + V I )J3

/2 

exp [-(r2 - r,)2/4~2(V2 - VI)] '" 
X [411'~2(V2 _ VI)]3/2 

exp [ - (rn - rn ,)2 / 4~ 2(Vn - Vn _ I)]. (14) 
X [2( )J3/2 411'X Vn - Vn-, 

The details required to turn Eq. (11) into Eq. (14) 
are not given here since this form and its derivation 
are adequately discussed by Goldberger and Adams9 

and also by Green.ll Unfortunately, the evaluation 
of B2n in the form of Eq. (14) appears to be even 
harder than in the form of Eq. (11) since one must 
still integrate over the n vectors r l ..• rn which 
represent the separation of the two particles at the 
"times" v, ... vn • 

The second form of B2n as a configuration space 
integral is obtained by using the familiar repre­
sentation of the three-dimensional delta function: 

and noting that in the power series expansion of Fn 
the wave numbers kl .,. k n-, become the dif­
ferential operators, iVI ... iVn - l. Thus, one obtains 

11 H. S. Green, J. Chern. Phys. 20, 1274 (1952). In his work 
Green goes one step further and obtains a result for the 
intermediate temperature integrals: ~he result, how!lver, does 
not appear useful for the remal~mg configuratlOn space 
integrations required in the evaluatlOn of Eq. (14). 

X ul(r) .,. Un-I(r). (15) 

The subscripts 1 through n in Eq. (15) are for 
bookkeeping purposes. They may be erased after 
the differential operators VI'" V n-I in the ex­
pansion of Fn are applied, respectively, on UI ... Un-I' 

B2n in the form (15) is not particularly useful 
for explicit evaluation, but it is useful as a means 
of obtaining the WK expansion from the perturba­
tion expansion. For this derivation the expansion 
of Fn as defined by Eq. (12) in powers of '11.

2 is needed. 
The exponent of the integrand of Eq. (12) may 
be written as: 

{[(V2 - vI)k~ + ... + (vn - v"_I)(kl + '" + k n _ I)2] 

- [(V2 - vl)kl + .,. + (vn - v,,_,) 

X (k l + ... + kn _ I )]21 
n-l n-l 

2: annk; + 2 L an""k., ·k", 
r=1 r:z>Tl 

where 

an"., = (vn - v.,)[1 - (vn - /).,)]. 

The differences, v" - v" are a measure of the 
"times" from the interactions with momentum 
transfer h kr to the final interaction. The multiple 
v integrations in Eq. (12) represent an average 
over the duration of these excitations. It may be 
shown that 

(rl + 1)(n - r2) 
(n + 2)! 

The expansion of F,,(Xkl, .,. , 'Ak,,_I) is 

F" = r dVn .... dVl 1 - X2 2: anrrk; I iO' { ["-I 
10 0 t'-1 

+ 2 E anr,r,kr, .kr,] + 0(1.
4

) ... } 
T2>Tl 

1 [n-I 
= -, - X2 :E (anrr)avk! 

n. r-I 

+ 2 I: (anr,r')avk"okr,] + 
1"1t>r1 

(16) 

(17) 

When Eq. (17) is put into B2n in the form of Eq. (15) 
and the summations over r l and r2 carried out, 
one obtains 
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00 

B2n = L B~:) 
m=O 

1 J 3 {( - ut }..2 

-"2 dr ~ - (n + 2)! 

X [en - I)~en + 4) \12 U( _ U)"-! 

(n - 2)(n - I)n(n + 5) 
12 

X (\1uy(-ur-2] + ... }. (18) 

The O('A2m) term of the WK expansion is obtained 
by summing B~:) for all orders of perturbation 
theory. Clearly B~~) summed from n = 1 to co 

gives the classical second virial coefficient. The 
method will be carried out explicitly only for the 
O('A2) term. In order to obtain the usual form of 
the O('A2) term it is necessary to integrate the 
V 2 U( - ur- I portion of Eq. (19) by parts. Since 
we are interested primarily in potentials which are 
singular at the origin, the integration by parts is 
done by excluding a sphere of radius 8 about the 
origin. The result for B~~) in Eq. (19) including a 
surface term from the integration by parts is: 

B(l) = _ 'A2 r {J d
3
r('\7 U)2( - Ur-

2 

2n 2 o~ I2Cn - 2)! 

_ (n - I)nen + 4) 4 82 U'(8)( - U(8)r- 1}. (19) 
6(n + 2)! 7r 

When Eq. (19) is summed over n, the surface term 
gives no contribution, and one obtains: 

B2 = -1 J d3r{ce-U - 1) 

- ~; ('\7 UYe- u + ... } (20) 

in agreement with Eq. (1). In order to obtain higher­
order terms in the WK expansion, one needs formulae 
analogous to Eq. (16) for powers and products 
of the anr,r,. These may be calculated readily but 
laboriously. 

The usual method for the derivation of the WK 
expansion described in textbooks!2 follows the pro­
cedure used by Kirkwood l in which the Bloch 
equation, at j a{3 = - Ht, is solved by iteration in 
powers of Ii" subject to the condition that t = 
exp -(3[p2j2m + u(r)] at Ii = O. This method is 
very analogous to the WKB method for solving 

12 I. D. Landau and E. M. Lifshitz, Statistical Physics 
(Pergamon Press, New York, 1958), pp. 96-100. 

the Schrodinger equation. It is straightforward but 
very tedious. Other methods have been given by 
Goldberger and Adams,9 Oppenheim and Ross,13 
Chester,a Siegert,t5 and Yaglom.3 All these methods 
require considerable effort even to obtain the O('A4) 
term. The very elegant method of Yaglom is prob­
ably the most useful as judged by the ease in which 
the o ('A4) term is obtained. In this method the 
solution of the Bloch equation is expressed as a 
Wiener functional integral which is expanded in a 
Taylor series in powers of 'A. 

The derivation given in the preceding paragraphs 
in which a given power of 'A2 in the perturbation 
expansion is summed, has been described in some 
detail, not as an addition to the list of methods of 
obtaining the WK expansion, but because of an 
important advantage that it has. With this method 
one may subtract out any number of lower orders 
of the perturbation expansion which have a finite 
classical limit and make a WK expansion on the 
remainder. This procedure must be used for po­
tentials with r- 2 and r- 1 singularities at the origin. 

III. ANALYTICITY OF SECOND-ORDER 
PERTURBATION THEORY AS A 

FUNCTION OF h2 

In the previous section, three different forms were 
given for the nth-order perturbation term B 2n • 

The explicit evaluation of B 2n when n > 2 for any 
potential is in general a formidable task. The second­
order term, however, is sufficiently simple that the 
evaluation may often be accomplished. In this 
section, B22 will be evaluated for a few potentials 
in order to exhibit the diffraction corrections, and 
to indicate the analyticity as a function of 'A2

, 

hence also of li2
• For the evaluation of B22 the mo­

mentum space form (11) is the easiest to use. 
The unpleasant function Fn('Ak iJ ••• , 'Akn_1 ) 

defined by Eq. (12) may be expressed in terms of 
known functions for n = 2. It is: 

_ 1 (-I)'i' 
- "2 ~ 2'(28 + I)!! ' 

where K = 'Ak, and Erfi (a) = f~ dte t
' is the imaginary 

131. Oppenheim and J. Ross, Phys. Rev. 107, 28 (1957). 
14 G. V. Chester, Phys. Rev. 93, 606 (1954) 
16 A. J. F. Siegert, J. Chern., Phys. 20, 572 (1952). 
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error function. F2 has the following asymptotic 
expansion for large real K: 

F = I [~_ + ~~ + ... + 2"(2n :- 3)! !] . (22) 
2 2 l K' in 

The expression (11) for the second-order term 
may also be found in the work of Montroll and 
Ward.16 They develop their results for certain 
terms in t.he perturbation expansion of the partition 
function of a many-body system by using the pair 
interaction propagator. For Boltzmann statistics the 
pair propagator is 

G(Mr, (3' - (3") = N(3 exp [-X 2ev(1 - v)], 

where N is the number of particles of the system 
and v = «(3' - (3")/(3. Because of the symmetry 
property of the propagator G(K, (3 - «(3' - (3") = 
G(K, (3' - (3"), it may be expanded in Fourier series, 
G = N(3 Lt Lt(l) exp (27ritv). The Fourier com­
ponents are: 

LtV) = { dv exp [27ritv - lV(l - v)]. (23) 

Thus, F2(K) is the Oth component of the pair 
propagator F~ == tLo(l). 

The second-order perturbation term to be evalu­
ated is: 

(32 1
00 

47rk
2 

dk ( ()2 C 2 2 
B22 = -4 0 (27r) 3 Vu k) Lo X k). (24) 

Note from the series expansion (21) of Lo that the 
integrand of Eq. (24) is an analytic function of X2. 
The resulting function of X after the integration is 
not necessarily analytic in X 2

• 

As the first example we consider B22 for the ex­
ponential potential, u(r) = goe -rjr,. Its Fourier 
transform is VU(k) = 87rr~go/(1 + er~)2. After 
changing the integration variable to x = kro, B22 
becomes: 

with "( = X/ro• The diffraction effects may not be 
obtained by integrating term .by term the expansion 

16 E. W. Montroll and J. C. Ward, Phys. Fluids 1, 55 
(1958). For a more complete discussion of the properties of 
propagators and their Fourier components, see the article by 
Montroll in La theorie des gaz neutres et ionises (Hermann et 
Cie, Paris, 1960). In place of F,(;\k) they obtain 1/2 ,£,L,2 
(i3h'k'/2m) where m is the mass of one particle. An easily 
proved identity valid for classical statistics, ,£,L,.(x') = 
Lo(2x2), establishes the correspondence between their form 
and Eq. (21) of this paper. The factor of 2 in Lo(2x2) represents 
the change to the reduced mass of the two interacting particles, 
i.e., 2i3h2k2/2m = i3h2k2/2J.l. = ;\'k2• 

of Lo("(2x2) since all terms beyond 0("(4) are divergent. 
Integrals of this type may be evaluated in the follow­
ing manner: 

H ( ) = 100 

x
2 

dxLo("(2X
2
) 

r "( 0 (X2 + 1), , 

fooo X2 dxLo("(2x2
) 

(_1)r+1 dr-I 1 I 
X (r - 1)! dar-I (x" + a) a-I' 

(_1),+1 dr-I I 
( _ 1)' d r-l aH(,,(, a) , r . a a~1 

(26) 

with 

H(,,(, a) = 100 

dx foC"(2X2) 

o X + a 

= II dv 100 

dx exp [~"(2X2V(1 - v)] 
o 0 X + a 

I I {7r e
aq

, _ r a8' Erf (a li2 (J)} 
= 0 dv {J 2 al/'{J - v 7r e ------;;u2'8- ,(27) 

where {J2 = "(2v(1 - V).17 After carrying out the 
differentiations indicated in Eq. (26), one obtains 
for Eq. (25): 

B 27r 3( )2 
22 = -3 ro (3go 

X {L (m + 1/2)(m - 1/2)(m - ;j/2h2m 

moO 2m(2m + 1)!! 

_ (7rh5e'Y'/4}. 
64 (28) 

This result (28) consists of an expected analytic 
function of "(2 plus another analytic function multi­
plied by the nonanalytic form ("(2)1/2. The summation 
in Eq. (28) is the expansion of 

3/8 - ,,(2/16 + ,,(4/32 + ("(6j64)Lo( _,,(2), 

where Lo( _,,(2) as defined by Eq. (23) for imaginary 
argument is (2/'Y)e'Y'/4 Erf (,,(/2). Consequently, the 
odd and even powers of "( in the braces of Eq. (28) 
may be combined into one function: 

{ } = 3/8 - "(2/16 + ,,(4/32 

- (,,(5/32)e'Y' /4 Erfc (,,(/2). (29) 

As a contrast to the exponential potential 

17 The x integral in Eq. (27) after the change of variable 
y = ~2., is the Laplace transform of y-1 12(y + a)-I exp (- rPy) 
and IS (1r/2)eI12ea02 Erfc(aI12 0). See Bateman Project Tables 
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. I, 
p. 136, No. 24. In Eq. (27) we have used Erfc (y) = 1r112/2 -
Erf (y). 
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we next consider the Gaussian potential u(r) 
goe-r'lr.', which has the Fourier transform YuCk) 
7r3/2r~go exp - (kro)2 / 4. Since u(k) is also Gaussian, 
Bn may be evaluated by expanding Lo(/x2

) and 
integrating term by term. One obtains: 

B22 = - ({3~~:r~ fo'" dx x2 (7r3!2e -,'/4)2 Lo(,-./x2) , 

7r( 23,", (_1)m')l2m 
-8 PUo) ro !:'o 2m(2m + 1) 11 

X 1'" d 2m+2 -x'!2 
X X e , 

o 

(30) 

which is an analytic function of ')12. 
The reason for the different analyticity properties 

of the two forms (28) and (30) for the two potentials, 
lies in the behavior as r ~ O. The Gaussian form 
and all of its derivatives are smooth as r ~ 0, 
whereas the exponential form has a cusp at r = O. 
As functions of a complex variable z, one notes 
that e-" is analytic at Z = 0, while e- 1zl is non­
analytic since its first derivative is discontinuous 
at z = 0. In the Fourier transform the cusp of 
e- r

/
r

, is manifested by the second-order pole of 
u(k) a: W + l/r~) -2 at i/ro. 

In general, the second-order perturbation term 
will be analytic function h2 for any potential that is 
smooth at r = 0, for example, rme-r'/r.', while some 
nonanalytic form of h2 will appear for any potential 
that has a cusp in any derivative. For example, 
rme- r/ r

• has a cusp in the mth derivative at r = 0. 
(Its Fourier transform has a pole of order m + 2 
at i/ro.) B22 can be evaluated for u(r) 0: rme- rlr• 
for any integer musing Eq. (26); the first non­
analytic form to appear is of order ')I4m+5. 

An interesting example of a potential with a cusp 
not at r = ° is the square barrier: 

u(r) = gu r < ro 

= Or> ro 

which has the Fourier transform 

YuCk) = 47rgor~(kro)-ljl(kro), 
where il (x) is a spherical Bessel function. The 
second-order perturbation term for this potential is: 

r~( 47r/3go)2 1'" d '2()L ( 2 2) Bn = - 8 2 X h x 0 ')I X 
7r 0 

-1Tr~({3go?[1/3 - (')1/4) Erf (2h) 
+ (')13/32) Erf (2h) - (')I2/16)e-4I'Y'J. (31) 

Some details of the integration required to obtain 
Eq. (31) are given in the Appendix. For small ')I 
the expression in brackets in Eq. (31) becomes 

[1 = i - 7r1
/

2')1 /8 + 7r1 
1 2')13 /64. Again the dif­

fraction corrections to the classical result are non­
analytic in ')12. 

Next we consider the screened Coulomb potential 
u(r) = (gl/r)e-rlr., which has the Fourier trans­
form YuCk) = 47rglr~/(e + l/r~). This potential 
has not just a cusp, but an infinite spike at r = 0. 
According to the rule discussed in a previous para­
graph a result that is nonanalytic in ')12 is to be 
expected; the first nonanalytic diffraction correction 
should be of 0(')1). Also, as was discussed in the 
Introduction, nonanalytic behavior for the l/r singu­
larity is indicated even by the WK expansion param­
eter '1)2 which increases linearly with temperature. 
The integration of Bn for this potential is easily 
worked out by using Eq. (26). The result is 

_r~(47r{3gt!ro)21'" x2 dx LO(')I2X2
) 

87r2 
0 (x 2 + 1)2 

- t7rr~(f3g)/ro)2 {[I + (')12 /2)Lo( _')I2)J 
- 7rl/2(')I/2)e~'/41· (32) 

Equation (32) has the expected form similar to the 
result for the exponential potential, i.e., the power­
series expansion of the function in braces contains 
both even and odd powers of ')I. By using the defini­
tion of LoC _')12) in terms of the error function, the 
expression in braces of Eq. (32) may be written as 

{ } = 1 - ')Ie~'/4 Erfc (')1/2). (3:3) 

The second form (33) is convenient for obtaining 
an asymptotic expansion for large ')I; it begins with 
2h2

• This limit means A » ro and is not physically 
interesting, since quantum statistics have not been 
considered. 

Some remarks about the electron gas at finite 
temperature are in order at this point. In the electron 
gas the interaction potential is the unscreencd 
Coulomb potential i/r. Electrical neutrality is 
maintained by the assumption of a continuous back­
ground of positive charge equal to the charge of N 
electrons in a volume V. Since every term of the 
perturbation expansion of the partition function 
in powers of e2/r is divergent (because of the infinite 
range of the interaction), finite results for the free 
energy are obtained by selective summation of 
terms in perturbation expansion. It is well known 
that the sum of the most divergent part of each 
cluster integral, the sum of the ring diagrams, 
gives the Debye-HUckel free energy. The funda­
mental lengths of the electron gas are l = {3e2, 
the Debye screening length An = (47r{3e2

p)-1/2 which 
replaces ro, and the thermal wavelength. The free 
energy of the classical gas is a function of the ratio of 
the two classical lengths A = {3e2 /An = 27rl/2{33/2 //2e3. 
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The Debye-Hilckel contribution to {3F = -In Z 
is - N A/3. It is the leading interaction term when 
A» 1; note that it is nonanalytic in p and e2

, i.e., 
A involves //2 and (e2

)3/2. Diffraction corrections 
will be in a function of the ratio "I = 'A/AD mul­
tiplying the classical Debye term. The WK expansion 
cannot be used to find the diffraction corrections 
since the WK expansion parameter, 1]2 = ('Aj{3e2)2, 
diverges as (3-1 at high temperature. Instead, the 
diffraction corrections must be found by an evalua­
tion of the quantum mechanical ring sum.16

•
18 There 

is an analogy between the quantum ring sum for 
the electron gas and the second-order perturbation 
term for the static screened Coulomb potential. 
However, the mathematical expression for the ring 
sum is far more complicated than B 22 , and im­
portant additional physical effects due to plasma 
oscillations are described by it. Since the Coulomb 
potential has a spike at r = 0 [and its Fourier 
transform, Vu(k) = 47re2/k2

, has a double pole 
at k = 0], it is to be expected that the function of 
"12 multiplying the classical Debye term will be 
nonanalytic in "12 in exactly the same manner as 
Eq. (32) is nonanalytic. This nonanalyticity, the 
appearance of both even and odd powers of "I in 
the diffraction corrections to the Debye term, has 
already been reported.19 The explicit evaluation will 
be given in a forthcoming publication. Because of 
the complexity of the mathematical expressions in 
the quantum ring sum, it is not possible to obtain 
the diffraction corrections in closed form as in Eqs. 
(32) or (33), but instead only as two convergent 
series, one involving 'Y2m and the other ('Y2)m+l/2. 

IV. EVALUATION OF TERMS IN THE WK EXPANSION 

In this section the evaluation of a few terms of the 
WK expansion will be described for the singular 
potential (3u(r) = ({3g,,/r")e- r

/
ro = x-Pe-Ax with 

x = r/l. Specifically, we need the coefficients Cm(A) 
of 1]2m in Eq. (5). The coefficients Co, C1 , and C2 

have been evaluated for the Lennard-Jones potential 
in the form of infinite series of gamma functions, 
and for other more complicated potentials used in 
the theory of nonideal gases they have been evalu­
ated numerically.4 The usefulness of these results 
is somewhat limited by the fact that little is known 
about the convergence of the WK expansion. The 
simple singular potential to be discussed here does 
not correspond well to any physical problem, but 
the results do show the dependence of the coef-

18 H. E. DeWitt, J. Nuclear Energy, Part C; Plasma 
Physics 2, 27 (1961). 

19 H. E. DeWitt, Bull. Am. Phys. Soc., 5, 7 (1960). 

ficients Cm(A) on the order of the singularity and 
thus give a little more information about the con­
vergence of the expansion. 

The coefficients in Eq. (5) may be evaluated 
readily by the use of the Mellin transform, an 
elegant and useful method in statistical mechanics 
recently pointed out by I wata.20 The Mellin trans­
formation of the exponential series is 

-r < q < -(r - 1). (34) 

In our use of this transform, the contour of inte­
gration is deformed to enclose the entire negative 
real axis to the left of - (r - 1). For the evaluation 
of the Cm(A), the exponential e- u in the integrand 
is expanded with Eq. (34) and the order of x and s 
integration inverted. 

The classical second virial coefficient, CoCA) from 
Eq. (6) is 

CoCA) = -2
1

. f ds res) 100 

x 2 dx (x-Pe-AT' (35) 
7r~ C 0 

subject to -1 < Re(s) < 0 since e- u - 1 is being 
expanded. With the change of variable y = - Asx, 
the x integral in Eq. (35) becomes a gamma function, 
and the result is: 

CoCA) 

= ~ f ds res) reps + 3)( -sAr (p,+3) • (36) 
27r~ C 

The result is obtained by summing the residues of 
all poles to the left of s = o. The integrand has first­
order poles when ps + 3 = 0, -1, -2, ... , -t 
but s is not an integer; it has second-order poles 
when s = -1, -2, .... The residues of the first­
order poles are O(A') while the residues of the 
second-order poles are nonanalytic in A. The com­
plete result is: 

7r ,,-1 ( -1) "Yo+l 

C o( A) = - L I -:". ~;-------'-"-:--::-:-;­
P "Y.~o sm 7rC"/" + 3)/p 

X 00 (-l)'(P+l){[t + ("I" + 3)/p]AI P'+"YO 

~ 1'[t + 1 + C"/" + 3)/p]r(1 + pt + 'Yp) 

(_l)(,,+I)'+,,-I[(t + 1)Ay'+P-3 

+ ~ r( t + 2) rept + 1 + p - 3) 

X {In (t + l)A + 1 - 3/p(t + 1) 

_ r/(t + 2) _ r/(pt + p - 2)} 
pr(t + 2) r(pt + p - 2) , 

(37) 

20 G. Iwata, ProgT. Theoret. Phys. (Kyoto) 24,1118 (1960). 
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where 'Yp = 0, 1, 2, ... , p - 4, p - 2, P - 1. The 
prime on the summation indicates that the value 
'Yp = P - 3 is to be excluded; for this value the 
integrand has double poles, and the second sum­
mation in Eq. (37) gives these residues. This ex­
pression (37) is general for p ::=: 3. For p = 2, how­
ever, in addition to Eq. (37) there is a residue from 
the simple pole at s = -1 which is - A-I. This 
additional term is the first-order perturbation term, 
i.e., J~ x2 dx( _x-2e- Ax ) = _A-I. Similarly, for the 
screened Coulomb potential, p = 1, the first two 
orders of perturbation theory are finite and are 
given by the residues of the simple poles at s = -1 
and -2. 

The coefficient of the first diffraction correction, 
C1(A), is evaluated by the same method. It is: 

C1(A) 1 1'" 2 d (-P -AX)( d -P _AX)2 = 12 0 x x exp -x e dx x e , 

= ~ J !k r( ) 1'" 2 d ( -p -AX)-8 
12 2

· s x s x e 
c 7r~ 0 

X [p2X -C2P+2) + 2pAx- C2P +1) + A2x-2P]. (38) 

The contour for Eq. (38) crosses the real saxis 
to the right of s = O. With the change of variable 
Y = - (s - 2)Ax, Eq. (38) becomes 

1 J ds 
CI(A) = 12 c 27ri res) 

X {p2[ -(s - 2)Arcp.-2p+I)r(ps - 2p + 1) 

+ 2pA rL-(s - 2)A]-cP.-2p +2)r(ps - 2p + 2) 

The first few terms in A are 

( _1)3 cP +I)(3A)3P-I 
X r(2 - 31p) + ... ] + r(3p)r(2) 

[ 
r'(2) r'(3p) ] } 

X In 3A + 1 - 1/3p - pr(2) - r(3p) +. .. . 
(40) 

The complete result for Eq. (39) is easily obtained 
by summing all residues from the first- and second­
order poles of the integrand. It is a lengthy result 
and is not written down since it is not needed. 

The coefficient of 7J4 as defined by Eq. (1) is: 

C2(A) = 14~0 fo'" x
2 

dx e-
u 

X [«(VxU)2)2 - 8(VxU/V;U + 12(V;U)2]. (41) 

A more convenient form for computational purposes 
is obtained by using V;U = U" + (2/x)U', and 
then integrating by parts the terms U,2U" and 
U'U" Ix. The result is 

C2(A) = 1~0 fo'" x
2 

dx e-
u 

X [-~ U,4 + 10 U,a + 2U,2 + UII2J. 
36 3 x x2 (42) 

With U = x-Pe-Ax, the same procedure used for 
+ A2[ -(s - 2)Arcp.-2V+3)r(ps - 2p + 3) I. (39) C1(A) gives, after some algebra, 

C2(A) = _1_ J dS. r(s) { -i-[p4r(ps - 4p - 1)[ -(s - 4)Ar(p·-4P-1l 
1440 c 27r~ 

+ 4p3 Ar(pS - 4p)[ -(s - 4)ArCV8-4p) + 6p2A2r(ps - 4p + 1)[ -(s - 4)Arcp.-4V+3) 

+ 4pA2r(ps - 4p + 2)[ -(s - 4)Arcp.-4P+2) + A4 r(ps - 4p + 3)[ -(s - 4)Ar(p·-4V+3)] 

- (40/3)[p3 r (pS - 3p - 1)[ -(s - 3)Arcp.-3V-1l + 3p2Ar(ps - 3p)[ -(s - 3)Ar CW3p) 

+ 3pA2r(ps - 3p + 1)[ -(s - 3)Arcp.-3p+1l + A3r(ps - 3p + 2)[ -(s - 3)ArCW3P+2)] 

+ 12[P2((p + 1)2 + 2)r(ps - 2p - 1)[ -(s - 2)ArCp8-2p-I) + (4p2(p + 1) + 4p) 

X Ar(ps - 2p)[ -(s - 2)Ar
cp

.-2P ) + (2p(P + 1) + 4p2 + 2)A2r(ps - 2p + 1) 

X [-(s - 2)Ar cp.-2P +1) + 4p2A2r(ps - 2p + 2)[ -(s - 2)Ar Cp'-2P+2) 

+ A4r(ps - 2p + 3)[-(s - 2)ArCp8-2P+3)]I. 

(43) 

Each term in this lengthy expression may be p(2p2 IIp + 21) 
C2 (A) = -1440 r(2 + lip) + .... (44) evaluated by summing the residues of first- and . 

second-order poles. We give only the value of the Collecting the previous results gives the second 
leading term: virial coefficient for U = x-P valid for p > 3 as 
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B2 = -27rl3
{ 7r 1 

P sin 37r/p 1'(1 + 31p) 

_ p'l/2 1'(2 _ lip) + (2p3 lIp2 + 21p)TJ4 
12 1440 

be expressed in powers of ,.. = 'l/A = 'Afro, which 
goes to zero as (31/2 at high temperature. The classical 
value of B2 is obtained from Eq. (37) with p = 1 
and with the additional residues of the two simple 
poles at 8 = -1 and -2. It is: 

X 1'(2 + lip) + ... }. (45) B2 classical = -27r({3g,)3Cn(A) 

Although it has not been possible to obtain a general 
term for this expansion, it is clear that the form 
of the general term for large p is p2m-l'1/2m

• Thus, 
the convergence of the WK expansion for any given 
value of '1/

2 depends strongly on the order of the 
singularity of the repulsive core of the potential. 

The limit of large p is interesting because the po­
tential gpr-P becomes equivalent to a hard sphere 
with radius ro = lim ({3gp//P as p -+ co. The first 
term in Eq. (45) reduces to (2/3)7rr~, the classical 
hard-sphere second virial coefficient. Thus, WK ex­
pansion when fully evaluated could give the dif­
fraction corrections to the hard sphere second virial 
coefficient at high temperature. For large p Eq. (45) 
becomes: 

B2 = -27rr~{ -1/3 

- 'I/[P'l//12 - (P'l/)3/720 + ... J}, (46) 

where '1/ = 'Afro. It appears from the numerical 
values of the first two diffraction terms in Eqs. (45) 
and (46) that the WK expansion is a convergent 
series in powers of P'l/, although nothing can be said 
about the radius of convergence. It is possible that 
the limit of the square bracket in Eq. (46) as p -+ co 

is finite and nonzero, in which case the diffraction 
corrections to the hard sphere virial coefficient are 
nonanalytic in '1/

2
• This result seems very probable 

in view of the nonanalytic result (31) for B22 with 
a barrier potential of finite height. It should be noted 
that most recent work on the quantum-mechanical 
hard sphere gas has been at low temperature so 
that ~ is much greater than the hard sphere radius. 
Thus, in the work of Yang and Lee21 the expansion 
parameter is ro/~, rather than 'Afro. We hope to 
study the hard sphere gas at high temperature, 
~ « ro, in more detail in a later publication. 

V. THE SCREENED COULOMB POTENTIAL 

The screened Coulomb potential must be con­
sidered separately from the more singular potentials 
treated in the previous section since the WK ex­
pansion parameter '1/

2 is large at high temperature. 
The diffraction corrections to the classical limit of 
the second virial coefficient for this potential must 

21 T. D. Lee and C. N. Yang, Phys. Rev. 105, 1119 (1957). 

+ L A'+2(r + 2),-' 
r~l r(r + 3) r(r) 

X [In (r + 2) A + 2C - 2h r 

r3 + 2 1 ]} 
+ r(r + l)(r + 2) - r +:2 . (47) 

In obtaining Eq. (47) from Eq. (37) the relation 
1" (r + 1)/I'(r + 1) = -C + hr with hr = 
1 + t + ... + l/r has been used. The first two 
terms of Eq. (47) are the first and second orders 
of the perturbation expansion (from the residues of 
the simple poles at 8 = -1 and - 2). The higher 
orders of the perturbation expansion are individually 
infinite, but their sum gives the nonanalytic form 
Ar

+
2 In A. The summation in Eq. (47) is identical 

with Iwata's2o result, the 8 2 integral of Abe's22 
modified cluster expansion for the classical electron 
gas. 

This section is devoted to obtaining diffraction 
corrections to Eq. (47). The first-order perturbation 
term is always classical. The diffraction corrections 
to the second-order term were obtained in closed 
form in Sec. III, Eqs. (32) and (33) and found to 
be nonanalytic in ,..2, i.e., they involve both even 
and odd powers of ,... Our problem then is to find 
diffraction corrections to the Ar

+
2 In A terms in 

Eq. (47). One conceivable approach is to evaluate 
every order of the quantum perturbation expansion 
and sum them. (The third order begins with A3 In,.. 
and the higher orders with Anh n

-
3
.) Such an ap­

proach is approximately as difficult as solving a 
quantum mechanical scattering problem by cal­
culating the nth order Born approximation and 
summing the Born series. Instead, it will be shown 
how the WK expansion may be used, even though 
at first glance the l/r singularity appears to be 
too weak to allow the WK expansion. 

22 R. Abe, Progr. Theoret. Phys. (Kyoto) 22, 213 (1959). 
A similar expansion for ionic solutions was developed by H. 
F. Friedman, Molecular Phys. 2, 23 (1959). Abe's giant cluster 
expansion for the electron gas is a special case of the very 
general Meeron nodal expansion, E. Meeron, Phys. Fluids 1, 
139 (1958); E. Meeron and E. R. Rodemich, ibid. 1, 246 
(1958). 
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Let us first consider what happens when the 
screened Coulomb potential is used blindly in the 
evaluation of the WK expansion coefficients CmCA). 
The general form may be shown to be: 

2m-l 

Cm(A) = L am,A' + A2m
-
1 

8=0 

'" 
X L Ar(bmr In A + em,), (48) 

r=l 

The calculation of the coefficients am., bmn and emr 
in Eq. (48) is feasible in any order with such ex­
pressions as Eq. (39) and (43), but is very tedious 
even for m = 2. For example, the complete result 
for C1(A) obtained from Eq. (39) with p = 1 is: 

C1(A) = 1~ (1 - A/2) 

1 '" Ar+l(r + 2),-1 [ 
- 12 f.; r(r + 2)r(r) In (r + 2)A 

r3 + 2 ] + 2C - 2hr - r(r + l)(r + 2) • (49) 

The series in Eq. (49) closely resembles the series 
in the classical expression (47). Both series are 
rapidly convergent. The limit of C1(A) as A --t 0 
is 1/12. 

The infinite sum in Eq. (48) comes from the 
residues of second-order poles, and the finite sum 
comes from the 2m simple poles all lying to the right 
of the second-order poles on the real s axis. The 
diffraction corrections from the finite sum are of 
order TJ2m A' and have temperature dependence of 
{3-mH; thus they become large at high temperature 
for s < m. The diffraction corrections from the 
infinite sum, however, are of order TJ2m A2m

-
1

+r = 
'Y2m Ar

-
1 and are small at high temperature. In fact, 

the finite sum in Eq. (48) contributes only to the 
second-order perturbation term B 22 , and the di­
vergence at high temperature of TJ2m A' is just what 
is needed to give the nonanalytic form (1'2)1/2 which 
appears in B22 . The infinite sum gives the quantum 
corrections to the third and higher orders of the 
perturbation expansion, i.e., the desired diffraction 
corrections to the A r

+
2 In A terms in Eq. (47). 

These diffraction corrections are analytic in 1'2. 

There is no point in giving a direct proof that 
Lm TJ 2mCm(A) with only the finite sum part of 
Eq. (48) does indeed reproduce B 22• Instead, the 
proper procedure is to subtract out of the second 
virial coefficient the first and second orders of the 
perturbation expansion, and make a WK expansion 
of the remainder. Thus we define: 

and use Eq. (18) for B 2n • The coefficients C:"(A) 
where the prime indicates the removal of first- and 
second-order perturbation theory are defined as: 

-21C'({3gl)3TJ2mC~,(A) = L B~:). 
n~3 

In Sec. II, only B~~) and B~~) were explicitly 
evaluated. By summing Eq. (18) and (19) from 
n = 3 one obtains for the modified second virial 
coefficient 

B~ = -~ {J d3r [(e- U 
- 1 + U - U2/2) 

- (~2/12)('VU)2(e-U - 1) + O(~4)] 

+ (~2/12) 16~ 41C' 02Uf(O)U(O)} , (51) 

instead of Eq. (20). The surface term in Eq. (19) 
must be retained in order that the O(~2) term in 
Eq. (51) be finite. The singularity in the integral 
coefficient of ~2 is canceled by the surface term 
for the l/r potential. The terms of the WK ex­
pansion of m are calculated as described in the 
previous section with the help of the Mellin trans­
form of the exponential series. Thus C~(A) is defined 
as in Eq. (35), but the condition on the contour of 
the s integration is -3 < Re(s) < -2 where the 
contour crosses the real axis. Thus the simple poles 
at s = -1 and -2 are not included and the result 
for C~(A) is the infinite sum in Eq. (47). Similarly, 
Cf(A) is given by Eq. (39), but with the restriction 
that -1 < Re(s) < 0 where the contour crosses 
the real axis. Again this restriction eliminates the 
simple poles and leaves only the second-order poles 
within the contour. Thus Ci(A) is equal to the 
infinite sum in Eq. (49). Similarly, for arbitrary 
m the subtraction of second-order perturbation 
theory leaves only the second-order poles within 
the contour, and C~(A) is equal to the infinite sum 
indicated in Eq. (48). 

In this paper only the O(~2) corrections to B~ 
have been evaluated explicitly. The O(~4) corrections 
may be obtained as the residues of the second­
order poles of Eq. (43) with p = 1. Higher-order 
corrections must await the evaluation of more terms 
of the WK expansion. Our complete result for B2 
for the screened Coulomb potential including the 
second-order term is 
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B2 = B21 + Bn + B~ 

-21Tr~{ -A + tA2[1 + !'iLo( -,i) 

1 1/2 "1'/4] +" Ar+2(r + 2),-1 
- 2"1T 'Ye LJ ( + 2)' ( 1) , r-I r . r - . 

X [In (r + 2) A + 2C - 2hr 

+ r2 + 2 1 J 
r(r + l)(r + 2) - r + 2 

2 Ar+2(r + 2)' 
+ 'Y f.; (r + 2)! (r - I)! 

X [In (r + 2) A + 2C - 2hr 

+ r(r .;21~r 2+ 2)J + OC'Y
4

)}. 
(52) 

In Sec. III it was pointed out that the quantum 
mechanical ring sum for the electron gas and B22 

for the screened Coulomb potential were rather 
similar. Diffraction corrections to both are non­
analytic in 'Y2. In the same way there is a con­
siderable similarity between B~ for the screened 
Coulomb potential and the quantum mechanical 
generalization of the Abe 8 2 (A) contribution to the 
electron gas free energy. 22 The 8 2 term is the next 
step in the rearrangement of the perturbation ex­
pansion of the partition function after the ring terms 
have been grouped together. It is the sum of three 
and more effective interactions between two elec­
trons in the plasma. Each effective interaction is the 
sum of all possible chains of Coulomb interactions; 
the result is a screened Coulomb interaction with 
ro = AD in the classical limit. Thus the classical form 
of 8 2 , Abe's result, is identical in form to B~ for 
the screened Coulomb potential. 

The quantum theory of 8 2 has not been com­
pletely developed yet, although it is implicit in the 
article by Montroll.16 It seems clear, however, that 
diffraction corrections to 8 2 must be calculated in 
the same manner that B~ in Eq. (52) was obtained, 
that is, by a WK expansion of 8 2 , This calculation 
is being carried out now. 

VI. CONCLUDING REMARKS 

The main point of this article has been to show 
with specific examples that nonanalytic forms of n,2 
may appear in the diffraction corrections to the 
classical partition function of an interacting gas for 
some potentials. The analysis here has been limited 
for simplicity to the second virial coefficient, al-

though some of our conclusions will apply also to 
the higher virial coefficients. No attempt has been 
made to give an exhaustive specification of what 
nonanalytic forms of h2 may appear. The following 
statements seem to be valid conclusions from the 
examples worked out. If the second-order perturba­
tion term B22 has a finite classical limit for a given 
potential, then the diffraction corrections to that 
classical limit include nonanalytic forms of n,2 when 
the potential has a cusp or singularity in any deriva­
tive. For the examples of the square wall potential 
and the form rme- r

/
ro this nonanalytic form is 

(h2
)1/2. This statement applies also to the Coulomb 

potential for a gas in three dimensions, since in 
three dimensions the spatial volume element 41Tr2 dr 
assures the finiteness of B22 for the screened Coulomb 
potential and of the ring sum for the electron gas. 

For potentials more singular at the origin than l/r, 
B22 is infinite, and one must evaluate the entire 
second virial coefficient. The virial coefficient is 
nonanalytic in the coupling constant of the inter­
action, but the diffraction corrections are analytic 
in n,2 and may be obtained as the first few terms 
of the WK expansion. Hence, the WK expansion is 
quite justified for calculating diffraction corrections 
to the virial coefficients of nonideal gases. The con­
vergence of the expansion, however, depends strongly 
on the order of the singularity assumed in the 
intermolecular potential. 

Any sharp corners in the potential will result in 
diffraction corrections that are nonanalytic in h2

• 

The reason is that the WK expansion fails since 
its coefficients are integrals over derivatives of the 
potential and thus are delta functions and deriva­
tives of delta functions. Thus the second virial 
coefficient for the square barrier potential has non­
analytic diffraction corrections, and so also does the 
hard sphere potential (a special case of the square 
barrier with the height of the barrier put to 00), 
give rise to nonanalytic form (h2

)1/2. 

The screened Coulomb interaction in three di­
mensions is particularly interesting since its second 
virial coefficient has two parts with different types 
of diffraction corrections. B22 is finite classically, 
but because of the l/r singularity its diffraction 
corrections involve both h2 and (h2

)1/2. The re­
mainder of B 2 , i.e., all higher orders of the per­
turbation expansion, is nonanalytic in the coupling 
constant (g~ In gl), but the diffraction corrections 
are analytic in n,2 since they may be calculated with 
the WK expansion. In one and two dimensions, 
however, all diffraction corrections to B2 are analytic 
in n,2 since B22 is infinite. With this mathematical 
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structure in mind, it is easy to make the extension 
to the electron gas for which u(r) = e2/r. The ring 
sum which is analogous to B22 must have non­
analytic diffraction corrections, while the diffraction 
corrections to the remaining orders of the perturba­
tion expansion when appropriately grouped together 
(the Abe expansion) involve only powers of li2

• 

It is believed that the method described in this 
article for using the WK expansion will have con­
siderable utility in evaluating the theory of the 
quantum mechanical electron gas. 
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APPENDIX 

r/2 

X 10 d (sin 0)(" cos 0) -2n+3. (A2) 

The second line of Eq. (A2) is obtained by doing the 
x integration over the Gaussian function first, and 
with the change of variable v = (1 + sin 0) /2. 

For each value of n, the 0 integral in Eq. (A2) is 
divergent. This trouble is avoided by using the 
Mellin transform of the series in Eq. (A2); it be­
comes 

f 
ds 2-2 8+3 

I = _11'1/
2 

C 211'i 2s + 3 [res) + ! r(s + l)J 

X i~/2 d (sin 0)("1 cos 0)28+3, (A3) 

where the contour C encloses the entire real axis to 
the left of the point - 3. The 0 integration for 
arbitrary s is 

The integral required for the second-order per- jr/2 112 ( / ) 

turbation term (31) for the square wall potential is: d (sin 0) cos 02
8+3 = ~_ r s + 5 2 

o 2 r(s + 3) , 

I = l'" dx jl(x) 2LO('Y2X
2
). (AI) so that Eq. (A3) becomes 

In order to evaluate it, the square of the spherical 
Bessel function is written in terms of trigonometric 
functions, 

jl(X)2 = x-4[!(1 - cos 2x) - x sin 2x 
r(s + 5/2) (1 1) 

X (s + 2)(s + 1)(2s + 3) 8" + 2 . (A4) 

+ !x 2

(1 + cos 2x)J, The integrand of Eq. (A4) has only simple poles. 
and expanded in powers of x. Also the integral After calculating the residues, one obtains 
representation (23) of LOC'Y2X2

) is used. Equation (AI) 
becomes 

= 11'1/2 L (_lt2
2n

-
3 (~ _ 1 ) 

n~3 (2n - 3) n! 2(n - 1)! 

11' (-1),(2/"1)2H2 
I = 2 ~ (2r + :3)(2r + 5-)(-r -+-1-)! (A5) 

Equation (A5) is the expansion of 

11' [1 I 1a 

d -t' 1 1a 

2 -t'] 2 3" - 2a 0 t e + 2a3 0 dt t e , (A6) 

with a = 2/"1. Integrating the last term of Eq. (A6) 
by parts gives the form recorded in Eq. (31). 
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Derivation of Generalized Master Equations*t 

ROBERT J. SWENSON 

Lehigh University, Bethlehem, Pennsylvania 
(Received February 9, 1962) 

We present a simplified derivation of a generalized master equation for the diagonal part of the 
occupation probability density. This derivation is valid for systems of arbitrary volume. It does not 
require the use of perturbation expansions nor the use of a diagonal singularity condition. In addition, 
a similar derivation is presented of a generalized master equation for the nondiagonal part of the 
occupation probability density. These equations become identical to the generalized master equations 
of Van Hove and Janner, respectively, if a perturbation expansion is made, if a diagonal singularity 
condition is assumed, and if the limit of infinite volume is taken. 

RECENT advances in the understanding of 
the nonequilibrium behavior of many-particle 

quantum systems have been made by Van Hove/ 
by Prigogine and his co-workers,2 and by others. 
They have used dynamical arguments to obtain 
kinetic equations which describe the irreversible 
evolution of systems from particular initial states. 
In general, these kinetic equations are non-Marko­
vian, but in some limiting cases they can be ap­
proximated by the Markovian Pauli equations.3 

Central in the work of these authors is a many­
body perturbation theory applied to an infinite 
system. In particular, Van Hove has obtained a 
generalized master equation for the diagonal part 
of the occupation probability density (g.m.e.d.) by 
making a perturbation expansion and assuming a 
diagonal singularity condition. Also, the limit of an 
infinite system is essential to the analysis so that 
certain terms can be ignored. 

It is clearly desirable to derive a g.m.e.d. with­
out recourse to perturbation theory.4 We wish to 
present a simplified derivation of a g.m.e.d. by 
making use of reasoning similar to that of Heitler 
and others in the treatment of damping theory. 5 

This derivation does not make use of perturbation 
expansions or of Van Hove's diagonal singularity 

* This work was supported by the National Science 
Foundation. 

t Based on part of the author's dissertation submitted 
to Lehigh University in partial fulfillment of the requirements 
for the degree of Doctor of Philosophy, October, 1961. 

1 L. Van Hove, Physica 23,441 (1957). 
2 I. Prigogine, Non-Equilibrium Statistical Mechanics 

(Interscience Publishers, Inc., New York, 1962). 
3 I. Prigogine and P. Resibois, Physica 27,629 (1961). 
4 Similar motivations appear in R. W. Zwanzig, in Lectures 

in Theoretical Physics, edited by W. E. Brittin, B. W. Downs, 
and J. Downs (Interscience Publishers, Inc., New York, 
1961), vol. III; E. W. Montroll, in Fundamental Problems in 
Statistical Mechanics (North-Holland Publishing Company, 
Amsterdam, 1962). 

6 W. Heitler, The Quantum Theory of Radiation (Oxford 
University Press, New York, 1953), 3rd ed., p. 164. 

condition and it is valid for systems of finite volume. 
The difference between our result and Van Hoye's 
will be discussed below. 

Recently, Janner6 has used the reasoning and 
assumptions of Van Hove to derive a generalized 
master equation for the nondiagonal part of the 
occupation probability density Cg.m.e.n.). A simpli­
fied derivation of a g.m.e.n. is given below and this 
g.m.e.n. is compared to .Tanner's. 

We will first present a derivation of the following 
g.m.e.d.: 

d~E(t/aao) = fE(tja) BCa - ao) 

+ 21T ~ i' dt'[wE(t - t'/aa')PECt'/a'ao) 

- wECt - t'/a'a)PBCt'/aao)] , (1) 

where B(a - ao) is a Kronecker delta, and the 
partial transition probability P B(t/ aao) is related to 
the transition probability P(t/ aao) for t > 0 by 

r: dEPE(t/aao) = P(t/aao) 

== (ao] exp CiHt/li) [a) (a] exp (-iHt/li) [ao) , (2) 

with P(O/ aao) = B(a - ao) and the quantities 
WE and fE are defined below. (Our notation will be 
the same as that used by Van Hove and .Tanner.) 
The Hamiltonian, which is aSfmmed not to depend 
explicitly on the time, is written as a sum of an 
unperturbed part Ho and a perturbation Hi! 

(3) 

with 

(4) 

6 A. Janner, Helv. Phys. Acta (to be published). 

lO17 
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and we use the eigenstates [a) to compute matrix 
elements. 

Our analysis will be based on the properties of the 
resolvent operator Rl which has been discussed by 
Van Hove1

•
7 and by Hugenholtz,B and is defined by 

(5) 

where Z is a complex number. The resolvent is 
related to the time unitary transformation operator 
according to 

exp (-iHt/h) = -(211'i)-I Ie dZR I exp(-ilt/h), (6) 

where the contour C is taken counterclockwise 
around a sufficiently large portion of the real axis. 

Introducing Eq. (6) into Eq. (2), we obtain 

P(t/aao) = _(211')-2 Ie dZ dZ' 

X exp [i(l - Z')t/h] (ao] Rl [a) (a] R l · [ao) , 

and defining a quantity X, 

XI.I(aOa) = Xll.(aao) == (ao] Rl [a) (a] R l • [ao) , (7) 

we have 

P(t/aao) = -(211'f2 Ie dZ dZ' 

X exp [i(Z - Z')t/h] Xll'(aao). (8) 

The g.m.e.d. is a mathematical consequence of the 
following equation for X: 

(Z - Z')Xll'(aao) = Fll'(a) o(a - ao) 

- i L: [W ll'(aa')Xll' (a'ao) 
a' 

d and nd denoting the diagonal and non diagonal 
parts, respectively. Defining D and U by Rd = D 
and Rnd = DUD (note that U is non diagonal) , 
we can write 

R = (l + DU) D, (12) 

where I is the unit operator. Equation (12) can be 
rearranged to yield 

I = (Ho + HI - "C)(l + DU) D, (13) 

and if the diagonal part of this equation is taken, 
we obtain an expression for D, 

(14) 

with 

Gl = [HI + HI DIUI]d' (15) 

If the non diagonal part of Eq. (13) is taken, we 
obtain 

o = [HI + (Ho - Z) DU + HI Dulnd , 

and using Eq. (14) we can write 

U = -[HI + HI DU - G DU]nd' 

Substitution of Eq. (15) into this expression yields 

U = - [HI + [HI]nd DU - [HI DU]d Dulnd . (16) 

We find after substitution of Eq. (12) into Eq. (7) 
and recalling that U is non diagonal 

Xl!'(aao) = Dl(a) 1)1·(a)[o(a - ao) 

+ Dz(ao) D1·(ao) (ao] U l [a) (a] VI' [ao)], (17) 

with Dl(a) == (al Dl [a). An identity for Dl(a) D,.(a) 
is obtained from Eq. (14): 

- Wll'(a'a)Xll'(aao)], 

where we have introduced 

(9) Fll'(a) == Dl(a) - D1,(a) 

= (e a + Gl(a) - Zr1 
- [ea + G1.(a) - l']-1 

Wll'(aa') == iFll'(a)TVll'(aa') (10) = Dl(a) D1.(a)[Z - Z' - G1(a) + G1.(a)], 

and F and TV are defined below. 
We first derive this equation for X and then 

show how the g.m.e.d. follows from it. In the repre­
sentation furnished by He} we write the resolvent 
as the sum of its diagonal and non diagonal parts; 
e.g. (the complex arguments land Z' will not be 
explicitly indicated except when needed for clarity) 

R = Rd + Rnd , (11) 

7 L. Van Hove, in La thecrie des gas neutres et ionises, 
edited by C. DeWitt and J. G. Detoeuf (John Wiley & Sons, 
Inc., New York, 1959). 

8 N. M. Hugenholtz, in Lectures in Theoretical Physics, 
edited by W. E. Brittin and B. W. Downs (Interscience 
Publishers, Inc., New York, 1960), Vol. II. 

which can be solved to give 

Dl(a) Dl·(a) 

= Fll·(a)[l - Z' - G1(a) + G1,(a)r l
• (18) 

Substitution of Eq. (18) into Eq. (17) yields, after 
some simplification, 

(l - Z')Xll'(aao) = Fll,(a) o(a - ao) 

+ Fll·Ca) ])1(aO) Dz,(ao)U1(aoa)Udaao) 

+ [G1(a) - GI,(a)]X11·(aaO), (19) 

where we introduced (aol U1 [a) == U l (aoa), etc. 
Let us define an operator TV by the equation 
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Wll'(aao) = UI(aOa)UI,(aaO) - L: Wll'(aa') 
a' 

X Dl(a') DI,(a')UI(aoa')U,,(a'ao). (20) 

This equation can be iterated to yield 

W ll'(aao) = Ul(aoa) Ul ,(aao) - L Ul(a' a) Ul ,(aa') 
a' 

X Dl(a') DI,(a')UI(aoa')Uz-{a'ao) + ... , (21) 

from which it is evident that W has the symmetry 

(22) 

We can obtain an expression for the second 
quantity on the right-hand side of Eq. (19) 
in terms of X and W as follows: Multiply Eq. (20) 
by DI(aO) Dl,(ao) and rearrange terms to obtain 

L Wll'(aa') Dl(a') Dl,(a')[o(a' - ao) 
a' 

+ Dl(aO) Dl,(ao) Ul(aoa') Ul,(a'ao)] 

= Dl(ao) Dl,(ao) Ul(aoa) Ul,(aao) , 

which with the aid of Eq. (17) gives the desired 
relation 

L Wll'(aa')Xll,(a'ao) 
a' 

= DI(aO) Dl ,(ao) Ul(aoa) Ul ,(aao). 

This enables us to write Eq. (19) as 

(l - l')Xll'(aao) = Fll'(a) o(a - ao) 

+ Fll'(a) L Wll,(aa')Xll'(a'ao) 
a' 

(23) 

+ [Gl(a) - GI,(a)]Xll'(aao). (24) 

Now we obtain an expression for [Gl(a) - G1,(a)] 
in terms of Wll'. From the definition of R

" 
it 

follows that 

Rl - R l, = (H - l)-I - (H - l')-I 

= RI,RI(l - l'), 

and by taking a diagonal element we obtain 

Fll,(a) = (l - l') L Xll'(aao). (25) 

If we sum Eq. (24) over ao and use Eq. (25), we 
obtain 

L Fll'(a')Wll'(aa') = -[Gl(a) - Ol,(a)]. (26) 
a' 

Instead of using this to eliminate [G,(a) - O,,(a)] 
in Eq. (24), we will use 

L Fll'(a')Wll'(a'a) = -[Olea) - Gda)]. (26') 
a' 

Equation (26') is obtained as follows: We inter­
change the complex arguments land l' in Eq. (17) 

and follow the same analysis that led to Eq. (26). 
This will yield 

L FI'I(a')W"I(aa') = -[G,,(a) - Gl(a)], (26") 
a' 

and using the symmetry property of W expressed 
by Eq. (22) and multiplying by minus one we 
obtain Eq. (26'). 

Using Eq. (26') to eliminate [G,(a) - G,,(a)] in 
Eq. (24), we write 

(l - l')Xll'(aao) = Fll,(a) o(a - ao) 

- i L [Wll'(aa')Xll'(a'ao) 
a' 

- Wll'(a'a)Xll'(aao)] , (27) 

which is the desired equation, Eq. (9), for X. As 
indicated by Van Hove/ a g.m.e.d. is a mathematical 
consequence of this equation and for the sake of 
completeness we demonstrate this in detail in the 
appendix. In the appendix we also discuss the role 
played by the inhomogeneous term on the right-hand 
side of Eq. (27). 

Let us now derive a g.m.e.n., which is 

dIE(t/aa'ao) _ (t/ ' ) 
dt - gE aa ao 

+ 27r i' dt' ~ [WECt - t' /aa") I E(t' /a"a'ao) 

- WE(t - t'/a"a)IE(t'/aa'ao)] , (28) 

IE(t/aa'ao) is related to I(tjaa'ao) for t > 0 by 

L"", dE IE(t/aa'ao) = I(t/aa'ao) 

== (a'] exp (iHt/h) [a) (a] exp (-iHt/h) [an) (29) 

with I (O/aa'ao) = 0, WE is the same quantity 
that appears in Eq. (1), and the inhomogeneous 
term gE(t/aa'ao) will be defined below. Introduce 
Eq. (6) into Eq. (29) to obtain 

I(tjaa'ao) = _(27r)-2 i dl dl' 

X exp [i(l- l')t/h] YIl'(aa'ao) , (30) 

with 

(31) 

The g.m.e.n. (28) is a mathematical consequence of 
the following equation for Y: 

(l - l') Yll'(aa'ao) = Fll,(a) Vll'(aa'ao) 

- i L [Wll'(aa") Yll'(a"a'ao) 
a" 

(32) 
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where F and TV are the same quantities which 
appear in Eq. (9) and V will be defined below. 

We now derive Eq. (32) in essentially the same way 
we obtained Eq. (27). Substitute Eq. (12) into Eq. 
(31) to obtain 

Yzz,(aa'ao) = Dz(a) Dz,(a)[Dz(a')Uz(a'a) B(a - ao) 

+ Dz-Cao) Uz-Caao) B(a - a') 

+ Dz(a') UzCa'a) Uz,(aao) Dz,(ao)], (33) 

and use Eq. (18) to write 

(l - l') Yll,(aa'ao) = Fll'(a) [Dz(a') Uz(a'a) B(a - ao) 

+ Dz,(ao)Uz,(aao) B(a - a') 

+ Dz(a')Uz(a'a)Uz,(aao) Dz,(ao)] 

+ [Gz(a) - Gz,(a)] Yll'(aa'ao). (34) 

Let us define an operator V by the equation 

Vll'(aa'ao) = Dz(a')Uz(a'a) B(a - ao) 

+ Dz,(ao)Uz,(aao) B(a - a') 

+ Dz(a')Uz(a'a)Uz,(aao) Dz'(ao) 

I: Dz(a") Dz,(a") 
a" 

x Uz(a"a)Uz,(aa")Vll'(a"a'ao). (35) 

Multiply by Dz(a) Dz'(a) and rearrange terms to 
obtain 

I: Dz(a) Dz,(a)[B(a - a") + Dz(a") Dz,(a") 
a" 

X Uz(a"a) Uz,(aa")] Vll,(a"a'ao) 

= Dz(a) Dz ,(a) [Dz(a') Ul(a'a) B(a - ao) 

+ Dz,(ao)Uz,(aao) B(a - a') 

+ Dz(a') Uz(a'a) Ul,(aao) Dz ,(ao)]. (36) 

The factor multiplying V Il' (a" a' ao) is recognized 
from Eq. (17) to be XIl'(aa") and the right-hand 
side is recognized from Eq. (33) to be YII,(aa'ao), 
so we obtain the relation 

I: Xll'(aa") Vll'(a"a'ao) = Yll'(aa'ao). (37) 
a" 

Using Eqs. (23) and (37), we write Eq. (35) as 

Dz(a')"Uz(a'a) B(a - ao) + Dz,(ao)Uz,(aao) B(a - a') 

+ Dl(a')Ul(a'a)Ul,(aao) Dz,(ao) 

= Vll'(aa'ao) + 2: Wll,(aa") Yll'(a"a'ao). (38) 
a" 

Substituting this into the right-hand side of Eq.(34) 
and using Eq. (26') we obtain the desired equation 

(l - l') Yll'(aa'ao) = Fll,(a) Vll'(aa'ao) 

- i I: [Wll'(aa") Yll'(a"a'ao) 
a" 

(39) 

The g.m.e.n. (28) is a mathematical consequence of 
this equation, as discussed in the Appendix. 

It is thus possible to obtain generalized master 
equations for the diagonal and non diagonal parts 
of the occupation probability density which are 
valid for finite systems without using perturbation 
theory and without requiring that the potential 
satisfy a diagonal singularity condition. Of course 
in any practical calculation it is convenient and for 
some things necessary to take the limit of an infinite 
system and then sums can be replaced by integrals. 
Furthermore, in this limit the analytic behavior of 
the resolvent and related operators simplifies, since 
a set of dense poles along the real axis condense 
into a branch cue,8 

In order to compare the above results with the 
work of Van HoveI

•
7 and Janner6 we express the 

resolvent operator as an expansion in powers of the 
"interaction" HI (see reference 1). If this is done, 
we obtain the following expression for W: 

Wll,(aao) = {(ao](HI - HI DzHI 

+ HI DzHI DzHI - ... ) [a> (a] 

X (HI - HI Dz,H, + ... ) [aO>Ld' (40) 

where id stands for "irreducible diagonal" and 
means that all intermediate states are unequal to 
the initial state and no two intermediate states are 
equal. Van Hove's expression for W [see Eq. (9.22) 
in reference 7] is the same as Eq. (40) except for 
the meaning of id. In his work the definition of id 
is that all intermediate states are" nonidentical" to 
the initial state and no two intermediate states are 
"identical"; however, intermediate states may be­
come "occasionally equal." This leads to some 
terms being counted twice, but Van Hove demon­
strates7 that if a diagonal singularity condition is 
assumed the error introduced is proportional to one 
over the volume and thus vanishes in the limit of an 
infinite system. If we make the same assumptions 
as Van Hove, then the id which appears in Eq. (40) 
can be replaced by Van Hove's id. 

We conclude that our results become identical to 
Van Hove's and Janner's if we adopt their as­
sumptions. However, in some cases it is more con­
venient to expand the resolvent in terms of some 
quantity other than the interaction9

; e.g., if the 

9 R. J. Swenson, J. Math. Phys. (to be published). 
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interaction contains a hard core it is useful to 
expand in terms of a scattering matrix. 
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APPENDIX 

We wish to demonstrate how a g.m.e.d. can be 
obtained from Eq. (27). The same arguments apply 
for obtaining Eq. (2S) from Eq. (39). From Eq. (S) 
we have 

P(t/aan) = _(211")-2i dl J.., dl' 

X exp riel - l')t/Ji]Xll'(aao) , (AI) 

and for t > 0 we can deform the contours to obtain 
(see reference 7) 

P(t/aao) = (211")-2 i~ dEl i~ dE2 

X exp [i(EI - E2 - 2iTJ)t/h]XE'_i~,E'+i~(aao). (A2) 

Let us make the change of variables 

El - E2 = 2E' and EI + E2 = 2E, 

which yields, for P(t/aao), 

P(t/aao) = (211"2)-1 i~ dE i: dE' 

X exp [2i(E' - iTJ)t/Ji]XE+E'-i~,E-E'+i~(aao), (A3) 

or 

P(t/aao) = i~ dE PE(t/o:o:O), (A4) 

with P E(t) defined as 

PE(t/aao) = (211"2)-1 i~ dE' 

X exp [2i(E' - iTJ)t/Ji]XE+E'-i~,E-E'+i~(aaO)' (A5) 

Taking the time derivative of Eq. (A5) yields 

dPE(t/aao) = i(211"2h)-1 foo dE' exp [2i(E' - iTJ)t/h] 
dt -00 

X 2(E' - iTJ)XE+E'-i~,E-E'+i.(aaO), (A6) 

and from Eq. (27) we obtain an expression for 
2(E' - iTJ) XE+E'-i~,E-E'+i.(aaO); i,e., 

2(E' - iTJ)XE+E'-i~,E-E'+i~(aaO) 

= FE+E'-i~,E-E'+i~(a) o(a - ao) 

- i L: [W( ... )(aa')X( ... )(a'ao) 
a' 

- W( ... )(a'a)X( ... )(aao)], (A7) 

where the arguments indicated by ( ... ) are the 
same as the arguments of F. Equation (A7) enables 
us to write the time derivative of PE(t) as 

dPE(t/aao) = i(211"2h)-1 foo dE' exp [2i(E' - iTJ)t/h] 
dt -00 

X {FE+E'-i.,E-E'+i.(a) o(a - aD) 

- i L: [W( ... Jaa')X( .. Ja'ao) 
a' 

- W( ... )(a'a)X(, .. )(aao)]l. 

Now we define WE and f E by 

fE(t/a) = i(211"2h)-1 i~ dE' 

X exp [2i(E' - iTJ)t/Ji]FE+E'-i~,E-E'+i~(a) 

and 

wE(t/aa') = (211"2Ji2)-1 i~ dE' 

(AS) 

(A9) 

X exp [2i(E' - iTJ)t/Ji]WE+E'-i.,E-E'+i.(aa') (AIO) 

and we use these definitions in Eq. (AS) to write 
a g.m.e.d. 

d~E(t/aao) = tE(t/a) o(a - ao) 

+ 211" ~ L dt'[wE(t - t' /aa')PE(t' /a'ao) 

- WECt - t'/a'a)PECt'/aao)]. (All) 

We have made use of the following convolution 
theorem in obtaining Eq. (All): 

it dt' WE(t - t'/aa')PE(t'/a'ao) 

= (411"3Ji)-1 ioooo dE' exp [2i(E' - iTJ)t/h] 

X WE+E'-i~,E_E'+i~(aa')X( ... )(a'ao). (AI2) 

Let us prove the above convolution theorem. 
Substitute the definitions of WE and PE into the 
left-hand side and perform the time integration, 

it dt' WE(t - t'/aa')PE(t'/a'ao) 

= i(S1I"4Ji)-I(p i~ dE' dE" TV E+E'-i~,E-E'+i~(aa') 

X XE+E"-i.,E-E"+i.(a'ao)(E" - E,)-1 

X {exp [2i(E' - in) t/Ji] - exp [2i(E" - iTJ) t/Ji] } . 
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Since the integrand is analytic on the real axis 
nothing is changed by taking the principal parts 
<P of the integrals. We do the E" integration in the 
first term and the E' integration in the second term 
to obtain the desired relation (A12). For example, 
the E" integration in the first term is 

B == <P I dE" XE+E"-i.,E-E"+i"(a'ao)(E" - E,)-I 

and closing the contour in the lower half plane 
(since for large E", X "-' E1!-2) we obtain 

B = <P Ie dz XE+z-i",E-z+i"(a'aO)(z - E,)-I. 

The singularities of XEH-i",E-Hi"(a'aO) lie above 
the real E" axis (as follows from the definition of X), 
so that the only singularity of the integrand is a 
simple pole at z = E'. The integral is easily evaluated 
to give (for E' real, we use the definition of the 
principal part) 

B = -i7rXE+E'-i",E-E'+i"(a'aO)' 

The E' integration in the second term is done in 
exactly the same way and Eq. (A12) is the result. 

The derivation of the g,m.e.n. follows in the same 
manner with g E defined by 

gE(t/aa'ao) = i(27r2Ji)-1 i: dE' 

Designating the inhomogeneous term by A and 
substituting Eq. (A9), we obtain 

A == o(a - ao) i: dE i(27r2Ji)-1 L: dE' 

X exp [2i(E' - i'l)t/Ji]FE+E'_i",E_E' +i"(a). 

From the definition of the resolvent, we obtain the 
identities 

and 

from which it follows that 

L: dE [RE+E'-i' - RE-E'+i.] = -27ri. 

Taking a diagonal part and recalling the definition 
of F(a), 

-2m, 

allows us to write A as 

X exp [2i(E' - i'l)t/Ji]FE+E'-i",E-E'+i"(a) 

X V E+E'-i",E-E'+i.(aa'ao) , (A13) which reduces to 
and a convolution theorem identical to Eq, (A12) 
with IE and Y(aa'ao) replacing PE and X(aao). 

Van Hovel has shown in the limit of weak inter­
action that the inhomogeneous term in Eq. (All) 
serves to specify the initial value of pet). We wish 
to show that this is an exact result. To see this, 
we integrate Eq. (1) over all E and obtain 

~:(tjaao) = i: dE fE(t/a) o(a - ao) 

+ L: dE L dt'[ .. . ]. (A14) 

A = o(a - ao) oCt). 

Thus, Eq. (A14) becomes 

~f(t/aao) = o(a - ao) oCt) 

+ i: dE L dt' [ ... ], (A15) 

and it is clear that the inhomogeneous term does not 
contribute to the time development of pet). 
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On the Number of Electron Levels in a 
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Let the potential of a one-dimensional scalar particle be Vex) = Va ~"'i---oo S(x - Xj), 
- 0:> < X < co, where Va < 0, and where the sequence (Xi) is random, with a Poisson distribu­
tion. This paper investigates analytically the number N of electron levels per atom below energy 
E = -h2K2/2m, when 0 < n/KO « 1 and 0 < K/KO < 2, where n is the expected density of atoms and 
KO = -mVo/n2• The region K/KO = 1, with n/KO small, is of considerable interest, and some previous 
numerical computations have been inaccurate in this region. Explicit bounds on N-I may be written 
down which give the asymptotic behavior of N, as Ko/n -> co, for 0 < K/ KO < 1 and 1 < K/ KO < (2 - 5). 
0> O. 

1. INTRODUCTION AND SUMMA:RY 

WE are concerned with the distribution of 
energy levels of a one-dimensional electron 

(scalar particle) moving in a one-dimensional random 
array of atoms. The atoms, all of one kind, have 
(randomly) fixed positions, and the electron atom 
potentials are assumed to be 0 functions. The 
Schrodinger equation for an electron of mass m 
and energy E is then 

h2 dif; ro 

-2~ dx + Vo ;~ro o(x - x;) if;(x) = Eif;(x) , (1.1) 

where Vo < 0 is the strength of each electron-atom 
interaction and the sequence (x;) of positions of 
the atoms is random, with a Poisson distribution. 

It was shown by Frisch and Lloyd' that the 
random variables Zj = if;'(x j - O)N(x;), - <Xl < 
j < <Xl, constitute an ergodic stationary Markov 
process. The stationary density T(z) of the (z;) 
was shown to satisfy the functional equation 

(l - l)T(z) = n[ N - {+2K. TW dS-] ' (1.2) 

with 

T(z) ;::: 0; i: T(z) dz = 1, (1.3) 

where, using the notation of Lax and Phillips,2 n is 
the expected density of atoms, N is the number of 
electron levels per atom below energy E and 

(1.4) 

The quantity of interest is N. Kumerical calcula­
tions, based on the Monte Carlo method, were made 

1 H. L. Frisch and S. P. Lloyd, Phys. Rev. 120,1175 (1960). 
2 M. Lax and J. C. Phillips, Phys. Rev. 110, 41 (1958). 

by Lax and Phillips.2 On the other hand, Frisch 
and Lloyd' obtained their numerical results by 
integrating the (complex) second-order linear differ­
ential equation satisfied by the Fourier transform of 
T(z). Their results were least accurate when f « 1 
and v ~ 1, ,,,,here 

v= KIKQ. (1.5) 

This is a region of considerable interest and is one 
we consider here. 

We study directly the first-order differential 
difference equation satisfied by 

f(x) = N- I {~I T(t) dt, (1.6) 

when 0 < f « 1 and 0 < v < 2, v rf 1. We show 
that 

N- I = H3 - (1 - v) ·/'t [1 + O(fY]; 

O<v<l, (1.7) 

and 

1 < v < (2 - 0), 0> 0, (1.8) 

where explicit bounds may be written down for 
the terms of O(E). For Eq. (1.7), these bounds may 
be obtained from Eqs. (2.21) to (2.23), (2.25), 
(2.26), and (2.28), and for Eq. (1.8) from Eqs. 
(3.12), (3.14) to (3.16), (3.18), (3.22) to (3.25), 
(3.27), (3.28), and (3.30). The leading terms in 
Eqs. (1.7) and (1.8) are precisely those given by 
Lax and Phillips2 as a modification of the formulas 
given by Schmidt ,3 who considered v ~ 1 and 

3 H. Schmidt, Phys. Rev. 105,425 (1957). 

1023 
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instead of 41' had just E (allowing for a misprint). 
However, Schmidt's derivation was not rigorous, in 
that no bounds on the error terms were given. 

upper and lower bounds on [N- 1 
- f(x)], for x > v. 

From Eqs. (2.1) and (2.2) we may obtain 

Actually, our results are somewhat stronger. Thus, 
for 0 < v < 1, we show that 

{(
x - 1')<12'[ fOO rN-

1 
- fey + 2)] 

f(x) = -+ 1 - E ( 2 2) 
X V x y - v 

o ::; [ N- 1 
- 2 - \}I( -2) + A(~ = :t2'J X (~ = :t2

' dy J + (N-
1 

- 1)}; x > v. (2.7) 

< ~ In [(1 + 1')(2 + v)J < E (1.9) 
- 21' (2 - v) -, 

where 'IF ( -2) and A are given explicitly, Eqs. (2.13) 
and (2.15). Moreover, we indicate how to obtain an 
explicit expression for l'r\ correct to O(i), when 
0<1'<1. 

2. THE CASE 0 < v < 1 

From Eqs. (1.2). (1.3), (1.5), and (1.6), 

(x2 - 1/)f'(X) = E[1 - f(x + 2) + f(x)] , ,2.1) 

f(-co) = 0; f(+co) = N- 1
; f'(x) ~ o. (2.2) 

We first consider x > v. Thell, 

x> v. (2.3) 

Also 

f(x) [E(~-=-:£)'/2' JX fir + 2~ 
v + x _, (v - y) 

X (v + 11)<12' d - 1J . 
v - y y , Ixl < v, (2.8) 

and 

f(x) [E(~)'/2' f-' f(~ + 2~ 
x + v x (y - v) 

( + 1'),/2, J X -y-- dy - 1 ; 
Y -v 

x < -v. (2.9) 

Now, Eq. (2.3) also holds for x < -v. Thus, 

E (x-v) o ::; f(x) ::; 2v In x + v ; x < -v. (2.10) 

Integration of Eq. (2.3) gives 

o ::; [N- 1 
- f(x)] ::; 2E In (x + v); X > v. 

v X - v 

Moreover, Eq. (2.5) holds for x < - (v + 2), and 
substitution of this inequality into Eq. (2.1) leads, 

(2.4) upon integration, to 

Also, From Eq. (2.3) we may obtain { 
E (x - /I) E2 

f(x) ~ 2v In x + /I - 2/1 

[f(x + 2) - f(x)] 

(2.5) 

X IX In [(V + 2 - /I)(y + II)J --,;!JL2} . 
-00 (y + 2 + /I)(Y - /I) (y. - /I) , < ~ In [(x + 2 - v)(x + v)J . 

- 21' (x + 2 + v)(x _ v) , X > v. 
X < -(/I + 2). (2.11) 

Substitution of this inequality into Eq. (2.1) leads, 
upon integration, to 

Let us now consider the case 0 < v < 1. Combi­
nation of Eqs. (2.7) to (2.9) gives 

[N-1 _ f(x)] ~ {~ In (x + v) _ ~2 
2v x - ~. 2v N-1 = [2 + f(x) + 'It(x) + F(x) 

X 100 

In [(v + 2 - v)(y + v)J _ dy _} . 
x (y + 2 + v)(y - v) (y2 - v2) , ( )'/2'J + (B - A) : ~: ; 0</1 < 1; 

x> /I. (2.6) -(/I + 2) < x < (/I - 2), (2.12) 

Iteration of the above procedures leads to successive where 

2(X - V)'/2' f' (2 - /I - W)'/2'(/I - W)'/2' 'IF(x) = E -- ---

X + /I (2+x) 2 + II - W /I + W 

{J w [ (y + 2 - /I)'/2'J(/I + y)'/2V dY } dw 
X _, 1 - y + 2 + II /I - Y (;2 - y2) [(2 - W)2 - /l2J ' (2.13) 

F(x) = E3(~)'/2' fV (2 - II - W)'/2'(~)'/2V{JW (y + 2 _ /1),/2'(/1 + y)<i2' 
X + II (2+x) 2 + /I - W /I + W -v y + 2 + /I /I - Y 

X [fOO [N-
1 

- fez + 2)] (z + /1),/2, d ] _~_} dw 
(y+2) (i - /12) Z - /lZ (II" - y2) r(2 - W)2 - l] , (2.14) 
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and 

A = t 1(2-,) (~ - V - W)'/2'(W - v)'/2' 
, 2+v-w w+v 

dw 
X [(2 - W)2 - v"J ' (2.15) 

B = t 2 - v - W W - v J'2-') (2 )'/2V( )'/2' 
, 2+v-w w+v 

X [JOO [N-
1 ~ fey ;- 2)J (y + v)'/2' dyJ 

w (y - v) y - v 

X dw 
[(2 - W)2 - v"J (2.16) 

But, from Eq. (2.4), 

o :::; [N- 1 
- f(x)J :::; (t/2v) In (1 + v); 

x ~ (2 + v). (2.17) 

Hence, from Eqs. (2.13) through (2.17), 

o :::; B :::; (t/2v) In (1 + v)[(1 - V)'/2' - AJ, (2.18) 

and 

o :::; F(x) :::; (t/2v) In (1 + v)'l'(x). (2.19) 

Also, it is seen from Eq. (2.13) that 

o :::; '!I(x) :::; [1 - (1 - V)'/2'(: ~ :r2'} (2.20) 

Hence, from Eqs. (2.10), (2.12), and (2.18) to (2.20), 

[ (
X )'/2'J 0:::; N-

1 
- 2 - '!I(x) + A x ~ : 

< .!.. In [(1 + v)(x - v)J . 0 < v < 1; 
- 2v (x + v) , 

-(v + 2) < x < (v - 2). (2.21) 

We remark that if we let x ~ - (v + 2) in Eqs. 
(2.11) and (2.12), from opposite directions of course, 
then from Eqs. (2.4), (2.6), (2.10), and (2.13) to 
(2.16) we can obtain an explicit expression for N- 1 

which is correct to O(t2
), rather than to OCt) as in 

Eq. (2.21). 
We now set x = -2 (for convenience) in Eq. 

(2.21) and examine '!I ( -2) and A. From Eq. (2.15) 
it may be shown that 

o :::; [ A(~ ~ :r2

' - 1] :::; 2[(1 + V)'/2' - 1]. 

(2.22) 
Also, from Eq. (2.13), 

o :::; ['!I( -2) - IJJ :::; [(~ ~ :r2

' - 1] 

X [(; ~ :r2

' - (1 - v),12'] , (2.23) 

where 

I = t(~ + v)'/2' l' (2 - v - W)'/2' 
2-v 0 2+v-w 

(

V - W)'/2V dw 
X v + W [(2 - 11)2 - v

2J ' (2.24) 

and 

It remains to estimate I. It may be shown that 

(!)'!2'(1 - L) :::; I :::; (l - L); 

(2.26) 

where 

M = -!-- 1 - vx (1 - x) «12,-1) dx 11 [ J'/2V 
2v n (2 - v) 

= F[ - ;v ' 1; 1 + ;v ; (2 .:. v)} (2.27) 

But it may be shown that 

(2.28) 

Hence, combining the various results, 

N- 1 
'" [2 + HI - (1 - V)'I'J 2 

- (l - v)'/'J 

(0 < v < 1), (2.29) 

where the error is OCt) and explicit bounds on it 
may be written down. 

3. THE CASE 1 < JI < 2 

We here consider the case 1 < v :::; (2 - 0), 
o > O. We also assume that t/2v < 1. For Ixl < v, 
we may write Eq. (2.8) in the form 

( X)'/2' 
[1 + f(x) - t(v + 2)J = t : ~ x 

X IX [fey + 2] - f~v + 2)J (v + y)'/2' dy. 
_, (v - y) v - y 

But, from Eq. (2.3), 

o :::; [f(v + 2) - fey + 2) J 

< .!.. In [ . (y + 2 + v) J. 
- 2v (l + v)(y + 2 - v) , 

(v - 2) < y :::; v. 

(3.1) 

(3.2) 
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Hence, [j(p + 2) - fey + 2)]/(1' - y) 
finite as y ~ I' - O. Thus, for €/2p < 1, 

remains and 

p-x 
( )

,/2, 

f(x) = [t(p + 2) - 1] - a -­
p+x 

+ E(~)';2V l' [t(p + 2~ - t~7j + 2)] 
I' + x x (I' - y) 

(
I' + y)'/2V 

X -- dy' 
I' - Y , Ixl < 1', 

where 

a = € JV [f(p + 2~ - t~y + 2)J (I' + y)'/2V d . 
-v (I' - Y ) I' - Y Y 

From Eqs. (2.7), (2.9), and (3.3), 

N- I = {2 + f(x) + [N- I 
- t(p + 2)J 

+ apex) - Q(x) I; -(4 - 1') < X < -1', 

where 

P(x) = €(~)'/2V f(2-V) (I' - W)'/2V 
X + I' (2+0) I' + W 

(
2 - I' - W)'/2V dw 

X 2 + v - w [(2 - W)2 - lJ ' 
and 

(x )
'/2V 

2 - I' Q(x) = E --x+p 

X f(2-V) (~ - I' - W)'/2V(p - W)'/2> 
(2+x) :2 + I' - W I' + W 

X (I' + y)'/2' d } dw 
I' - Y Y [(2 - W)2 - p2J' 

Also, from Eqs. (3.3) and (3.4), 

a(1 - a) = [(I' - 1),12. + «(:1 - 'Y)J, 

where 

f
• (y - 2 + 1')'/2' 

€I = € (2-.) 2 + I' - Y 

(:1 = € f' [t(v + 2~ - f~Y + 2)J 
(.-2) (I' - y) 

X ~ d ( + )
,12, 

I' - Y y, 

(3.3) 

(3.4) 

2 f' (w - 2 + V)'/2'(p - W)'12V 
'Y = € (2-.) 2 + I' - W V + W 

X {f' [t(p + 2~ - f\y + 2)J 
w (I' - y) 

X I' Y d W: ( + )'/2'} d 
v - Y Y [v2 

- (2 - W)2]' 
(3.11) 

We now set x = -2 in Eq. (3.5) and obtain, 
using Eqs. (2.4) and (2.10), 

o ~ [N- I 
- 2 - aP(-2) + Q(-2)J 

< ~ In [(1 + 1')(2 + 1')]. 
- 21' (2 - 1') 

(3.12) 

We begin by estimating Q( -2). From Eq. (3.2) 

(3.5) 0 < [t(p + 2) - fey + 2)J 
- (I' - Y) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

€ [ (2 + 1') ] 
~ 21'2 In (1 + 1')(2 - 1') o ~ Y < p. (3.13) 

Hence, for €/2p < 1, it may be shown from Eq. 
(3.7) that 

o ~ Q(-2) 

< €2. In [ (2 + 1') J. ( ) 
- 21'2(1 - €/2p) (1 + 1')(2 _ v) 3.14 

Also, from Eq. (3.11), 

€2(p - 1),/2V [ (2 + 1') ] 
o ~ 'Y ~ 21'2(1 _ €/2p) In (1 + 1')(2 _ 1') • (3.15) 

Further, it may be shown from Eq. (3.6) that 

(1'/2),/2'(1 - V) ~ P( -2) ~ (1 - V); 
(3.16) 

(1 - W) ~ V ~ [(2 + p)/2p]'/2V(1 - W), 

where 

[ € € (2 - 1')] W = F -- l' 1 + - . ---21'" 21' , I' , (3.17) 

and hence, 

t[ 1 + (21' ; 2t'J ~ W 

1(2t2'[ ep 
- 2t'J (3.18) ~2- 1+-- . 

I' I' 

It remains to estimate a from Eq. (3.8). Bounds 
on 'Yare given by Eq. (3.15). Now, for €j2p < 1, 

[(I' - 1) ,/2. + (:1J 

= f'(y + 2) ~ dy, r ( + t2
' 

(v-2) I' - Y 
(3.19) 
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as may be shown from Eq. (3.10) by integrating by 
parts, and using the relation [f(v + 2) - I(v)] = 1, 
which follows from Eq. (2.1). But, from Eq. (2.1) 
and Eq. (2.7), again by integration by parts, it 
follows that 

f'(x) = (x" ~ v2) (~ ~ :) ,/2, 

X [1 + i oo 

I'(y + 2)(~ ~ :),/2, dy J ; 
x > v. (3.20) 

From Eq. (2.3) it may be shown that, for x > v 
and E/2v < 1, 

fOO ( + ),/2' 
0:::; x 1'(y + 2) ~ _ : dy 

:::; ;v (v + 1) '12{ (1 - 2EJ-1 

+ In e ~ v) ] = X(E). (3.21) 

Thus, from Eqs. (3.19) to (3.21), 

(1 - z) :::; y :::; [(2v + 1)/2v]'/2'(1 - z), 

where 

z = F[ -2
E

v ' 1; 1 + 2
E

v ; (2v ~ 1)J ' 

and hence 

1.[ (2v - 2. )'I'J " !.(~_)'/2' 
2 1 + 2v _ 1 :::; ~ :::; 2 2v - 1 

(3.25) 

(3.26) 

(3.27) 

The final quantity to be estimated is rr, as given 
by Eq. (3.9). Kow, 

rr = (v - 1)'/'(1 - R), (3.28) 

where 

R = -f-l1 {1 - (1 - x),(2, 
2v 0 

X [1 + (v2 - l)xr'/2'}x"/2V-1) dx. (3.29) 

It may be shown that 

~ :::; [(v - 1)'/2' + 13] :::; HI + X(E)], (3.22) 0:::; R :::; l(v2 + 1)(€j2v)2 + [1 - m,(2,]"}. (3.30) 

where Thus, 

. [1('+1) fe'+Z)J(y - 2 + v)'/2' 
~ = (1/ + r) = E + ----, (,+1) 2 + v - y 

(1 - rr) = {[I - (v - 1)'/'] + O(i)}. (3.31) 

( )

,/2, d 

X ~ ~ : (y2 ! v2)' 

It may be shown that 

o :::; r :::; (2v + 1)(1 - E/2v) 

Also, 

(2)-'/2'(1 - y) :::; (;: ~ ~r2r 1/ :::; (1 - y); 

Combining the results of this section, we obtain 

(3.23) N- 1 = {2 + [1 + (v - 1),/,]2 }[1 + O(E)] 
4[1 - (v - 1) 'I'] 

(3.24) 

[3 - (v - 1) ,1,]2 
= 4[1 _ (v _ 1)'/'] [1 + O(E)]; 

1 < v < (2 - 0), 0> 0, (3.32) 

and explicit bounds on the error term may be 
written down. 
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Exact Solution for the Vibrations of a Nonlinear 
Continuous Model String 

N OR:ILI.N J. ZAB (;SKY 

Bell Telephone Laboratories, Inc., Whippany, New Jersey* 
(Received April 30, 1962) 

An exact solution is given for the partial differential equation 

Y It = [1 + eyx] ayxx, 

which describes the standing vibrations of a finite, continuous, and nonlinear string. The nonlinearity 
studied, [1 + ey.] a, was motivated by the work of Fermi, Pasta, and mam (1955), where they reported 
on numerical studies of the "equipartition of energy" in nonlinear systems. To obtain the solution, 
~he above equation is transformed into a linear equation by inverting the roles of the dependent 
(u = y. and v = Yt) and independent (x and t) variables. Riemann's method of integration is applied 
to the problem and the solutions for t and x are written as integrals. The nature of the "inverse 
Riemann plane," how it is related to the initial conditions, and how one unfolds it, are discussed 
in detail. A general procedure is described for reinverting the solution, so that y can be written as a 
function of x and t. It is illustrated to order e for the above problem. It is demonstrated that y •• becomes 
singular, that is, y. develops a discontinuity after an elapsed time of order (1/ e). The methods described 
are applicable to any nonlinear string where the coefficient of Yx. is a function of y. only. The effect of 
higher spatial derivatives on the formation of the singularity is discussed. 

1. INTRODUCTION AND SUMMARY 

THE phenomena associated with wave propaga­
tion and standing oscillations in nonlinear media 

(or fields) have been of interest to physicists for a 
long time. 1 The equations of hydrodynamics2 and 

nonlinear electrodynamics (for example, the Born­
Infeld theory3) are pertinent illustrations. 

Fermi, Pasta, and Ulam 4 (FPU) published a 
report in 1955, wherein they studied, numerically, 
the phenomena associated with the vibration of a 
nonlinear, loaded (or beaded), and finite string. They 
used the nonlinear string as a model of a dynamical 
system which they expected would exhibit certain 
ergodic properties. In particular, they hoped to 
establish computationally the rate of approach to 
"equipartition of energy" among the various 
modes-that is, the normal modes or degrees of 
freedom of the equivalent linear system. They 
employed three different types of nonlinear pertur­
bations and started from a variety of initial con­
ditions. However, the same "unexpected" phe­
nomenon occurred in all calculations, namely, that 
the system of particles showed " ... very little, if 
any, tendency toward equipartition of energy 
among all degrees of freedom .... " 

\ 2 

200 . 
\ 3 , .... 3 

I I (I) 

;; 150 , 
I ~ 0 

0 

S:? \ I \ 
Ci: .., .. 4 I "-

W z . 
3: r, I 0:: .. 

>- 100 0 \t .., 
co 0 z 
a:: "" , ~ :::; ..... « 
z w 11-..... ex: 00 

al , ·1 I !!2 
50 I~ I I " 

PERIODS OF OSCILLATION 

FIG. 1. The energy (arbitrary units) in the low modes of 
the nonlinear string: 

o2y';or2 = (Yi+l - 2Yi + Yi-l){l + a(Yi+l - Yi-d). 
Reproduced from Fermi, Pasta, and mam,4 Fig. 1 (N = 32, 
a = 1/4, and a = 1). 

* This work was done at the Princeton University Plasma 
Physics Laboratory under the auspices of the U. S. Atomic 
Energy Commission. The results were reported at the New 
York meeting; of the Ameriean Physical Society, January, 
1962. See Bull. Am. Phys. Soc. 7, 31 (1962). 

1 T. Taniuti, Progr. Theoret. Phys., Supp!. No.9, 69 (1958). 
2 R. Courant and K. O. Friedrichs, Supersonic Flow and 

Shock Waves (Interscience Publishers, Inc., New York, 1948). 

This is exhibited in Fig. 1, which is taken from 
FPU (their Fig. 1), where the energy in a given 
mode is plotted as a function of time. If initially 
the energy resided in a few of the low modes (in 
Fig. 1 only the first mode is initially excited), then 
during the subsequent vibrations the energy "flowed" 

3 M. Born and L. Infeld, Proc. Roy. Soc. (London) A 144, 
425 (1934); A 147, 522 (1934); AlSO, 141 (Hl35). 

4 E. Fermi, J. R. Pasta, and S. Ulam, "Studies of Non­
linear Problems I," Los Alamos Report No. 1940, May, 1955 
(unpublished). The problem studied in this report is described 
briefly in A Collection of Mathematical Problems by S. mam 
(Interscience Publishers, Inc., New York, 1960), Chap. 7, 
paragraph 8. 
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to the neighboring higher modes due to the non­
linear coupling. After a large number of oscillation 
periods of the equivalent linear string (the abscissa 
of Fig. 1), the energy-flow direction was reversed 
such that the original initial state was almost 
reached again. 

In formulating their problem, they wished to 
consider a "one-dimensional continuum." 5 How­
ever, for the purposes of numerical computation 
they employed the model of a loaded string, which 
is equivalent to replacing the spatial partial deriva­
tives by spatial differences. Two nonlinear dif­
ferential-difference equations which FPU studied 
are given in Eq. (1.1), the "quadratic" nonlinearity, 
and Eq. (1.2), the "cubic" nonlinearity: 

a2yjaT2 = (Yi+1 - 2Yi + Yi-I) 

(1.1) 

or 

a
2
yjaT

2 = (Yi+1 - 2Yi + Yi-I) 

X [1 + a(Yi+1 - Yi-l)]; 

and 

a
2
yjaT

2 = (Yi+l - 2Yi + Yi-I) 

solution of (1.1) exhibited a discontinuity in the 
first derivative of the displacement. The energy in 
the first three modes was obtained by spatially 
Fourier analyzing the amplitude of vibration. These 
energies, when graphed, are in good agreement with 
the FPU plots up until the breakdown (discon­
tinuity) time. 

2. PROBLEM STATEMENT 

In this paper we will determine the exact solution 
for the vibrations of a continuous nonlinear string. 
The continuum equations which are equivalent to 
(1.1) and (1.2) are obtained by taking the limit 
h ~ 0 (h = particle spacing) and N ~ 00 such that: 
L = Nh remains finite and (a/N) remains finite and 
approaches tE.7 Thus, 

(Yi+l - Yi) ~ (y. - YH) 

~ !(Yi+l - Y.-I) ~ h(ay/a~) 

and 

(Yi+l - 2Yi + Yi-l) ~ h2(a2y/a~2). 

We normalize by introducing 

t = T/N (2.1) 

x = UL (2.2) 
+ "[(Yi+1 - Yi)3 - (Y. - Yi_I)3] 

(1.2) and obtain the partial differential equations: 

or 

a2yjaT2 = (Yi+l - 2Yi + Yi-I)ll + (!.6) 

X [(Yi+l - Yi)2 + (Yi+l - Yi_I)2 

Y. represents the displacement of the ith mass point. 
In some of their calculations they considered as 
many as N = 64 equimass particles. These equa­
tions are normalized in the sense that the ratio 
of the tension to the particle mass has been set 
equal to unity. The spacing between particles has 
been absorbed into the normalized time T. 

Kruskal first drew the author's attention to this 
problem at a lecture (January, 1961), where he 
presented a procedure which readily yields an 
approximate solution to the problem of the vibra­
tions of the continuous (see Sec. 2) nonlinear string.6 

After thirteen equivalent linear oscillations, his 

5 E. Fermi, J. R. Pasta, and S. {)lam, reference 4, p. 3, 
"We imagine a one-dimensional continuum .... " 

6 This procedure will be described in a forthcoming 
paper. The properties of the solution which are derived will 
be studied, and the variation of the energy in the "normal" 
modes will be presented. 

where 

(a2y/ax2)[1 + E ay/ax] , 

(a2y/ax2)[1 + E'(ay/ax)2], 

(2.3) 

(2.4) 

(2.5) 

E and E' are taken as finite in the above limit, 
N ~ 00. The initial conditions are prescribed over 
the range 0 < x < 1 as 

y(x, 0) = Yo(x) 
(2.6) 

ay/atl,~o = O. 

The procedure which will be described is applicable 
to the more general initial condition, where the 
temporal derivative at t = 0 is finite. 

The boundary conditions in the FPU report and 
in the problem considered below are 

yeO, t) = y(l, t) = O. (2.7) 

7 The equation which describes the large-amplitude, pure 
longitudinal vihrations of a continuous string is given as 
py" = Tx. In general, the tension T is a function of Yx, and 
its specific form depends upon the stress-strain relationship 
of the string material. For a linear stress-strain relation, 
T = To[l + YxJ. The model string, (2.3), employed by FPU 
and analyzed here, implies that T = To[l + Yx + !. y.2]. 
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It is the aim of this paper to derive the exact 
solution of (2.3) subject to the initial conditions 
(2.6) and boundary conditions (2.7). It will be 
shown that at values of t of order ~ 1/(ea1r2) (a is 
the maximum amplitude of the initial condition) 
the continuous nonlinear string develops a discon­
tinuity in the first derivative, ay/ax. 

The procedure for deriving the exact solution 
depends only on the fact that the governing partial 
differential equation can be written in the form 

a2y/at2 = [F(ay/ax)]2 (a2y/ax2). (2.8) 

Equation (2.8) is also the Lagrangian representa­
tion for describing longitudinal waves in a non­
linear, hysteresis-free, solid continuum. 8 Here, 
y = y(x, t) is the displacement of an element of the 
material from an initial reference state and F2(ay/ax) 
is proportional to the derivative of the stress with 
respect to the strain [strain = (ay/ax) - 1]. For 
ordinary metals, F is an even function of the strain 
and vanishes as the strain gets large. 

3. TRANSFORMATION TO AN EQUIVALENT 
LINEAR REPRESENTATION 

A. The Equivalent Linear Partial Differential 
Equation 

If we define 

u = y. 9 
v = y" (3.1) 

then (2.8) can be written as two coupled partial 
differential equations of first order: 

u, - v. = 0 (3.2) 

(3.3) 

Equation (3.2) is a consistency condition, whereas 
(3.3) describes the nonlinear behavior as given in 
(2.8). If we multiply (3.2) by F(u) and add and 
subtract the result to (3.3), we obtain the pair of 
equations: 

or 

where 

r 
s 

v, ± Fu, =r Fv. - F2ux = 0 

r, - F(u)r. = 0 

s, + F(u)s. = 0, 

±v + JU F(u') du' = ±v + B(u). 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

8 R. Courant and K. O. Friedrichs, reference 2. See 
paragraphs 97 and 98. 

9 We now employ the SUbscript notation to designate 
partial derivatives. For example, r, = arjat. 

The variables rand s are commonly known as the 
Riemann invariants, in that r is invariant along the 
characteristic dx/dt = -F and s is invariant along 
the characteristic dx/dt = +F. 

We can express u in terms of (r + s) by adding 
the equations of (3.7) and taking the inverse function 
of the result, 

(3.8) 

We now recognize that an inversion transforma­
tion will linearize exactly the resulting equation. In 
this so-called "speedgraph"lO transformation, the 
dependent variables are x and t and are expressed 
as functions of the independent variables rand s. 
Thus, we write 

r, -jx, 
(3.9) 

Sx = -jtr 

where the Jacobian of the transformation from the 
(x, t) to the (r, s) plane is given by 

(3.10) 

Note that 

j = r 1 = [x,t. - x.trr1. (:i.11) 

The resulting equations in the speedgraph plane are 

For example, if 

then 

x. + F(u)t, = 0 

Xr - F(u)tr = O. 

r = ±v + [!e(a + 2)r\1 + eu)I1+(1/2IaJ. 
s 

(:U2) 

(3.13) 

(3.14) 

Thus, adding the equations of (3.14) and taking the 
inverse yields 

(3.15) 

Note that v is obtained by differencing the equa­
tions of (3.14) 

v = !(r - s). (3.16) 

If we substitute (3.15) into (3.13) we can write 

F = [B(r + s)][a/(2+al], (3.17) 

where 

(3 = te(a + 2). (3.18) 

10 R. von Mises, Mathematical Theory of Compressible Fluid 
Flow (Academic Press Inc., New York, 1958). 
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In our case, a = 1 and the resulting expressions 
become 

F(u) 

r 
s 

[,B(r + s)J 113 , where [,B = 3E/4J; 

j = -2rxsx [,B(r + S)J1I3. 

(3.19) 

(3.20) 

(3.21) 

The symmetrical equations become 

x. + [,B(r + s)r /3 t. = 0; 

Xr - [,B(r + S)],/3 tr = o. 
(3.22) 

(3.23) 

If we eliminate x from (3.22) and (3.23), we obtain 
the canonical partial differential equation for t, 
namely, 

tr • + [n/(r + S)J(tr + t.) = 0, (:3.24) 

where 

n = !a[2 + ar1 

= 1/6 for a = 1. (3.25) 

The equation for x (obtained by eliminating t from 
the pair) is identical with (3.24) except that n is 
replaced by - n. 

Equation (3.24) is identically the equation 
obtained in the one-dimensional nonlinear hydro­
dynamics of an isentropic medium and was first 
derived by Riemann 11 in 1860. It is commonly 
referred to in the literature as the Euler-Poisson­
Darboux equation. 

Table I summarizes some of the values of a 

which yield integral n. A great simplification is 
obtained when n is integral, for the solution of (3.24) 
and its adjoint differential equation (defined below) 
can be expressed as the ratio of polynomials. 

In what follows we deal with the x and t equations 
separately, since it is easier to visualize the applica­
tion of the boundary conditions. 

4. AN INTEGRAL REPRESENTATION FOR 
THE EXACT SOLUTION 

A. General Considerations 

As observed above, the method for obtaining the 
characteristic solutions of the x and t equations has 

n 
a 

TABLE 1. Values of a corresponding to integral n. 

-3 -2 -1 0 1 2 3 
-12/7 -8/5 -4/3 0 -4 -8/3 -12/5 

11 Riemann's Gesammelte Mathematische Werke, 1876, 1. 
See Chap. VIII, paragraph 2. First published in Abhandl. 
Ges. Wiss. Gottingen, Math.-physik. Kl. 8,43 (1860). 

been given by Riemann. The general concepts 
involved in Riemann's method of integration are 
adequately described in several classic textbooks12 

on mathematical physics and, therefore, only a 
brief outline of it is given below. 

If one is given the linear partial differential 
equation 

L(t) = t" + atr + bt. + ct = 0, 

then the operator M is defined by 

M(G) = Gr. - (aG)r - (bG). + cG = 0, 

(4.1) 

(4.2) 

and is known as the adjoint of L. G = G(r, S; ~, '1/) is 
commonly called the Riemann function. As described 
below, r = ~ and s = '1/ are two lines along which G 
satisfies specific conditions. 

One verifies that 

GL(t) - tM(G) = R. + S" (4.3) 

where 

R = !eGt. - tU.) + aGt (4.4) 

S = !(Gtr - tGr) + bGt. (4.5) 

If the functions t and G are such that L(t) = 0 
and M(G) = 0 in a region bounded by a sufficiently 
smooth curve r, and if we apply Green's theorem 
to (4.3), we obtain 

o = I dr ds[R r + S,J = Ir [n,R + n.SJ dl, (4.6) 

where dl represents differential arc length and n. 
and n. are components in the rand s directions of 
the outward pointing normal, as shown in Fig. 2. 

Equation (4.6) can be written as 

Jp B [nrR + nBS] dl 
P A 

J
p JPA + R ds - S dr = O. (4.7) 

P B P 

'a 

FIG. 2. Cauchy 
problem of the first 
kind along an arbi­
trary line. 

12 R. Courant and D. Hilbert, Methoden der Mathematischen 
Physik, II (Verlag Julius Springer, Berlin, 1937). Chap. 5, 
paragraph 4; A. Sommerfeld, Partial Differential Equations 
in Physics (Academic Press Inc., New York, 1949). See 
Chap. 3, paragraph 11. 
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If we require G, the solution of (4.2), to satisfy the 
conditions: 

G. - aG = 0 on the line r = ~; 

Gr - bG = 0 on the lines = 71; 

G = 1 atthepointP(r = ~,s = 71); 

(4.8) 

(4.9) 

(4.10) 

then the right side of (4.7) simplifies and we obtain 
the classic result 

t(~, 71) = t(P) 

= ![G(PB)·t(PB) + G(PA)·t(PA)] 

J,
P B 

+ (ncR + n,S) dl. 
P A 

(4.11) 

Thus, the value of t at any point P in the region 
bounded by PAP B, by the horizontal characteristic 
through P A, and by the vertical characteristic 
through P B can be expressed as an integral. This 
integration can be performed provided that t and 
the partial derivative tr or t, are given along PAP B' 

B. Application to a Specific Problem 

Consider the differential equation (3.24) with r 
and s defined by (3.19). We take (2.6) as our initial 
conditions and (2.7) as our boundary conditions 
in the physical (x, t) plane. The problem is sim­
plified by writing it purely as an initial condition 
problem. This is accomplished if we require the 
solution to be odd about the origin and periodic 
over the spatial interval, ~x' = 2. Thus, the new 
initial conditions are written as 

s 

~------~----L-----------L-4-__ ~r ----- --· [ )'" r-iE 1-'0"" • [ J'" r- ii 1+~a1T 

FIG. 3. The (r, 8) plane for a periodic initial condition. 

y(x',O) = Yo(x') and y,(x', 0) = 0, 

for - co < x' < co. (4.12) 

Let us examine the transformed line in the inverse 
(r, s) plane. Since y,(x', 0) = v = 0 at t = 0, the 
initial condition line is the straight line r = s, as 
shown in Fig. 3. We call this line the "main 
diagonal." If Yo(x') = a sin 7rX', as it was in the 
FPU calculations, then along the main diagonal 
the mapping is given by 

rlH = p(x') = sl,_o = iT(x') 

= (2/3E)f3/2(x') , (4.13) 

where 

f(x) = [1 + Ea7r cos7rx]. (4.14) 

We have used p and iT to designate the values of 
rand s at t = 0, that is, along the main diagonal 
of the inverse plane. Distance along the string at 
t = 0 is indicated by x'. 

Let us now emphasize and clarify the distinction 
between the coordinate system and the points on 
the plane. We have used rand s as a generic designa­
tion for the points along the horizontal and vertical 
coordinate axes, respectively. The point r = ~, 

s = 71 is an arbitrary point in the Cr, s) plane at 
which the solution is evaluated. As rand s are 
invariant along vertical and horizontal lines, 
respectively, then 

~ = (2/3E)r2(XB); 71 = (2/3E)f /\XA)' (4.15) 

Hence, the t and x solutions obtained by Riemann 
integration can be expressed in terms of ~ and 71 or, 
equivalently, XA and XB' 

Each point in the region 0 < x' < 1 of the 
physical plane is mapped uniquely into a point 
along the main diagonal of the (r, s) plane. The 
solution at P(~, 71) is "influenced" by the initial 
conditions along PAP B' 

If, at t = 0, one proceeds outside the main 
interval, 0 < x' < 1, of the physical plane, then r 
and s will oscillate to and fro over the region shown 
in Fig. 3, because ul, -0 was taken as a periodic 
function. This suggests a many-sheeted (r, s) plane. 
interval, 0 < x' < 1, of the physical plane, rand s 
will oscillate to and fro over the region shown in 
Fig. 3, because u was taken as a periodic function, 
(4.14). This suggests a many-sheeted Cr, s) plane. 
Procedures for continuing the solutions from one 
sheet to another by "unfolding" the (r, s) plane 
have been developed by Ludford'3

•
'4 and will be 

applied to this problem in Sec. 5. 

13 G. S. S. Ludford, Proc. Cambridge Phil. Soc. 48, 499 
(1952). 

14 G. S. S. Ludford, J. Rat. Mech. 3, 77 (1954). 
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For any point in the shaded region of Fig. 3 we 
can immediately write the solution for x and t by 
applying Riemann's method to this Cauchy problem 
of the first kind. Along PAP B, t = 0 and dt = O. 
Thus, 

r I - - (X,)-l - s I - - (X,)-l x t=O - Px' - P - Xlt=O - fIx' - q • (4.16) 

Applying (4.16) to (3.9) and (3.21), we obtain the 
result that along PAP B 

(4.17) 

Substituting (4.16) and (4.17) into (4.11) gives the 
solution for t as 

l
PB 

t(~, 'I)) = _m l !2 Gtp dl, 
PA 

(4.18) 

where we have taken nr = -n. = (tr!2. G is the 
Riemann function associated with the t equation, 
(3.24). This integral can be expressed as the integral 
over the dummy variable x' by substituting into 
(4.18) the results 

dl = - V2 dp = - V2 (Px' dx') 

= - V2 (O"x' dx') 

or 

G(=) = [(p + O")/(~ + 'I))t np(=n_l)(q), (4.24) 

where p. is the Legendre function of order II [which 
has the property Pp(q) = P -.-l(q)] and 

q = 1 + [2(p - ~)(O" - 'I))J/[(~ + 'I))(p + O")J. (4.25) 

The terms (p + 0") and (~ + 'I)) are both of order 
(1/ ~), whereas (p - 0 and (0" - 'I)) are both of 
order (/). At t = 0, p = 0" and 

tcq - 1) = [(p - ~)(p - 'I))J/[2p(~ + 'I))J 

= e(~2). (4.26) 

From (4.25) one concludes that q and any function 
of q are even periodic functions of x with period 2. 
This follows more directly from (4.13), since both 
p and 0" were assumed to be even periodic func­
tions of x'. 

The solutions for t and x are written in more 
explicit form by using the above definitions: 

(4.27) 

J
XB 

- C2 x'n(x') dx'; 
XA 

(4.28) 

and 

(4.19) where C1 and C2 are functions of ~ and 'I) and are 
given by 

t dr/ - t - If-1I2( ') r dx 0 - pPx' - "2 X. (4.20) 

We obtain 

C1 = + [(3~/4)(~ + 'I))r /6 = e(/) 

C2 = +a(31r€/4)2(~ - 'I)) 

X [(3E/4)(~ + 'I))r 5!6 = e(e2
). 

(4.29) 

(4.30) 

t(~, 'I)) = t [B Gr!2(x') dx', (4.21) n(x') is an even periodic function of x' with period 2, 
XA 

wherexA = x(P A) andxB = x(P B). 
Since Xr = x. along PAP B, the x solution is 

expressed by the general equation (4.11) as 

x(~, 'I)) = i[x(PA)r(PA) + x(PB)r(PB)J 

+ t [B (ru - rp)x'px' dx', (4.22) 
XA 

where r is the Riemann function associated with 
the x equation. For the problem being considered 
we can write 

G = G(+) and r = G(-), (4.23) 

since the t and x equations differ only by the sign 
of n. [See Eqs. (3.24) and (3.25).] Courant and 
Friedrichs15 give G(=) as 

,. R. Courant and K. O. Friedrichs, reference 2, para­
graph 82, Eq. (82.18). 

n(x') = (dPl/6/dq)(sin 1rx')f 5!4(X'). (4.31) 

To illustrate the essence of these equations, we 
recover the solution of the linear equation by 
setting ~ = O. Therefore, F(yx) = 1, q = 1, and 
Pp(I) = +1. Equations (4.27) and (4.28) become 

because the integral contribution in the x equation, 
(4.28), is of e( e") and C 1 ~ 1. We rewrite this set as 

XA = (x - t) and l:B = (x + t). (4.33) 

We form the difference 2v = (~ - 'I)), and obtain 

2v = 2y, = (2/3e)W I2(xB) - r 2(XA)J. (4.34) 

Neglecting terms of e(e) yields 
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or 

Yt = -a7rsin7rxsin7rt, (4.35) 

which is the solution for the linear wave equation 
Yo - Y.z = 0, with the initial conditions: y(x', 0) = 
a sin 7rX' and YtCX', 0) = 0; and with the boundary 
conditions: yeO, t) = y(l, t) = O. An analogous pro­
cedure is used for obtaining the solution of the 
nonlinear problem. This is given below. 

5. THE UNFOLDED INVERSE RIEMANN PLANE 

A. General Considerations 

In the previous section we have shown that the 
periodic initial conditions cause the entire line 
- co < x' < co at t = 0 to be projected onto the 
main diagonal of Fig. 3 between the points [0] and 
[1]. The line [0] ---t [1] is many valued, and the region 
formed by the intersecting characteristics through 

"­
~at:._--4J ..... -- t:. -"-'~ ...... ~-

" " " 

these points is many sheeted. Each sheet corresponds 
to an interval of length 1 in the physical plane. 
As we proceed from x' = 0 to x' = 1 in the physical 
plane, we move in the negative rand s directions 
from [0] to [1]. If we continue from x' = 1 to x' = 2 
in the physical plane, the transformed point moves 
from [1] to [0] in the Cr, s) plane, etc. The direction 
of movement in the Cr, s) plane is evident from (4.19). 

A unidirectional movement in the physical plane 
is transformed into a to-and-fro movement in the 
Cr, s) plane. The latter is rendered unidirectional by 
"unfolding" the main diagonal. Thus, proceeding 
from x' = 0 to positive values of x' is equivalent 
to proceeding from [0] down to the left. Passing 
through x' = 1 toward x' = 2 corresponds to 
passing through [1] and into the neighboring square 
of the unfolded Cr, s) plane, where the positive 
directions of rand s are reversed. (See Fig. 4.) The 
reversal in direction of the coordinate system is 

" " , 
FIG. 4. The unfolded Cr, 8) 

plane. (Circled numbers cor­
respond to barred numbers 
in the text.) 
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represented by the right angles in the lower right­
hand corner of each square. Thus, the single square 
with sides of length 11 is unfolded into a sequence 
of squares along a line of slope + 1, these squares 
having, alternately, the same properties. 

The region above and to the lefe 6 of [-1] ~ [0] 
is designated as a 3 region, whereas that above and 
to the left of [0] ~ [1] is a 2 region. In the figures 
the barred quantities are designated by circled 
quantities. The Jacobianj given by (3.21) reduces to 

j = -2[a1T2 sin 1Tx'f3/4(X,)]2 (5.1) 

along the main diagonal, and thus vanishes at the 

16 This is the direction of increasing t. This follows from 
(4.19), where one sees that tp is of the same sign as Px', and, 
therefore, negative in the region 0 < x' < 1. If tJ.t = ir dr is 
to be > 0, then dr must be < O. 

points ... [-1], [0], [1], ... . This vanishing is 
manifest in the linear problem as well, and doesn't 
introduce any difficulty. 

In the unfolded plane we require the continuity 
of r along a vertical characteristic and the con­
tinuity of 8 along a horizontal characteristic. Thus, 
the remainder of the unfolded (r, 8) plane is sub­
divided into squares as shown in Fig. 4. This 
introduces two additional regions: In the direction 
of "increasing x'" a I region lies between a 2 and a 3 
region, whereas a 4 region lies between a 3 and a 2 
region. 

The solution at PI (in region 2) or P~ (in region 3) 
is readily obtained from (4.27) and (4.28) by giving 
the appropriate initial conditions along P BP Al or 
P A2P A3, respectively. The points P 2 (in region 4) 
or P~ (in region I) are outside the sequence of 

FIG. 5. Evolution of the 
solution in the unfolded 
(r, 8) plane. (Circled num­
bers correspond to 
barred numbers in the 
text.) 
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squares along the main diagonal. The solution at 
P 2 can be obtained in two steps: (1) We construct 
the solution along [Olb from the initial conditions 
along [O]P B, and along [01a2 from the initial con­
ditions along [OlP A2; (2) we treat the problem in 
region 4 as a Cauchy problem of the second kind 
using the solutions along two different intersecting 
characteristics, namely, [O]b and [01a2' It can be 
shown that the solution at P 2 obtained in this way 
is identical to that obtained by treating the problem 
as a Cauchy problem of the first kind over P A2P B. 

C. The x Solution, in the Unfolded-Inverse Plane, 
Expressed as an Integral 

Consider the evolution of the x solution along a 
line of slope = -1 in the unfolded plane. x(P 1) is 
given directly by (4.28). The value of x at P I • m is 
given by 

x(PI .m ) = !CI[(XB + 2m)rI/4(XB) 

+ (XA - 2m)r]/\XA)] 

f
(XB+ 2m ) 

- C2 x'n(x') dx', 
(xA -2m) 

(5.9) 

B. The t Solution, in the Unfolded-Inverse Plane, 
Expressed as an Integral where C I , C2 , and n(x') are given in (4.29), (4.30), 

and (4.31). The integral in (5.9) is decomposed into 
three parts: Let us consider the evolution of the t solution 

along a line of slope = -1 in the unfolded (r, s) 
plane, as shown in Fig. 5. t(p) in a 2 region is 
influenced by initial conditions along PAPB' At 
Pl,l, the corresponding point in the next 2 region, 
the solution t(p).) is influenced by initial conditions 
along PA,)PB')' Note that 

(5.2) 

where the 4 in (5.2) corresponds to two full 
spatial periods. In general, the solution at p).m, a 
point in a 2 region having the same ~ and TJ as PI, 
is given by 

t(p].m) =! [Bm Gr 1l2(x') dx' 
xAm 

(5.3) 

or 
(5.4) 

where 

(5.5) 

This follows because the integrand of (5.3) is 
periodic in x' with a period of 2. 

t(~, TJ) possesses certain symmetry properties in 
the (r, s) plane because the integrand in (5.3) is 
even in x' about the points . .. [-IJ, [OJ, [11, ... 
(see Fig. 4). Thus 

t(p) = tcPO or M~, TJ) = h(TJ,~); (5.6) 

t(P 2) = t(P~') or t.(~, TJ) h(TJ, ~); (5.7) 

t(P~) = t(P~") or tr(~, TJ) tiC TJ, ~). (5.8) 

The barred subscripts refer to the type of region. 

This allows us to write (5.9) as 

X(p).m) = x(p) + mC)[f-1I4(XB) - r 1l4(XA)] 

- C2{f
x

A x' II (x') dx' 
(zA-2 m) 

j (XB+ 2m ) } 
+ x B x' n(X') dx' . (5.10) 

The x solution, (5.10), differs fundamentally from 
the t solution, not only in the presence of the non­
integrated term, but also in the presence of the 
monotonic function in the integrand of the integrated 
term. If we introduce 

rr~i) = 12 (X,)i rr( -x' + XA) dx' 

and 
2 

rrj/) = l (X,)in(+X' + XB) dx', 

then (5.10) takes the form 

X(Pl,m) = x(PI) + mCI[r
l/4(XA) - r 1l4(XB)] 

+ mC2 { rr~!) - rr~l)}, 

since rr~O) = rr1°) = O. 

(5.11) 

(5.12) 

(5.13) 

Similar considerations apply when PI lies in the 
lower part of a 4 or a I region. 

D. Breakdown of the t Solution 

It is a well-known fact that the solutions of the 
equations of a one-dimensional, polytropic, hydro­
dynamic fluid always exhibit a breakdown (the 
development of a discontinuity or singularity) if 
the initial conditions are arbitrary periodic func-
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tions. We will show that the nonlinear string also 
develops a singularity in the second derivative after 
a "large" number of oscillations. 17 

Let us examine the relationship of tr and r% (or 
equivalently t. and S%).18 Using Eq. (3.9) for tr and 
the definition of j in (3.21), we obtain 

(5.14) 

Similarly, 

(5.15) 

Thus, if tr (or t.) vanishes at some point in the (r, s) 
plane, this indicates that r% (or s%) has become 
infinite, since (r + s) remains finite and nonzero in 
each square of the unfolded plane. However, 

(5.16) 

Hence, a point along the string where r % or s% is infinite 
corresponds to an infinite second derivative, or a 
discontinuity in the first derivative. At the correspond­
ing point in the unfolded (r, s) plane, j has become 
infinite and J = 0, indicating that the transforma­
tion has broken down. 

Let us investigate t, for a zero, using the integral 
representation given by (5.4). 

2t, = [B Gd-1/2(X') dx' + rI2(xB)G(xB)[dxBld~J 
XA 

(5.17) 

where 

d:; = ~~1'-XB = - {a1T2[sin 1TxBt
/2

(XB)Jr\ (5.18) 

where (5.18) is evaluated on the initial condition 
line r = s. The Riemann function and its derivatives 
on this line are 

G = f/4(X') I [(344)(~ + 1]) r 1I6p -5/6(q)} = a(eD) , 

G, = -(e/8)f/4(x')[(344)(~ + 1])rI/6 

X {[(3e/4)(~ + 1])r1p -5/6 

(5.19) 

17 The oscillations referred to here and in the following 
are those of the equivalent linear string, namely, the one 
obtained by setting E = O. For the normalization used, the 
period of one linear oscillation is 2. 

18 The methods used in Sec. 5D for studying the forma­
tion of discontinuities have been used in investigations in 
hydrodynamics. For example, see G. S. S. Ludford, Proc. 
Cambridge Phil. Soc. 48, 499 (1952). 

Substituting (5.18) into (5.17) yields 

- G[a1T\sin 1TXB)t(XB)r 1 

+ em 1-22 (G./e)r 1!2(x,) dx'. (5.20) 

If XA and XB are kept fixed and time (or m) allowed 
to increase, the last term, which is of G(em), increases 
until it is of the same order as the second term and 
thereby cancels it, yielding a zero for t,. For small e, 
G, = -IG(e)l, and the zero of t, will first occur for 
a value of XB which makes sin 1TXB < 0, that is, 
XB = -!. 

We now estimate the minimum time required for 
the string to reach breakdown. We assume e to be 
small and expand both G and G, to terms of e(e). 
If (em) is assumed to be G(ED) and we neglect all 
terms of G(E) in (5.20), we obtain the relation 

or 

(5.21) 

We recall that m is the number of equivalent funda­
mental linear periods. 17 If one performs the same 
calculation for t. = 0, one finds XA = +t, and the 
same time-to-breakdown as given in (5.21). 

In the FPU calculations illustrated in Fig. 1, the 
parameters were: N = 32, a = t, and a = 1.0. 
Thus, e = 1/64 (Eq. 2.5) and m = 12.95. In Fig. 1, 
this corresponds, approximately, to the time when 
the energy in the second mode reaches its first 
maXImum. 

If the string is initially displaced in an nth mode, 

y(x', 0) = an sin 1TnX' , 

such that the energy is the same as in a first-mode 
displacement, then the time-to-breakdown is reduced 
by a factor of n. This results from two considerations. 
First, the energy invariance requires that an = a]ln, 
where al is the first-mode amplitude. Second, the 
smallness parameter in the continuum limit becomes 
en = nel = 2anlN. This follows because an nth 
mode initial displacement over a discrete string of 
N particles looks like a first mode over a string of 
N In particles. Thus, the number of oscillations-to­
breakdown is an invariant quantity, since it is pro­
portional to 1/(enan ) = 1/(elal)' Because an nth 
mode makes one oscillation in (lin) the time re­
quired for a fundamental oscillation, then the time­
to-breakdown is (lin) times as much. 
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6. ANALYTIC REINVERSION OF THE SOLUTION 

One can study the properties of the solution 
most conveniently when it is written in direct form, 
that is, in the physical plane where x and t are the 
independent variables. The procedure for accom­
plishing the reinversion is given below and is 
analogous to that used for reinverting the linear 
solution, as described at the end of Sec. 4. For the 
purposes of the example, we include only terms to 
e(e). A higher order analysis proceeds along similar 
lines. 

As shown in Fig. 5, we examine the solution 
along a line of slope = - 1 and in a 2" region of 
the (r, s) plane. The t solution, (4.27), is written as 

t(~, 71) = (2e])-]{(XB - XA) 

(4.32). To complete the inversion, one would have 
to express XA and XB explicitly as functions of x and 
t, rather than in the implicit form given in (6.8) 
and (6.9). 

The direct solution is now recovered by forming 
v = y, from the difference of ~ and 71 as defined in 
(4.15). 

(6.10) 

or 

v = !a7r {.1, + (w7r/8)[cos 27rXB 

- cos 27rX A] + e( e2
) } , (6.11) 

or 

v = -a7rlsin (7r/2)(XA + XB) 

- (ea/4)[sin 7rXB - sin 7rXA] + e(e2
)} (6.1) X sin (7r/2)(XB - XA) + (ea7r/8) 

because the Legendre function in the integrand of 
(4.27) contributes only its leading term (= 1). 
Similarly, the x solution is written as 

X(~, 71) = (e]/2){xB[1 - (ea7r/4) cos 7rXB] 

+ xA[l - (ea7r/4) cos 7rXA] + e(e2
)}. (6.2) 

e], (4.29), can be expanded in a power series in e 

using the definitions of ~ (or r) and 71 (or s) as given 
in (4.15). 

e, = 1 + (W7r/8) [cos 7rXA + cos 7rXBJ + e(e
2
). (6.3) 

If (6.3) is substituted into (6.1) and (6.2) and the 
results rearranged, we obtain 

t = !CXB - XA) - (ea/8) .1, - !e .1x~c + eel) (6.4) 

x = !CXB + XA) - !e .1,.1c + e(l), 

where 

(6.5) 

(6.6) 

(6.7) 

We now invert by adding and subtracting (6.4) and 
(6.5). Rearranging, we obtain the implicit form 

XA = (x - t) - e .1x cos 7rXA 

- (w/8) .1, + e(e2
) (6.8) 

XB = (x + t) + e .1x cos 7rXB 

+ (ea/8) .1, + e(i). (6.9) 

One recognizes the leading terms of (6.8) and (6.9), 
x .. = x - t and X B = x + t, as the linear solutions, 

(6.12) 

Equation (6.12) is put into a more recognizable 
form by using the sums and differences of x .. and 
XB in (6.4) and (6.5). We introduce the parameter T 

which gives the temporal variation on a "slow" 
time scale: 

(6.13) 

This is obtained by substituting for (1/2)(xB - XA) 
in .1x the leading term of (6.4), namely, t. Equation 
(6.12) then takes the form 

v = -a7r{sin 7r[x + e.1c] 

X sin 7r[t + T~c + (ea/8) .1,] 

+ (ea7r /8) sin 27r[ x + T.1.] 

X sin 27r[t + T~c + (ea/8) .1,]} + e(i). (6.14) 

The solution for u is recovered in similar fashion, 
namely, from 

(6.15) 

or 

(2/3e)(1 + eu)3/2 = (1/3e)W /2 (xA) + f3/2(XB)]. (6.16) 

Solving to first order in e yields 

(6.17) 

This can be expressed directly in terms of x, t, and T 

by using the equations above. 
The solutions for u and v given above are qualita­

tively of the form: a periodic function of a periodic 
function. Thus. a spatial Fourier decomposition of 
these functions will yield modal amplitudes which 
involve the Bessel functions of the argument T. 
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7. CONCLUSIONS 

We have shown that the standing vibrations of a 
continuous nonlinear string develop a discontinuity 
in the first derivative after elapsed times of e(l/ea). 
The computations of Fermi, Pasta, and Ulam 
indicate that the vibrations of a finite number N of 
coupled, nonlinear, equimass particles do not 
develop such a discontinuity. Thus, a continuous 
nonlinear system described by a partial differential 
equation of second order cannot describe the 
vibrations of the equivalent discrete system for 
"large" times. 

To account for the FPU results by a continuum 
representation, one is led to include terms which 
measure the discreteness or "graininess" of the 
medium. These terms appear quite naturally if we 
retain quantities of e(1/N2) that arise in the 
limiting process described in Sec. 2: These terms 
involve higher derivatives (for example, YUIt, Y.m, 
etc.) and should affect the vibrations most at those 

points on the string where breakdown "tends" to 
occur. These terms are analogous to the viscosity­
like terms that are added to the lowest order hydro­
dynamic equations to prevent a discontinuity from 
forming. 
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We prove a mathematical conjecture by Dyson which he used in a study of the statistical dis­
tribution of energy levels in complex nuclei. 

T HE purpose of this paper is to prove a theorem 
that was proposed by Dyson in a recent paper.1,2 

This theorem (conjecture C of reference 1) may be 
stated as follows: 

Let Z" ••. , ZN be a set of N complex variables 
and a" ... , aN a set of N positive integers (:? 0). 
Let y j for 1 ~ j ~ N be 

Yi = II (1 - ~). (1) 
k"'i Zk 

Let 

(2) 

which we shall write P(z) for convenience. P can 
be expanded in positive and negative powers of 
the Zj; we are interested in the constant term F 
given by 

been performed, and that because the u's are homo­
geneous in the z's, only N - 1 are independent, 
which is why we make N - 1 instead of N changes 
of variable. 

Lemma 1: 

F - (2 ')-N+l J -1 d - 'IT"/, U2 U2 

where J is the Jacobian 

J(z) = a(ln U 2 , •• " In UN) 

a(ln z" "', In ZN-l) 

(6) 

(7) 

and the z's are expressed in terms of the u's by 
Eq. (5). The paths of integration are the circles 

(8) 

(3) taken i - 1 times counterclockwise, where the R. 
are arbitrary except that they satisfy 

the contours being the unit circle taken counter­
clockwise. 

R'+l «R. « 1 : 2 ~ i ~ N - 1. (9) 

Theorem: 
Lemmas 2 and 3 will show that J and Pare 

single-valued functions of the u's so we do not have 
(4) to specify the branch of the solution of Eq. (5). 

The proof depends on three lemmas, which will 
be stated now and proved later. 

Define 

(5) 

We compute F by making a change of variable 
from z,' ... , ZN-l to U2, ..• , UN' Lemma 1 will 
state that this is possible. We note that because P 
is homogeneous in the z's, the integration over ZN 

becomes trivial after the other integrations have 

* Junior Fellow, Society of Fellows, Harvard University, 
now at CERN, Geneva, Switzerland. 

1 F. J. Dyson, J. Math. Phys., 3, 140, 157, 166 (1962), this 
theorem has also been proved independently by J. Gunson, 
J. Math. Phys. (to be published). 

2 Conjectures A, B, and D of reference 1 are shown there to 
reduce to conjecture C; thus they will not be discussed here. 

Lemma 2: 
N 

L Uj = 1. (10) 
i=l 

This is an identity in the z's, when the Uj are re­
garded as functions of the z's through Eq. (5). 

Lemma 3: 

J(Z) = (N - 1)! U, . (11) 

See the note for Lemma 2. 
As a result of these lemmas, 

(2 r N
+

1 J J N F = (;~_ 1)! du2 · . • dUN g (Uj)-a;-I, (12) 

with U j given by Lemma 2. These integrals are 
elementary, but to save space we use a shortcut. 

1040 
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First we note that 

if the contour encloses the origin counterclockwise. 
Secondly, if F('A) is defined by Eq. (12), but with 

N 

U, = 'A - LUi, (14) 
j=2 

where 'A is on the unit circle, then by making a 
change of variable to u; = ui'A we see that 

(15) 

where 
N 

a = Lai . (16) 
j=l 

Hence, by Eq. (13), 

F = (27l"i)-'a! J ekF('A) d'A. (17) 

Interchanging the order of integration so that we 
integrate over 'A with U 2, •.. ,UN held fixed, we must 
evaluate the integral 

(18) 

Then G is a constant. This is because, since the 
denominator changes sign when we interchange the 
values of any pair Xi, Xk, the numerator must also 
change sign under this exchange; thus, the numerator 
vanishes when Xi = Xk' Hence the numerator has 
X, - Xk as a factor (for any j and k), e.g., it has the 
entire denominator as a factor; thus G is a poly­
nomial. Since it is of degree 0, it must be a constant. 

Proof of Lemma 2: 

Since Li Ui considered as a function of the z's 
satisfies the conditions of Lemma 4, it is constant. 
Putting z, = 0 we obtain u, = 1, Ui = 0 (j > 1) 
so the constant is 1. 

Proof of Lemma 3: 

The Jacobian J is the determinant of the matrix 

J ii = a In u,ja In z, (20) 

(rows numbered i = 2 to N, columns j 1 to 
N - 1). Without changing the value of the determi­
nant we may add columns j = 2 through N - 1 
to column 1; since In u, is homogeneous in the z's 
we now have 

J" = -a In u,ja In ZN' (21) 

[by Eqs. (8) and (9), the pole at 'A = U 2 + 
lies inside the unit circle]. 

+ UN Move this column to the right, calling it J iN ; thus, 

J = (_I)N-2 det IJii I, 
Thus, 

F = a! J dU2 ••• J dUN 
(27l"it- ' (N - I)! a,! 

N 

X II e"juja j-' 
a! 

(19) 
i=2 

[the factor (N - I)! is exactly compensated by the 
requirement of Lemma 1 that Ui execute a circle 
j - 1 times]. 

Now we prove Lemmas 1-3. We start by stating 
another lemma. Lemmas 2-4 have probably all 
occurred in other work3 but it is easier to prove 
them than to locate them in the literature. 

Lemma 4: 

Let G(x" ... ,x.v) be a function of M variables 
such that 

1. G is a symmetric function of X" ... ,X.v, 
2. G is a ratio of two polynomials in the x's, 
3. G is homogeneous of degree 0 in the x's, 
4. The denominator of G is IIj<k (Xi - Xk)' 

3 Lemma 2 appears in the theory of Lagrangian inter-
polation; see F. H~debrand, Introduction to Numerical 
Analysis (McGraw-HIll Book Company, Inc., New York, 
1956), p. 61, Eq. (3.2.5) with x = o. 

where 2:::; i :::; N, 2:::; j:::; N. (22) 

Now, 

(i ~ j), (23) 

(24) 

Evidently J is the ratio of two polynomials in the 
z's the denominator being a product of factors 
Zi - Zj. No such factor occurs twice; for a denomina­
tor z, - Zj occurs only in the elements J ij , J i " 

J", and J u so that a term (Zi - Zi)2 occurs in the 
denominator of J only if it occurs in the 2 X 2 
determinant JiJU - JiiJ ii . However the term 
in J,Jii containing the factor (Zi - Z;)-2 cancels 
the corresponding term in J'iJii' Furthermore, J 
has a factor (Z2Z3 ••• ZN), it is symmetric in Z2 

through ZN (but not in Zl), and it is homogeneous 
of degree 0 in the z's. Using the argument of Lemma 
4, we must have 

N 

J = C II Zk(Zk - Z,)-l = CUI' (25) 
k~2 

where C is a constant. Since Eq. (4) is known to 
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be true if all the a; are 0 we shall have to have 
C=(N-l)!' 

Proof of Lemma 1: 

We shall prove Lemma 1 by introducing the new 
variables one at a time. For convenience we shall 
first change variables to t; (2 ~ j ~ N), where 

(t ) -i+1 -; - Y;· (26) 

Before making this change we change the paths of 
integration in Eq. (3) to be the circles 

(1 ~ j ~ N), (27) 

where 

(1 ~ j ~ N - 1). (28) 

We now use mathematical induction. Suppose the 
following propositions are true for m < n: 

1. Equation (26) can be solved for 2 ~ j ~ m + 1 
to give ZI through Zm as functions of t2 , ••• , tm+ l , 

Z",+1I •.. ,ZN' We define functions W; for 1 ~ j ~ m by 

x w,(t2 , "', t;+I, Z;+I, "', ZN), (29) 

where we define tl = 1 and 0 ~ arg t; ~ 27T'. The 
solution can be chosen so that W; = 1 in the region 
of interest. More specifically, Wi is analytic as a 
function of t,+1 and Zi+1 to ZN, and satisfies 

when 

(2 ~ k ~ j), 

HI + e)krk < IZk I < 4(1 - e)krk 

(j+l~k~N), 

where 

and e is a fixed number « 1.4 

2. 

1 J J d J dZN J dZm
+

1 F = -- dt2 • • • tm+l -. . . --
(27T'it ZN Zm+1 

{
dt2 dta dtm+,}-I { }-lP( ) X - - ... -- ZIZ2' .. Zm Z , 
dZ1 dZ2 dZm 

(30) 

(31) 

(32) 

(33) 

O:l4) 

fixed). The contours are the circles IZkl = rk, Itk! = R k • 

The symbol dtk+,/dzk stands for the partial deriva­
tive atk+l/ aZk when t2, ... , tk , Zk+1I ... ZN are 
held fixed. 

We now prove these propositions for m = n. 
First, we must examine the dependence of tn+1 on 
ZM when t2, ... , tm Zn+l, ... ZN are held fixed; ZI 

to Zn_1 are functions of these variables and Zn 
[through Eq. (26)], and satisfy the restrictions of 
proposition 1. We obtain 

tn+1(tn)-(n-ll/n = (Yn/Yn+l)lIn 

(36) 

where 

g(Z) = IT (1 _ ~)l/n(1 _ ~)-l/n 
i-I Zn Zn+l 

N ( )1/"( )-'In X II 1 - ~ 1 _ Zn~1 . 
J =n+2 Zl Z, 

(37) 

If t2, ... , tn and Zn, ... , ZN satisfy the inequalities 
(31) and (33), one finds using Eqs. (29), (30), and 
(34) that Eq. (33) is satisfied also by ZI, .•• , Zn-Jo 
Thus (if the ratios rJri+1 are sufficiently small) 
we may define the nth roots in g(z) by requiring 

(38) 

the other nth roots are defined as in Eq. (29). 
Now consider the equation x = tn+l(zn) for values 

of x such that !Rn+1 < Ixl < 2Rn+l. This does not 
differ very much from the equation 

x - (t,.)(n-Illn( -l)llnZn(Zn+I)-1 = 0, 

which has a unique root Zn for a given x. 
Now consider the functions 

f(zn) = x - tn+ 1 (zn) , 

g(zn) = X - (tn)(n-Illn( _1)'lnzn(Zn+lr l , 

(39) 

(40) 

where !Rn+1 < Ixl < 2Rn+ 1 • On the circles IZnl = 
rn/3 and IZnl = 3rn, f and g are almost equal so that 

(41) 

Since g(zn) has a single root between the two circles, 
f(zn) does also, by Rouche's theorem. 5 From the 
explicit formula for the inverse function5 

where the integrations are carried out from right where the contour is taken on the two circles, we 
to left (e.g.,zm+l first, holding the other z's and t's 

4 To be precise, we should choose a sufficiently small value 6 L. Ahlfors, Complex Analysis (McGraw-Hill Book 
for " then choose the T; with Ti+t/Ti sufficiently small. Company, Inc., New York, 1953), p. 124. 
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see that the inverse function is analytic in tn + J for 
!Rn-tl < Itn+ll < 2Rn. Since tn+l(zn) is analytic in 
Zn+l, ... , ZN, the inverse function is also. Since 
Wn = 1/g(z), it satisfies the inequality (30). 

This proves proposition 1 for m = n. We now 
change variables in Eq. (35) (with m = n - 1) 
from Zn to tn+l ; the path of tn+1 is almost the circle 
Itn+11 = Rn+1 ; we change it to be exactly this circle 
and then interchange the order of integration with 
the remaining z's. This proves proposition 2 for 
m = n. To complete the proof of propositions 1 
and 2 they must be proved for m = 1; with some 
changes the above procedure can be used. 

Now consider Eq. (35) with m = N - 1. The 

expression I = dtddz i ••• ,dtN/dzN- 1 is the Jacobian6 

a(t2 , "', tN) 
a(ZI' "', ZN-I) 

by Lemma 3, 

I = (t2 ... tN)(ZI ... ZN_I)-IU~I. . (43) 

Since U 1 is a function only of the t's, by Lemma 2, 
the integral over ZN is trivial. Changing variables 
from tn to Un = t:- I we obtain Lemma 1 [Eq. (6)]. 

I am indebted to Dr. Paul Federbush for sug­
gesting this problem. 

a R. Courant, Differential and Integral Calculus (Inter­
science Publishers, Inc., New York 1936) Vol' II pp 
247-256. ' , . , . 
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It is shown that the Fourier method which was developed by us for the calculation of analytic 
functions of circulant matrices can also be applied to calculate analytic functions of continuant 
matrices. Similar calculations are developed for generalized continuant matrices which arise in 
connection with problems in greater than one dimension. 

I. INTRODUCTION 

I N a recent paper,l we have discussed the problem 
of calculating analytic functions of circulant 

matrices and generalized circulant matrices, i.e., 
partitioned matrices whose blocks are successive 
cyclic permutations of those submatrices appearing 
in the first row. In this paper we shall use a similar 
method to that developed in our first paper to 
evaluate analytic functions of some types of con­
tinuant matrices. Cyclic matrices arise in many 
physical problems in statistical mechanics when 
cyclic boundary conditions are employed, that is, 
when the system is considered to be wrapped on a 
torus of the proper dimensionality. Continuant 
matrices arise from the same types of physical 
problems when different boundary conditions are 
employed. As an example, circulant matrices are 
used in lattice dynamical problems when the ends 
of the lattice are connected together. Continuant 
matrices are used for the same problem when the 
edge atoms of the lattice are held fixed. It is useful 
to be able to calculate analytic functions of both 
types of matrices since thermodynamic functions 
of the physical system are defined in terms of 
analytic functions. Analytic functions of circulant 
and continuant matrices are also useful in the 
perturbation theory of chemical systems.2 The 
results for continuant matrices are somewhat less 
general than those for circulant matrices since we 
are only able to treat matrices with diagonal and 
first off-diagonal nonzero elements. 

In addition to doing the calculation for ordinary 
continuant matrices, we shall introduce the notion 

* This research was supported by the U. S. Air Force 
through the Air Force Office of Scientific Research of the Air 
Research and Development Command under Contract No. 
AF 18(600)1315. 

1 P. Abraham and G. H. Weiss, J. Math. Phys. 3, 340 
(1962), hereafter referred to as I. 

2 P. O. Li:iwdin, R. Pauncz, and J. de Heer, J. Math. Phys. 
1, 461 (1960). 

of generalized continuant matrices which are used 
to solve physical problems in dimensions higher 
than one. The generalization to the calculation of 
analytic functions of these matrices is straight­
forward involving no more than the use of multiple 
Fourier series rather than Fourier series of a single 
variable. 

To begin with, we shall recapitulate the principal 
ideas contained in 1. Let ~ be a circulant matrix 
of order N + 1 of the form ~ = (So, SI, ... SN)cyo 
with eigenvalues Ak given by 

N ( 27rijk) 
Ak = ~ Si exp N + 1 . 

The unitary diagonalizing matrix S such that 
S-l ~S = A where A is diagonal has elements 

(S)mk = [l/(N + 1)Jl/2 exp [27rimkl(N + 1)], (1) 

where m and k run from 1 to N. If F(x) is an analytic 
function with a convergent power series III some 
region about the origin, then we can write 

00 

F(~) = L an~n (2) 
n=O 

provided that the eigenvalues all lie within the 
circle of convergence. Hence we have 

F(~) = SF(A)S-l (3) 

or 
N 

[P(~)Jmn = L (S)mi (peA) Lr(S-l)rn 
; .r=O 

N 

L (S)m; (peA) I ;;(S-I);n 
i:=<O 

__ 1_ ~ {27ri(m - n)i} 
- N + 1 f=t, P(A;) exp N + 1 . 

1044 
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The next step in the calculation of [F(~)lmn is to 
expand F(A;) in a trigonometric series 

N 

F(A;) = L A~ exp [27rijk/(N + 1)] (5) 
k~O 

where the At are found in terms of the Fourier 
coefficients of the series for F{Lf-o Sf exp (ijO)}. 
When Eq. (5) is substituted into Eq. (4) and the 
order of summations interchanged, it is found that 
the summation over j can be carried out explicitly, 
and the reSUlting matrix element is just one of the A •. 

It can be seen that the reason for the success 
of the method is the fact that the unitary matrix S 
has elements proportional to exp {2Trijn/ (N + I)}. 
Hence the same method will work, with minor 
modifications, for any matrix whose eigenvectors 
have components 

(U;)k = exp (ijke) (6) 

and by extension, any matrix whose eigenvectors 
have components 

( ) 
_ sin jke 

U; k - (7) 
cos jke. 

II. FUNCTIONS OF SIMPLE CONTINUANT MATRICES 

A particularly important class of matrices for 
which this holds is the symmetric Jacobi matrix 

abO 0 

b abO 
~= 

o b a b 

o 

o 
o 
o 

b a 

(8) 

Some properties of this matrix have been elucidated 
by Rutherford,3.4 but he did not discuss the cal­
culation of analytic functions of ~. We can actually 
carry out the calculations for a more general matrix 
of the form 

a b1 0 0 

Cl a b2 0 
r= 0 0 

(9) 
C2 a 

a bN - 1 

CN-l a 

3 D. E. Rutherford, Proc. Royal Soc. Edinburgh 62A, 229 
(1945). 

4 D. E. Rutherford, Proc. Royal Soc. Edinburgh 63A, 232 
(1951 ). 

where the condition 

(10) 

holds for all i, since any matrix having the same 
form as r is similar to a symmetric Jacobi matrix 
of the form of ~. Consider the diagonal matrix T 
with elements 

(T);; = (C\C2 ... Ci-lbjbi+l ... bN _ 1)1/2. (11) 

Then an easy calculation shows that 

T-1rT = 

abO 

b a b 

o b a 

o 
o 
o (12) 

b a 

Henceforth we wiII work with ~ exclusively because 
of the property exhibited in Eq. (12). 

The eigenvalues of ~ are easily found to be 

Ai = a + 2b cos [7rj/(N + I)J (13) 

and the orthogonal matrix which brings ~ to diagonal 
form has the elements 

( 
2 )1/2. (7rmk) 

(S)mk = N + 1 sm N + 1 ' 

m, k = 1,2, ... N. (14) 

In analogous fashion to the procedure of I, we define 
a continuous, periodic function 

Ace) = a + 2b cos e. (15) 

We wiII now relate the elements of F(~) to the 
Fourier coefficients of F{A(e) J. Inserting the matrix 
elements (S)mk into the relation 

[P(~)]mn = L F(A;)(S)mj(S-l);n 
i 

we find 

2 N 

[F(~)Jmn = N + 1 t1 F(A;) 

X . (7rmj) . ( Trnj ) 
sm N + 1 sm N + 1 

__ 1_ ~ { (7r(m - n)j) 
- N + 1 f=r F(A;) cos N + 1 

_ (cos 7r(~ ! ~)j)}. (16) 

We shall assume that F{A(8) I can be represented 
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by a Fourier series 

FIACO) I = Ao + f An cos nO 
2 n=l 

(17) 

where 

112
,. An = - FIACO) I cos nO dO. 

7r 0 
(18) 

and therefore that the FCA;) result when 0 is set 
equal to [7rj/(N + 1)]. Substituting the value of 
F(A;) from Eq. (17) into Eq. (16), we have 

Ao ~ { 7r(m - n)j 
[F(~)]mn = 2(N + 1) ~ cos N + 1 

7r(m + n)j} 
- cos N + 1 

1 '" 
+ 2(N + 1) t:1 Ak 

~ { 7r(m - n - k)j 
X f=t cos N + 1 

+ 7r(m - n + k)j 
cos N + ] 

7r(m + n - k)j 
- cos N + 1 

7rCm + n + k)j} 
- cos N + 1 . (19) 

To evaluate the finite sums appearing in this equa­
tion we note that they are all special cases of the 
prototype sum 

N . 

" 7rS] N f=t cos N + 1 = a',:2r(N+1l 

+ U(-lt - 1J[1 - a".2r1N+1)J a"m(2r+l)(N+1) 

- (1 - a •. *2r(N+l) - a".(2r+1)(N+l)) a.,:2r, (20) 

where r = 0, 1, 2, .... The use of this formula in 
Eq. (19) results in 

[F(~)Jmn = !(Bm-n + B_(m-n) 

(21) 

where 

'" 
B; = L: A;+2r(N+l) (22) 

r-O 

and a coefficient A. is zero if s is negative. 
The results for matrices of the form of r shown 

in Eq. (9) are similar. Assume that F(~) can be 
calculated. If the matrix which diagonalizes ~ is 
denoted by S [cf. Eq. (14)] then the matrix which 
diagonalizes r is just TS. When the proper substi-

tutions are made in the relation 

F(r) = TF(~)T-I (23) 

it is found that 

[F(r)Jmn = [Cncn+1 ... cm-1/(bnbn+l ... bm_1)f/2 

m>n+l 

[F( r)Jmn = [bmbm+1 ... bn-l/CCmCm+l •.. Cn-I) ]1/2 

X [F(~)]mn, 

n2::m+l 

[F(r)]mm = [F(~)]mm' (24) 

In the following paragraphs we shall give some 
specific applications of the formula of Eq. (21). 

1. Calculation of ~-I 

The Fourier coefficients of ~ -1 are 

A = .!.l r 

cosnO dO 
n 7r 0 a + 2b cos 0 

2 ((a2 
_ 4b2

)l!2 

= (a2 _ 4b2)I/2 2b 

When this expression is inserted into the definition 
of the B's, the resulting series are geometric series 
and the result can be written in closed form as 

~ -1 _ U(v2n - 1) (V2(N+1) _ v2m) 
( )mn - m+n 1 2{N+l) 

V - V 

m 2:: n (26) 

where 

2. Calculation of ~. , v ~ 0, 1,2, .•• 

The Fourier coefficients can be written 

112

'-An = - (a + 2b cos 0)' cosnO dO 
7r 0 

= 7r(1 ~ (32)' 10-2>- (1 - 2{3 cos 0 + (32') cos nO dO 

(28) 

where 

(3= 

Hence the A's are 

A 
2a'{3nr(n + p) F'( 2 

.. = (1 + (32)'r(p)n! P, p + n, n + 1; (3), (29) 
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where F(a, b, c; x) is a hypergeometric function. Thus we find 

[A']mn = a' {:t F(v, 1'+ m - n + 2r(N + 1), m - n + 2r(N + 1) + 1; ri) 
f(v)(1 + j32)' r~O 

x r(v + m - n + 2r(N + 1) j3m-n+2dN+1) 

rem - n + 2r(N + 1) + 1) 
00 

+ L F(v, v + 2r(N + 1) - m + n, 2r(N + 1) - m + n + 1; 62
) 

r=l 

x r(v - m + n + 2r(N + 1» j3-m+n+2r(N+1) 

r(n - m + 2r(N + 1) + 1) 
00 

L F(v, 1'+ m + n + 2r(N + 1), m + n + 2r(N + 1) + 1; j32) 
1'=0 

x r(v + m + n + 2r(N + 1» j3m+n+2r(N+l) 

rem + n + 2r(N + 1) + 1) 
00 

L F(v, v + 2r(N + 1) - m - n, 2r(N + 1) - m - n + 1; j32) 
r=l 

x r(v + 2r(N + 1) - m - n) j32dN+1)-m-n}. 

r(2r(N + 1) - m - n + 1) 
(30) 

3. Calculation of exp (t.:i.) 

The Fourier coefficients are 

8 0 = a, (34) 

For the definition of the generalized continuant of 
order r we define a function 8 k where k is an r­

(31) dimensional vector with integer components: 1 12

'-An = - exp ([a + 2b cos O]t) cos nO dO 
7r 0 

so that 

Ao = 2e"'[1 + Io( -2bt)] 

An = 2( -lrea'In( -2bt) 

k = (kl' k2' "', kr ), k; = 0, 1, 2, "', N. (35) 

We will assume that 8k differs from zero only when 
(32) k; = 0 or 1 for j = 1,2, ... r. Now define an integer 

vector 

where In(x) is the Bessel function of imaginary I = (ii, i
2

, ••• ir) (36) 
argument of the first kind and the B's can be 
calculated from Eq. (22). where i; = 1,2, ... N. Then we define the general­

ized continuant matrix with elements .:i.(I, J) by 

III. FUNCTIONS OF GENERALIZED 
CONTINUANT MATRICES 

.:i.(I, J) = 8 11- J1 (37) 

where the vector II - JI is defined to have com­
In reference 1 we extended the definition of 

ponents 
circulant matrices to a more general class, in order 
to handle physical problems which arise in two and 
three dimensions. We will now do the same for 
the case of continuant matrices, and show how to 
calculate analytic functions of generalized con­
tinuant matrices. We shall restrict ourselves to the 
generalization of symmetric continuant matrices. 

The first-order continuant matrix is defined by 
its elements 

tl;; = 8 Ii - il , 

=0 

Ii - jl = 0,1 

Ii - il > 1 

(33) 

(38) 

In analogy to the one-dimensional case, we make 
the rule that there are no components of A which 
have indices greater than N. An rth order contin­
uant matrix is formed by replacing each scalar 
element in an (r - l)th order continuant, by a 
continuant matrix. 

As an example of the application of this defini­
tion, the equations for the steady-state amplitudes 
of the displacements in an r-dimensional simple­
cubic lattice with nearest-neighbor interactions only 

where, for the particular case in Eq. (8), we have are: 
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(39) 

where 

m = (ml' m2, "', m,), 

and where, for example 

(40) 

If the edges of the lattice are fixed, then u = 0 
if anyone of the indices is equal to 0 or N + 1 
(where we have assumed that the crystal has n 
atoms on an edge). The solution to Eq. (39) is 
equivalent to finding the eigenvectors and eigen­
values of a generalized circulant matrix ~ 

8(0.0 •••• 0) = -2('h + 'Y2 + ... + 'Y,) 

8 0 .0 •0 •••• 0 ) = 'YI 

8(0.0 ..... 1) = 'Y,. 

In two dimensions the matrix ~ can be written as 

ABO 0 0 

~= 
B ABO o 

(42) 
o B ABO 

where 

'YI 0, 

- 2('YI + 'Y2) 'YI 

r:, 
'Y2 0 

B= 0 'Y2 

~ . 

(43) 

It is a simple matter to find the eigenvalues and 
eigenvectors of the generalized continuant ~(I, J). 
Let us write the eigenvalue equations as 

~(I, J)U = AU, (44) 

where U is a vector with components u(nl' n2, ... n,) 
where n l , n 2, ... n, = 1, 2, ... , N. Assuming a 
solution of the form 

. 
u(nl' n2, ... n,) = A II sin nifJ, (45) 

i=1 

we fit the boundary condition that u be equal to 
zero if any index is equal to N + 1 by setting 

fJ = 7r(N + 1)-1 (46) 

and A will be chosen so that the vector U is nor­
malized; 

The eigenvalues of ~ are readily found to be 

'-(k) = '"' 2"+''+'''+''8 1\ L..i (El,f2,···t=r) 
(,I 

(47) 

7rkl ~I 7rk2~2 7rk,~, () 
X cos N + 1 cos N + 1 .. , cos N + l' 48 

The matrix which diagonalizes ~(I, J) has the 
explicit representation 

. 7rn2m2 . 7rn, m, () 
X sm N + 1 .. , sm N + l' 49 

Finally, we find as a representation for F(~) 

[F(~)Jmn = (N ! J' f;: ... t: F[A(k)] 

. 7rrl]k] . 7m2k2 . 7rn,k, () 
X SIll N + 1 sm N + 1 .,. sm N + 1 . 50 

where A(k) is the diagonal matrix of eigenvalues. 
The following analysis is exactly analogous to 

the one dimensional case. We define the function 
ofa continuous vector of variables 0 = (fJ l , fJ2 , ••• fJ,): 

;\.(0) = 

x cos 7r~lfJl cos 7r~2fJ2 ... cos 7r~,fJ, (51) 

and assume that F{;\'(O) I has a Fourier expansion 

F{A(O) I = L: ~pn cos nlfJl cos n 2 fJ2 ••• cosn,fJ" 
n 

n l , n2 , .,. n, = 0, 1,2, "', (52) 

where p is the number of n's that are equal to zero 
in the particular term and 

A = ~ 12

". 12

,,-n , .,. 0 F{A(O) I cos nlfJl 7r 0 

X cosn2fJ2 ... cosn,fJ, d'O. (53) 

The value of F {;\'(k) I required for the general 
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formula of Eq. (52) is 
N N 

F {>'(k)} = L'" L B~ 
nl=l nr=I 

(54) 

The B*'s are found from 

~= 

AB 

B 

o 

o 

B 

BA 

(58) 

B* = L ... L An+! (N + 1) 
n Il IT 2P 

, 

where A and B may be generalized matrices them­
(55) selves of the m'th order, then the diagonalizing 

orthogonal matrix U has the matrix elements: 
where the vector 1 = (11, [2, ... , l,) has positive 
integer components which go from zero to infinity. 
When Eq. (55) is inserted into Eq. (52) we see that 
the sum over the k's is separable and can be carried 
out using the quantities 

~ 7rmj 
V", = f;:t cos N + 1 = N Qm.=2,(1V+l) 

+ U(_1)N - 1][1 - Qm.±2,(N+1l] Dm ,±(2s+1)(N+1l 

- (1 - Dm ,±2,(N+1l - Dm ,±(2,+I)(N+l)) Dm ,±2', (56) 

where s = 0, 1, 2, .... The final formula for the 
r-dimensional circulant matrix is 

, 
[F(~)]m ,n = i L B~ II [V m.-n.+p. 

p 8=1 

+ V m.-n.-p, - V m.+n.+p• - V m.+n.-p.]. (57) 

It does not seem possible to find a result analogous 
to Eq. (9) without additional assumptions being 
made on the commutativity of the submatrices 
which appear in the definition of the generalized 
continuant matrix. 

It may be remarked at this stage that if one 
defines a lexicographical order for the vectors I, 
as was done in I, it is possible to write down ex­
plicitly the orthogonal matrix which brings the 
generalized continuant matrix to the form of a 
generalized diagonal matrix, regardless of dimen­
sionality. 

For instance if ~ is the matrix 

( 
2 )1/2 . 7rkj (m) 

Uk,] = Tn + 1 sm Tn + 1:1 ; 

k, j = 1, "', Tn, (59) 

where :1 (m) is the unit matrix of mth order, the 
vectors K, J are n-dimensional vectors whose com­
ponents are taken from a set of T numbers (not 
necessarily integers) and k, j are the positions of 
K and J, respectively, in the lexicographical order 
employed. 

The generalized eigenvalues are 

l; = A + 2B cos Tn 7- 1; j = 1, 
n 

••• , T • (60) 

Therefore, instead of having to diagonalize a matrix 
of order m X Tn we have to diagonalize one of order 
m only. Equation (60) is valid regardless of the 
commutability of A and B. If A and B are simple 
continuant (therefore commuting) we recover the 
formulas (48), the simple eigenvalues of ~ being 
given by: 

A;k = Ak(A) 

k = 1, "', m (61) 
j = 1, .. " Tn 

In general if A and B commute and their eigen­
vectors and eigenvalues satisfy the periodicity re­
quirements stated above, one can calculate analytic 
functions of ~ using a single Fourier expansion. 
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Symmetry Restrictions on Field Dependent Tensors 
with Application to Galvanomagnetic Effects 
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The usual formalism for determining symmetry relations, due to macroscopic space symmetry 
among the components of constant tensors, is shown to apply equally well to tensors that are afuncti~~ 
of the applied fiel~s: It d~ffers only in two .respects from the special case of constant tensors: (a) Only a 
subgro.up, co~tammg, m general,. drastically. fewer members than the entire group of symmetry 
operatIOns, YIClds symmetry relatIOns. (b) This subgroup contains elements other than the identity 
only for dir~ctions of the appli~d fields that are left invariant by the elements of macroscopic symmetry 
of the medIUm. Examples usmg first- and second-order tensors arising in electrical conductivity 
with and without a magnetic field, are given and the even and odd parts of the tensor are separated: 

I. INTRODUCTION 

SYMMETRY relations in tensors are due to 
intrinsic symmetry, such as the Onsager rela­

tions,1 for example, and macroscopic space sym­
metry. The latter is geometrical in nature whereas 
the former is derived from physical arguments inde­
pendent of macroscopic space symmetry. We shall 
be concerned with the effects of macroscopic space 
symmetry and suppose the intrinsic symmetry 
given. 

If a tensor is a function of the applied fields, it is 
the practice to expand it in a power series with 
respect to these fields. Symmetry considerations are 
then applied to the constant coefficients of the power 
series that define new tensors. The study of sym­
metry restrictions in constant tensors in material 
media with space symmetry has recently been 
formulated with great elegance. 2

-
lo The practical 

occasion for the study of higher rank constant 
tensors is the occurrence of interesting nonlinear 
phenomena, which one desires to describe approxi­
mately by a finite number of terms in a power series 
expansion. The number of independent tensor com­
ponents appearing in the tensor coefficients of such 
a finite expansion is reduced by symmetry restric­
tions. Applications of this procedure to magneto­
conductivity are given in various referencesll -

16. 

t Present address: National Bureau of Standards, Wash-
ington, D.C. 
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A power series expansion is practical only to the 
first few terms and for some applications this 
may restrict its usefulness to a limited range of 
applied fields. We therefore divide the applied 
fields into" weak" and" strong" fields. Weak fields, 
by definition, are those with respect to which the 
effect is well described by an expansion of only a 
few terms; strong fields those for which this is 
not the case. If we expand the effect in terms of 
the weak fields only, the coefficients of the power 
series are tensors which are a function of the strong 
fields and one is led to inquire what restrictions 
space symmetry imposes on such "field dependent 
tensors." We find that the symmetry restrictions 
upon field dependent tensors is determined by the 
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the medium imposes the symmetry restrictions on 
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equivalent coordinate systems. Thus, the method 
and point of view of this analysis are inherently 
identical with that used for constant tensors and 
the formalism established there can be carried over 
entirely to the present problem once it is recognized 
that only the elements common to the symmetry 
group of the medium and the symmetry group 
which leave the "strong" fields invariant are effec­
tive in producing symmetry restrictions on a field 
dependent tensor. 

Our procedure will be to develop in Sec. II the 
mathematical formalism corresponding to these 
remarks and to give examples taken from electrical 
conductivity in Secs. III and IV. 

II. CONVARIANCE APPLIED TO 
FIELD DEPENDENT TENSORS 

In an orthogonal reference frame (k) consider 
the coupling relation between an effect E and n 
applied fields F O

) ••• F(n) through a tensor E i ••• j 

which is a function of F O ) ••• F(n) .17 

E
i 

••• 
j 

= E
i 
••• j(F(ll ... F(m); F(m+l) ... F(n». (1) 

The fields F may be tensors of arbitrary rank. The 
superscripts identify the field. The symbol F stands 
for the ordered set of all components of F, thus if 
F is a vector, F = (Fl' F2, F3). Now, if for the 
particular application in mind, the fields F(l) ... F(m) 
are "strong," whereas F(m+l) ... F(n) are "weak," 
we expand (1) in terms of the "weak" fields. Thus, 
E i .•• ; will be a sum of expressions of the form: 

X F~,:,.~I) ... F~::l' (2) 

where CPi ... j;k ••• Z is a derivative of E i .•. j with respect 
to the weak fields. 

Examples of (1) and (2) are electrical conduction 
in a magnetic field: E; = E;(H, I) in which E, H, 
and 1 are the electric field, magnetic field, and 
current density. Expanding E;(H, I) with respect 
to H or 1 depending on which of these fields is 
"weak," we get: 

respect to geometrically equivalent frames; i.e., if 
another frame (k') is related to (k) by a symmetry 
operation of the medium, then in (k') the phe­
nomenon is represented by 

E: ... ; = CPi ... ;;k ••• z(F'O), F,(2), ... 

... F,(m»F~~,:,.+l) ... F~~::, (5) 

where cP is the same function as in (2). 
The simultaneous validity of Eqs. (2) and (5), 

together with the transformation rules for tensors, 
allows us to deduce the general nonintrinsic sym­
metry conditions on the functions CPi ... Z. 

In the interest of clarity of notation we shall 
show these for a tensor of arbitrary rank which is a 
function of a single applied field, an axial vector. 
This particular case shows all the essentials and the 
generalization to a tensor which is a function of any 
number of applied fields of arbitrary rank will be 
obvious. Given two Cartesian frames (k) and (k') 
and the orthogonal transformation connecting them 
x: = Si;Xj, the components of cP in the primed 
system are determined by the usual laws of tensor 
transformation: 

CP:.··z(F~, FL FD = Sip··· sz,cpp ... ,(Fl, F2 , F3). (6) 

Equation (6) allows us to determine cP' as a function 
of F' merely by expressing (Fl' F2 , F3 ) in terms of 
(F~, F~, FD : Fn = IsisanF~·lsl is the determinant of 
the coordinate transformation and must be included 
since F is assumed to be an axial vector. 

However, if S is a symmetry operation of the 
medium without applied fields, the function 
cP' (Fi, F~, FD is known from the principle of co­
variance to be the original function cP, so that when 
either set of field components F is expressed in 
terms of the other, Eq. (6) becomes a set of 
functional relationships constituting the symmetry 
conditions on cP imposed by s: 

cp(lsl SlaFa, isl S2aF a, lsi S3aFa) 

= siw .. sz,cpp ... ,(F1, F2, F'a). (7) 

The obvious generalization of (7) is: 

Ei = F,(I) + R./I)H; + .. . (3) CPi ... I(F'O), F,(2), ... F,(m» 

Ei = fi(H) + Pij(H)I; + .. . (4) = Sip ... SI,CPp ... ,(F(l) , F(2), ... F(rn» , (8) 

where Ru(l) = aE,jaH;, Pij(H) = aE,jal j • 

The connection between the geometrical proper­
ties of the medium and the laws of physics is pro­
vided by the principle of covariance according to 
which the laws of physics are form invariant with 

17 The notation of tensor analysis is used throughout. 
Summation over repeated indices is understood. 

where the F's are tensors of arbitrary rank and in 
which the applied fields on the left-hand side of (8) 
are to be expressed in terms of those on the right­
hand side as is done in the example (7), and where 
the polarity (axial or polar) of the various fields must 
be taken into account as in (7). Equation (8) is 
identical with Eq. (3.8) of reference 9. 
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Equation (7) or the more general Eq. (8) is the 
point of departure for all discussions of symmetry 
restrictions. The complete set of spatial symmetry 
conditions is obtained by letting 8 run over all 
point group operations of the space group. That is, if 

x: = 8i;Xj + Vi, 

where Vi may be a whole or fractional lattice trans­
lation, is a symmetry operation of the lattice then 
. ' smce translations do not affect our (constant) fields 

the coordinate transformation ' 

is acceptable to us. 
The experimental content of Eq. (8) is given by 

a reinterpretation of the transformed field com­
ponents in the left member as the components of 
differently oriented fields in the 8ame coordinate 
~ystem. Weare searching for symmetry re8triction8; 
l.e., for numerical relationships among the tensor 
components in a given coordinate system for a 
given orientation of the" strong" fields. Clearly such 
exist whenever the "strong" fields are oriented 
such that 

F(h) = F,(h), 1 ~ h ~ m; 

i.e., such that the transformation 8 leaves the field 
components invariant. 

It should be noted that in the special case of 
constant tensors every symmetry operation of the 
medium yields, in general, a symmetry restriction. 
However, for field dependent tensors only those 
symmetry operations of the medium yield symmetry 
restrictions which leave the applied fields invariant; 
i.e., the intersection of the symmetry group of the 
medium with the symmetry group which leave the 
applied fields invariant. Thus, the general case of 
field dependent tensors differs in two respects from 
the special one of constant tensors: (a) Only a 
subgroup, containing in general drastically fewer 
members than the entire group of symmetry opera­
tions yields symmetry restrictions. (b) This subgroup 
contains elements other than the identity only for 
special directions of the" strong" fields. 

III. APPLICATIONS 

Intrinsic symmetry relations (On sager relations, 
for example) usually state restrictions on a tensor 
under sign reversal of the strong fields. When only 
one strong field is involved, which is the case in our 
applications, the effect of intrinsic symmetry is 
more conveniently incorporated in the results by 
working with the "even" and "odd" tensors if> and 

4J where rf> = if> + 4J and 

2if>i"'k(F) == rf>i'''k(F) + rf>i"'k( -F) 

24J, .. 'k(F) == rf>i' "k(F) - rf>i" 'k( - F) . 

The tensors if> and 4J are obtained experimentally 
by reversing the direction of F. Equation (8) clearly 
applies to if> and 4J. Furthermore, these tensors possess 
the properties if>(F) = if> ( - F), 4J(F) = -4J( - F) 
which allows us to extend the domain of allowable 
symmetry operations to those that reverse the large 
fields. In our applications we first apply this en­
larged domain of spatial symmetry operations to the 
even and odd tensors. Further restrictions due to 
intrinsic symmetries are then easily applied to 
if> and 4J. 

We shall be concerned with the terms of the 
"partial" expansions (3) and (4). In (3), FJI) de­
scribes nonlinear conduction, Ri;(I) nonohmic con­
duction in a weak magnetic field. In (4), Pi;(H) is 
the resistivity tensor in the approximation of Ohm's 
law, f,(H) vanishes because of time inversion 
symmetry.18.19 

As the 'independent symmetry elements of the 
point group symmetries of crystals we choose the 
proper rotatio~ ~ =:.. ~ 2, 3, 4, 6, and the improper 
rotations ii = 1, 2, 4. 1 is an inversion, 2' a reflection 
with respect to a plane. With our choice of inde­
pendent symmetry elements 3 and 6 are not inde­
Eendent. 3 is generated from 3 and I, 6 from 3 and 
2. Once a tensor is reduced for the independent sym­
metry elements, its form for dependent symmetry 
elements is easily obtained by virtue of the fact 
that if the symmetry operations 81 and 82 exist 
independently, a tensor satisfies 83 = 8182 if it 
satisfies 81 and 82' With respect to the details of 
obtaining the symmetry relations, the easily applied 
"direct inspection method,,2.3 can be used to ad­
vantage. Many examples using this method are 
given by Nye.20 We shall make frequent use of a 
theorem due to Hermann21 according to which a 
tensor of rank r < n cannot distinguish an n-fold 
proper rotational symmetry axis from one for which 
n = co; i.e., cylindrical symmetry, In the following 
we use an orthogonal reference frame in which x 
• 3 

IS parallel to the axis of rotation, Xl and X 2 are 
arbitrary. 

18 H. Zocher and C. Torok, Anais acad brncil cI'enc 20 
143 (1948). . ~. ., 

19 H. Zocher and C. Torok, Proc. Nat! Acad Sci U S 
39,681 (1953). . .... 

~o J .. F. Nye, Physical Properties of Crystals (Oxford 
UniversIty Press, New York 1957). 

21 C H ' . ermann, Z. Krist. 89, 32 (1934); see also reference 
7, page 53. 
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A. Nonlinear Electrical Conduction: Ei = Fi(/) 

Fi(l) is a polar vector. Equation (8) for this case is: 

F.(Sl.I., s2.1., S3.J.) = SiiFi(ll' 12, 13) (9) 

Applying (9) to FiCI) and FiCI) we find symmetry 
restrictions on FiCI) only for the following directions 
ofl: 
1. n = 1, 2, 3, 4, 6 

I parallel to an n axis or perpendicular to a 2n fold 
axis. In the latter case a twofold rotation is used 
to reverse the current. According to Hermann's 
theorem we need not distinguish axes with n > 1. 

2. fi = 1,2,4 
A center of inversion destroys Fi : 

rp1l 
Fi(l) = l~:J (12) 

Thus, if an intrinsic symmetry relation exists in the 
form: FJ -I) = ±F;(I) , it must be odd to agree 
with the possibility of a center of inversion. For 
'2 and 4 we find: ' 

(14) 

(15) 

Fi(1 ..L 4) is covered by (11) since the group 4 
contains the element n = 2. Fi(1 II 3) or Fi(1 II 6) 
is obtained by compounding (10) and (12), and (10) 
and (13), respectively. 

For example, 

.';(1 II 6) ~ l:J 
The cases FiCI 1\3), FiCI 114) and Fi(1 116) are found 
to give the same result. 

B. Nonohmic Conduction in a Weak Magnetic 
Field: Ei = R;;(/)H; 

We treat this case in the approximation to which 
the first power of the magnetic field is adequate. 
Since E is a polar vector, H an axial vector, Ri;{l) 
must be an axial tensor, and Eq. (8) for this case is: 

= lsi sims;nRmnCf1 , f2' f3). (16) 

Applying (16) to Rij(l) and R;;(I) we find symmetry 
restrictions only for the following directions of I: 
1. n = 1,2,3,4,6 

According to Hermann's theorem we need not 
distinguish axes with n > 2. 

Rii(1 1\ 2) 

~ l ~:: ~:: U + l ::: ::: ~J 
Ri;(1 II n > 2) 

l RlJ Rl2 0 j l R11 R12 0 J 
= -H12 R11 ~ + -iL Rl1 ~ 

o 0 R33 0 0 R33 

Rii(1 ..L 2n) 

l Rl1 R12 0 j l 0 0 R13j 
= fl2l H22 R~33 + 0 0 RO~'23 

o 0 R3l R32 

2. n = 1,2,4 
A center of inversion destroys Ri i (I): 

For 2" and 4 we find: 

o 
o 

o 

(17) 

(18) 

( 19) 

(20) 

(21) 
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l
o 

= 0 

R31 

o 
o 

o 

o 
o 

~13j 
R23 

o 
(22) 

(23) 

Ri;(I ..L 4), R;;(I " 3), and R;;(I " 6) are treated in 
the same way as_the analogous cases for F;(I) in 
Sec. A. Ri;(I ..L 4) gives, of course, the result (19) 
and RiiCI " 3) and Rii(I II 6) are found to give the 
same result: 

r 
!lll !l12 0 J 

RiJI II "3 or 6) = -!lI2 !lll ~ 

o 0 Raa 
C. Ohmic Conduction in a Strong Magnetic Field: 

Ei = (Jii(H) I; 

This case is important in practice. PiiCH) IS a 
polar tensor. Equation (8) for this case is 

PiI(lsl slqH., lsi s2.H., lsi sa.H.) 

= sims;nPmn(H1, H2 , Ha). (24) 

Since H is an axial vector, a center of inversion 
leaves (24) invariant and therefore may be added 
to the existing space symmetry as far as this phe­
nomenon is concerned. Thus ohmic conduction in a 
magnetic field is unable to distinguish proper and 
improper symmetry operations.22 

As an intrinsic symmetry relation we have the 
Onsager relation(1): PiiCH) = p;.( -H) and as a 

22 D. Schoenberg, Proc. Cambridge Phil. Soc. 31, 265, 
271 (1935). 

result Pi;(H) is symmetric in the indices and Pi, (H) 
antisymmetric in the indices. 

It is necessary merely to apply these intrinsic 
conditions to the results listed in Eqs. (17) to (19), 
which apply now equally well to the corresponding 
improper rotations: 

Pi;(H /I 2 or 2) 

~ r~:: ~:: 
Pi;(H 1/ n > 2 or ii > 2) 

lPll 0 

o PIl 

o 0 

Pij(H ..L 2n or 2ii) 

~ r~:: ::: :.} u" 
o 
o 

-P23 

~IaJ 
Pn 

o 
IV. APPLICATIONS TO PARTICULAR MEDIA 

(25) 

(26) 

(27) 

In many cases there will exist more than one 
symmetry operation which leaves the "strong" 
fields invariant when they possess a particular di­
rection. In such cases, just as with constant tensors 

. ' the tensor IS to be reduced as far as possible by the 
simultaneous application of the different sets of 
symmetry operation. A complete characterization of 
the symmetry restrictions upon a field dependent 
tensor is obtained by listing the reduced tensors 
together with the field directions which occasion 
the reduction. 
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Simple normal forms are given for symmetric, skew symmetric, and general complex matrices. 
These three cases can be combined into a single one, if one considers matrices with elements in a 
suitable ground field. 

1. INTRODUCTION 

I N this paper we state and prove several theorems 
on square complex matrices which do not seem 

to be described in the mathematical literature. Use 
of these theorems leads to simplifications in the 
treatment of some problems in quantum field theory 
and in the theory of superconductivity. The 
theorems also occur in the study of quantum 
mechanical time inversion. The physical applica­
tions, however, will be published separately. 

Some of the results given in this paper have 
already been used by other authors. For instance, 
Lemma I is implicit in Wigner's work on time 
inversion. 1 Theorem I is suggested by some work 
of Valatin in the theory of superconductivity.2 It 
was actually proven by Yang who used it in his 
discussion of long range order in Fermi systems.3 

The three theorems given below as Theorems I, 
II, and III can be combined into one single very 
elegant theorem, stated below as Theorem IV. This 
fact was pointed out by F. J. Dyson in a letter to 
the author. Dyson's argument is reproduced in the 
Appendix. It is not difficult to give a direct proof 
of Theorem IV, but this shall not be done here. 

2. NORMAL FORMS 

We first prove two lemmas. 
Lemma I. If S is unitary and skew symmetric, 

then' 

8 = UFO 

where U is unitary and 

* This work was supported in part by the Office of Naval 
Research under Contract No. Nonr 285-40, and in part by 
the Army Research Office (Durham) under Contract No. 
DA-ARO-(D)-31-124-G133. 

1 E. P. Wignel', Group Theory and its Application (Academic 
Press Inc., New York, 1959). 

2 J. G. Valatin, Phys. Rev. 122, 1012 (1961). 
8 C. N. Yang, Revs. Modern Phys. (to be published). 
4 The transposed of a complex matrix M is denoted by lCf, 

the com'plex conjugate by M*, the Hermitian adjoint by 
Mt = M*. 

F = 0 -1 

1 0 

o 

o -1 

1 0 

o 

Proof. Since 8t = 8- 1 and S = -8,8* = _8-1
• 

Therefore 8 and 8* commute. The matrices Al = 
8 + S* and A2 = i(S - S*) are real, skew sym­
metric, and commute with each other. By a known 
theorem,6 they can be transformed simultaneously 
by means of a real orthogonal transformation 0 into 
the normal form 

o -/J 

/J 0 

o 

o -p 

p 0 

o 

(1) 

where /J, v, ... are real numbers. The same is then 
true of S, however with /J, v, ... now complex. 
Since 8 is unitary, we have 

S' = 0-IS0 = 0 _e ia 

o 
e'<y' 0 

o 

o 

Finally, with the unitary matrix 

6 See, e.g., F. R. Gantmacher, The Theory of Matrice8 
(Chelsea Publishing Company, New York), Vol. I, p. 293. 
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v =11 = e -i al2 

o 

o 

we have 

VS'V = P. 

This proves the lemma. 
An analogous lemma is valid for symmetric 

matrices. 
Lemma II. If S is unitary and symmetric, then 

S = lIED = uD, 

where U is unitary and E is the unit matrix. 
Proof. One can always write S = exp iT} where T} 

is symmetric (and real).6 Then, with U = U = 
exp iT}/2, the proof of the lemma is completed. 

We now proceed to prove the following two 
theorems. 

Theorem I. If M is a complex skew symmetric 
matrix, then 

M = UXU, (2) 

where U is unitary and X has the normal form (1) 
with fl., p, •• , non-negative real numbers. 

Theorem II. If M is a complex symmetric matrix, 
then (2) applies, but X is now diagonal, real, and 
non-negative. 

Proof. (upper signs refer to Theorem I, lower 
signs to Theorem II). Consider the Hermitian 
matrix H = MtM = TM*M. Introduce MI 
through M = VM 1 V with V unitary. Then 

H = v*MivtVMI V = V*HI V, 
with 

HI = MiMI 

Furthermore, 

MH - H*M = MIHl - H~Ml = O. (3) 

Now V* is also unitary, and it can be chosen so 
that HI is diagonal, since H is Hermitian. Let h. be 
the eigenvalues of H (and HI)' Clearly h. 2: o. 
Equation (3) becomes, for the matrix elements 
m.u of M I , 

(hd - hK)m KU = o. 
This shows that m.a = 0 unless hK = hu. The matrix 

6 See, e.g., reference 5, Vol. II, p. 4. 

M 1 breaks up into submatrices corresponding to 
groups of h:s which are equal. 

Consider one such submatrix W. Dropping the 
index K, we can write 

W tw = hi h 2: 0, 

where I is the corresponding subunit matrix. Clearly 

~ = TW. 

Now, if h = 0, then w = O. If h ~ 0, then (l/hl/2)W 
is unitary. From Lemmas I and II, one can perform 
a further transformation of the type (2) and arrive 
at the normal form F or E. This transforms w into 
(h)1/2p or (h)1/2E, respectively, and completes the 
proof of the theorems. 

Finally, we prove the following theorem. 
Theorem III. If M is any complex matrix, then 

M = UXV (4) 

where U and V are unitary and X is diagonal, real, 
non-negative. 

Proof. First assume that M has an inverse. Then 
MtM is Hermitian and positive, and (MtM)-l/2Mt 
is unitary. The matrix M(MtM)-1/2Mt is Hermitian 
and positive, and one can choose U unitary such 
that UtM(MtM)-1/2MtU is diagonal, real, and 
positive. If we identify 

V t = (M tM)-l/2M t U, 

this proves our theorem. 
If M is singular, one must perturb it infinitesimally 

so that the perturbed M has an inverse. One can 
then go through the proof just given. When the 
perturbation goes to zero, (4) is still valid. However, 
some of the elements of the real diagonal positive 
matrix X can tend to zero with the perturbation. 

As explained in the introduction, Dyson has 
pointed out that Theorems I, II, and III are different 
aspects of a single more general theorem, Theorem 
IV below. Let cp be a ground field which can be real, 
complex, or quaternion. In all three cases, the 
coefficients are assumed to be complex numbers. 
Therefore cp real means that the numbers in cp are 
ordinary complex numbers, cp complex that they 
are complex numbers with complex coefficients, 
cp quaternion that they are quaternions with com­
plex coefficients. Consider matrices Q which have 
elements in cp. Define the adjoint QD to be Q trans­
posed with each element cp conjugated, but not 
coefficient conjugated. Define the Hermitian adjoint 
Qt to be Q transposed, with the elements cp con­
jugated and coefficient conjugated. One has the 
following theorem. 
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Theorem IV. If Q = QD is self-adjoint, then 

Q = RXRD 

where R is unitary and X is diagonal, real, scalar 
and non-negative. 

As we show in the Appendix, this Theorem IV is 
equivalent to Theorems I-III proven above. 

3. APPENDIX 

We consider separately the three cases. 

Case 1 : <I> Real. 

In this case cf> consists of ordinary complex 
numbers and QD == Q. Theorem IV becomes identical 
with Theorem II. 

Case 2: <I> Complex. 

In this case the numbers in cf> are of the form 
a + jb with a and b complex numbers and l = -1. 
We have, for any matrix Q with coefficients in cf>, 

Q = M 1 + jiV! 2 where M 1 and M 2 are ordinary 
complex matrices. Similarly, R = VI + jV2. 
Furthermore, 

QD = M 1 - jM z, R t = U; - jV;. 

Theorem IV states that, if Q = QD, then 

M1 + jM2 = (V] + jVz)X(V; - jV:), 

where 

(VI + jV2)(V; - jU:) 

= (V; - jV;)(U l + jV2 ) = 1, 

and X is diagonal, real, and non-negative. This is 
easily seen to be equivalent to Theorem III, either 
directly or making use of the representation 

a + jb = la +0 ib 0 [ 
a - ib ' 

where i is the ordinary imaginary unit. The corre­
spondence with the quantities occurring in the 
statement of Theorem III is as follows: 

{
M = MI + iM2 

if = M1 - iM2 

V = VI + iU2 

V = VI - iU2 • 

Case 3: <I> Quaternion. 

In this case the numbers in cf> are of the form 
a + alTI + a2T2 + a3T3 where a, ai, a2, a3 are ordinary 
complex numbers and the quaternion units can be 
represented as 

1

0 i[ 
T] = i 0' T3 = Ii ~[. 

o -t 

We observe that any 2n X 2n complex matrix M 
can be written as an n X n quaternion matrix Q. 
The transposed of M corresponds to the quaternion 
matrix -T2QDT2 and the Hermitian conjugate of M 
to the quaternion matrix (QD)*, where the * denotes 
ordinary coefficient conjugation. 

In quaternion notation, our Theorem I takes the 
following form: 

If Q = -T2QDT2, then 

Q = RX T2( - T2RD T2) 

where X is diagonal, real, scalar, non-negative, and 
R is the unitary quaternion matrix corresponding 
to the unitary complex matrix V. Introducing 
Q' = -QT2, we see that 

(Q,)D = Q' and Q' = RXRD. 

This shows that case 3 is equivalent to Theorem I. 
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Erratum: Variational Method for the Quantum Statistics 
of Interacting Particles. 

[J. Math. Phys. 3, 131 (1962)] 
M. GIRARDEAU 

Enrico Fermi Institute for Nuclear Studies, The University of Chicago, Chicago, Illinois 

EQUATION (54) contains a misprint. The minus bracket in the first line of Eq. (54) should be identi­
sign in front of the k' summation in the first cal with that in the first line of Eq. (52). 

line should be changed to a plus sign; the curly 

1058 
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