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The observation by Klauder that in the space of the a = (1/+4/2) (p + ig) variables, the Feynman
integral can be defined in terms of a Gaussian measure, forms the basis of a presentation of the
Feynman formulation of nonrelativistic quantum mechanics. The extension of this formulation

to the case of a Bose field is sketched.

INTRODUCTION

HE alternate approach to quantum mechanics

given by Feynman''® has a great deal of
intuitive appeal as it makes clear, ab initio, the
logical structure of quantum mechanies.® It also
makes clearer the nature of the limiting situation
encompassed by classical mechanics.* Moreover, it
may be the case that this particular formulation is
somewhat more general than the ‘historical”’ one
based on the correspondence between observables
and linear self-adjoint operators and states to vectors
in Hilbert space.

* This work is supported in part through AEC Contract
AT(30-1)-2098, by funds provided by the U. S. Atomic
Energy Commission, the Office of Naval Research, and the
Air Force Office of Scientific Research.
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In Feynman's formulation of the quantum dy-
namics for a one-particle system, a prescription is
given for the calculation of the transformation
function {¢”’t"” | ¢'’) (the absolute value squared
of which gives the probability density for the
particle, whose dynamics is described by a Hamil-
tonian operator H, to be found at the position
g'’ at time ¢” if its initial position at time ¢’ was ¢”)
by assigning a complex probability amplitude to
each space-time path starting at ¢’ at ¢’ and ending
at ¢ at t’. To the space-time path ¢(t) {[with
g(t") = ¢ and ¢(t"") = ¢’] Feynman associates the
complex amplitude &

# pach 400) = e | £ [ L), a0y ], ()

where L(q(t), ¢(¢)) is the classical Lagrangian for
the particle. In the right-hand side of Eq. (la),
the action

T, ) = [ L, do) de - (b

is evaluated for the particular path ¢(f) under
consideration. The amplitude (g''t” | ¢'t') is then
obtained as the sum of the amplitudes ® over all
paths joining ¢t to ¢'’t"” and is usually written
in the form
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In order for Eq. (2) to provide a practical alter-
native formulation of quantum mechanics, it is
necessary to make more precise the concept of inte-
gration over paths involved therein. Thus Feynman®
interprets Eq. (2) as follows: Divide the time interval
¢’ — ' into N equal parts of duration e = (¢ — t')/N
and denote the successive times by t, = ¢, &, ---
ty = &', with ¢;,, — t; = e. A path ¢(!) is specified
by the sequence of points g, = ¢(t), -+ g =
q(t), -+ . In the limit as N — ®, ¢ > 0 but Ne =
¢’ — t/, this sequence is expected to approximate
the path ¢(¢). It is then assumed that the motion
in the time interval ¢, to #,,,; is described by the
classical path joining g, to g;,,. The action associated
with this segment is

S a) = [ a0, ay @ ®

Since in (3) the integration is carried out over the
classical path joining ¢, to gi.1, for e small enough
S will only depend on ¢,,, and ¢,. The amplitude
®lg(t)] associated with the path ¢(f) is then written
as ®(qo, - -+ qn) with

1 ’L N-1 thi1,Tk+1
®(go. -+ qw) = o exp [,—i;f Ldt]

tk,ak
N-1

— H exp [i/h-S(qx+1, ¢2)

k=0 k

@

&)

where 9 and A, are normalization factors. The 4,
are actually independent of the particular path
grx 0 ¢u., and depend only on the mass of the
particle and the time inteval. The Feynman principle
{Eq. (2)] is then interpreted as stating that

<q"t” , gltl>

= lim

e—0

Noo
Ne=t'’—t*

f f gexp [iS(qkmqk)]%q:- (5

Feynman® has shown that for any Lagrangian of
the form L = % m¢’ — V,(¢)¢ — V.(¢), the trans-
formation function defined by the right-hand side
of Eq. (5) satisfies for ¢ s ¢ the Schrédinger
equation

{th ot — H(q", —ih o’ Y{¢"'¢" | ¢'t') = 0  (6a)
H(q,p) = pi— L; p = oL/dq, (6b)

and the initial condition
dim (¢"" | ¢'V) = 8¢ — ¢) (6¢)
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as well as the composition law
<qfltll l qltl> — f<q’/tll I qllltlll>

X <ql//tlll | qltl> dqll!. (7)

These results are identical to those obtained by
computing

(g"t" | ¢'t') = (¢’ lexp [—(@/RHH" ~ 1)1 ¢"), (8)

where H is the Hamiltonian operator for the system.

If one does not wish to use this ‘“Riemann”
approach to the Feynman integral but instead tries
to adopt Eq. (2) as the defining equation for quantum
mechanics, one is then faced with two problems.
The first consists in giving a precise specification
of the class of paths over which to integrate. The
“gnsatz”’ of Feynman® essentially specifies this set
to be the class of all continuous functions con-
necting (¢’t) to (¢'’t"’). Although in the case of a
single particle this presecription is evidentally suf-
ficient, if one wishes to incorporate the Bose or
Fermi statistics within the TFeynman formalism
when describing a system of identical particles,
classes of ‘“‘unruly” histories must also be con-
sidered.® The second difficulty is connected with
the fact that in evaluating the right-hand side of
Eq. (5) one encounters nonconvergent integrals of
the form

f exp (ix") dx.

To give meaning to such integrals, Feynman gives
the mass m of the particle a small negative imaginary
part —ie. The rule is then that one is to pass to the
limit € — 0~ after all the integrations have been
carried out. More generally, one can try to replace
the factor ¢ in the exponent by a parameter A =
—e¢ 4+ 7 and take the limit ¢ — 0+ after the com-
putations or, better still, note the analyticity
properties of the Feynman integral as a function
of X and attempt an analytic continuation to A = <.
It is, however, not clear whether either of these
procedures works in general.” This lack of absolute
convergence also implies that mathematical dif-
ficulties are encountered in trying to give a rigorous
meaning to the Feynman integral in terms of a
measure over a suitably defined function space (i.e.,
in the space of paths).

® See in this connection K. O. Friedrichs, Integration of
Functionals (New York University Institute of Mathematical
Sciences, New York, 1957).

¢ J. R. Klauder, Ann. Phys. (New York) 11, 123 (1960).

7 See in this connection the review article by I. M. Gel’fand
and A. M. Yaglom, J. Math. Phys. 1, 48 (1960).
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It has been noted by Klauder,® that this last
difficulty is not encountered if, instead of dealing
with the observable ¢ of the particle, one deals with
the non-Hermitian variables ¢ = (1/4/2)(g 4+ ip)
and a* = (1/4/2)(¢ — p). These variables define
a realization of Hilbert space in terms of entire
analytic functions. This has been investigated in
detail by Bargmann.® We shall, in the following
exposition, establish the Feynman formalism in
terms of the a variables, using the work of Bargmann
as a basis. Thus, in Sec. IT we review the necessary
mathematical background. In IIT we derive the
transformation function for the @ variables. In
IV we give a statement of the Feynman principle
in terms of these variables. The extension of this
method to the case of Bose fields is then established
in Sec. V. In Secs. I-IV we shall limit ourselves
to the case of a single nonrelativistic particle with
one degree of freedom. These results can be easily
generalized to the case of a finite number of degrees
of freedom and to any finite number of particles.

II. THE HILBERT SPACE OF ENTIRE FUNCTIONS

In the usual formulation of quantum mechanics
in the Heisenberg picture, a particle (with one
degree of freedom) is described by a time inde-
pendent state vector |¥) and by the Hermitian
operators ¢(t), p(t) corresponding to the position
and momentum observables. These operators obey
the commutation rules

la@®,p®) = ¢ (= 1), (92)
(e, ¢O] = [p(®), p()] = 0. (9b)

The dynamical behavior of the system is determined
by the equations of motion of these operators

v 3.q(1) = —[q(0), HI, (10a)
rap(t) = —I[p()), H], (11)

where H is the Hamiltonian operator. The Schro-
dinger wave function ¥(¢’, t) is given by the pro-

8 V. Bargmann, Commun, Pure and Appl. Math. 14, 187
(1961). Such Hilbert spaces of analytic functions have also
been considered by 1. E. Segal in his lectures at the University
of Colorado during the summer of 1960. J. Schwinger has made
extensive use of such non-Hermitian variables see, e.g.,
“Differential Equations of Quantum Field Theory”’ lectures
by J. Schwinger, given at Stanford during the summer of 1957.
(unpublished). The first use of such non-Hermitian variables
is due to V. A. Fock, Z. Physik. 49, 339 (1928) and Physik. Z.
Sowjetunion 6, 425 (1934). For the applications of related
methods to problems in functional integration in field theory
see also the review article by J. V. Novozilov and A, V. Tolub,
Fortschr. Physik 6, 50 (1958). See also J. Schwinger, Proc.
Natl. Acad. Sci. U. S. 46, 1401 (1960). I am indebted to
Professor Schwinger for a personal communication regarding
this work which contains material related to the present
investigation.

833

jection of |¥) on the eigenvectors |g’, ¢) of the
position operator ¢(t):

Yo', H = (¥, (122)

with
W ld,H=4q14¢,0, (12b)
f ', dg' (¢, 1] = 1. (12¢)

The vectors [¢"'t’) and |¢”t"") at times ¢’ and ¢ are
related by a unitary operator U(¢', t'")

<qll7 tll, — <qu, t/l U(L‘”, tl). (133)

For a conservative system, as the one under con-
sideration, H does not depend on the time ex-
plicitly and is, in fact, constant in time. In this
case, the time translation operator U is given by

U, ¢ = ¢ ¢, (13b)

We are interested in computing the transformation
function

<qlltll l q/tl> P <qll’ tll IU(t/I’ t’)| q’, tl>
={g” e ¢, (14)

which corresponds to the probability amplitude for
the system to undergo a transition from the initial
state |¢’) at time ¢ to the state |¢’') at time ¢,
The time evolution of the system arising from an
initial configuration y¥(q’, ) can then be calculated
as follows:

(q"l" l\I/> — ¢(q11’ t/l)

= f (v | ¢'t)dg’ ('t [ ®).  (15)

To indicate the correspondence of the usual
formulation of quantum mechaniecs with the Feyn-
man prescription for computing the propagator
{g"t" | ¢'t'), subdivide the time interval ¢’ — ¢’
into N + 1 equal time intervals of duration e and
repeatedly insert the completeness relation (12b)
to obtain

("t | g't) = f f dgy +-- dan (g’ le*"| qw)

(qn [3-”15[ gyv-1) - A [6_”16[ q). (16)

In the limit as N — o, it can be shown® that for
a suitable class of Hamiltonian Eq. (16) reduces to
Eq. (3), the Feynman definition of the transforma-
tion function. This approach, however, suffers from
the difficulties mentioned above, namely, that one en-

® See, for example, W. Tobocman, Nuovo cimento (10), 3,
1213 (1956).
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counters integrals of rapidly oscillating functions,
which in general will not be convergent, and it is
necessary to resort to certain devices such as con-
sidering the mass m of the particle to have an
imaginary part and to carry out the limiting pro-
cedure of allowing this imaginary part to go to
zero only after all the integrations have been
performed.

In the above, the resolution of the identity cor-
responding to the position operator has been made
use of and some of the convergence difficulties en-
countered with the Feynman integral can be traced
to this decomposition. It is, of course, true that it
is in terms of such a decomposition that the integral
over paths has its most intuitive meaning. It turns
out however that some of the convergence difficulties
are alleviated if instead of the complete set |¢/, t'),
one considers the set of eigenvectors |a’, ) corre-
sponding to the operator

alt) = 1/ V2 g + ip()}. (172)
The properties of this operator and of its adjoint
a*(t) = (1/V'2){q(t) — ip()) (17b)

which will be needed are the following: First that
a(t) is not a Hermitian operator; it is not even a
normal operator since from the commutation rules
(9) for p(¥) and ¢(f) we deduce that

[a(t), a*()] = 1, (18a)
[a(t), a()] = [a*(t), a*(®)] = 0. (18b)

From these commutation rules one verifies in a well-
known fashion that the positive semidefinite operator

N(@) = a*(Da(?) (19)
has as its eigenvalues the positive integers and zero:
N®In, ) =nln,t), n=0,1,2,---, (20a)
with

In, 1) = @)™ {a*®)}" | 0),

and where |0) is the ‘no-particle’” state charac-
terized by

(20b)

a(®) [0y = 0.

An explicit representation of the operators a(f) and
a*(t) is given by

a) [n, ) =" |n — 1, 1), (22a)
a*(W) In, =+ D" |n+1,8. (22b)

The eigenfunctions of the operator a(¢), la’, t), can
be expressed in terms of the basis vectors |n, f)
as follows:

(21)
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W, ) = 3 () a” [n, )
= @O o), (23)

In the right-hand side of Eq. (23) o' can take on
all complex values. One verifies, using Eq. (22a),
that the so-defined vector |a’, t) has the property that

a(t) |2, 8 =z |z, 8. (249)

In view of the fact that the eigenvalue z can take
on all complex values we must be careful in defining
the adjoint vector to |z). This question does not
arise in the case of eigenfunctions of Hermitian
operators since their eigenvalues are real. We define
the adjoint of the veetor |z) by using the defining
equation, Eq. (23), i.e., we define®

(12, D) = @)™ (n, 1] = (0] exp Fa)] 259)

=, t. (25b)

Note that we write (z/, #| even though it is z/ which
appears in the right-hand side of Eq. (25a).”° By
the vector (', {| we mean

@ = X @) . (26)

n=0
The vector {2, {| is a left eigenvector of the operator
a*(f) with eigenvalue 2. These vectors are not
normalized, nor are they orthogonal for different
values of 2’ and 2’ since

@ 12" = X @ m)%" " | m)
= X5 = e ), (272)
or alternatively
@ |2") = (0] exp [/a(®)] exp [¢"’a*(?)] [0)
= exp [¢'2”"] (0] exp [2"a*(1)] exp [¢'a(?)] |0)

(27b)

The specification of an arbitrary normalizable vector
|f) by its components along the “‘axes’ specified by
the vectors |z) is then given by the quantities

= exp [;'72”].

@ =GIn=Z @l @

The expansion (28) defines an analytic function of
the complex variable z. Since Eq. (28) is defined for
all values of the complex variable z, it in fact defines
an entire analytic function. The vector space {f(2)},

10 z denotes the complex conjugate of z, i.e., Z = 2 ~ iy,
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whose elements are entire analytic. functions, can
be made into a Hilbert space, 3z, by defining on
it the following Hermitian scalar product

Gl = [0 T@ o) = ¢, 9, (@9

where du(z) is the following real measure (z = © + 7y)
du(z) = (1/7) exp (—2z) dz dy. (30)

In (29) the integration is carried out over all values
of z and y; explicitly
1 —

Gl =[] drdyew-27@ 9. G
Bargmann® has made a detailed study of this
(separable) Hilbert space of entire functions, as
well as some of its applications to quantum me-
chanics and group theory. We here collect the
formulas that will be of relevance for our exposition.

If f(2) and g(z) are two entire functions with the
following power-series expansions

Z ( ‘)1/2 Z ) (323')
g(z) "5._; ( ‘)1/2 Z b (32b)

then
610 =1 [ dayerr £ B )

The integrations can be carried out by introducing
polar coordinates, z = |z] €%, Z = |z| ¢”**, in which

case
ff dxdy—>%fjd]z{2 fn do.

In (33), the angular integration vanishes unless
n = m, so that

o= [ il X2,

n=0

w©

= 2 &p.

n=0

(34)

The square of the norm of the vector |f) is thus
given by

— (1D = 3 laf

From the above, one readily deduces that 2™ (m
integer) is orthogonal to 2" (n, integer), and that the
vectors |m) with components (z | m)=wu,(2) =2"/m/!,

=0, 1, 2, --- form an orthonormal basis in 3C5.

lils < o, (35)
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Their completeness is verified by noting that if f(z)
is given by Eq. (32a) then

(m[f) = (n, f) = an, (36a)

8o that

N = (36b)

D Bty =
These facts are essentially a reflection of the com-
pleteness of the eigenfunctions of the number
operator g*q. Within JC; the operators ¢ and a*
have the following representation

T f, 02)tam, )-

(o)) = [ @@ T@ 20, (370

— dg(z
G = [ au) @D, @my
e., the operator a* corresponds to multiplication
by 2, and a to differentiation by d/dz. The latter
operation is of course well defined, since the ele-
ments of 3Cp are entire analytic functions.
The following useful bounds on |f(z)] can be obtained

by applying Cauchy’s inequality to the right-hand side
of the expression

10 < 3 lan! |25
and yields
ol < (3 lr)( S 27

< {Ifl|Fe”
so that

@] < lIf]] exp [(1/2)2].

By applying this inequality to the difference of two functions
f@) — g(&)] < exp [(1/2)2] |If — 4|

one infers that the strong convergence in 3 implies ordinary
point-wise convergence on bounded sets, However the
condition

@] < |Ifl] 1"

is not sufficient to guarantee that the vector {f ) is in JCg.
The condition

If&)] < C exp [(\*/2)z]

turns out to be sufficient.® Calling fi(2) = f(A\z2), it can be
shown? that if ||f)]] < C for all X such that 0 < A < 1, then
|[f ) is an element of 3¢z and

lim |If = [l — 0.
Aol
Consider next the mapping of the vectors |f)

on the complex-valued functions f(z) such that
M| ) 4+ X | f2) is mapped into Mifi(2) + Aofo(2)
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for every |f), |fi), |fs) in 3¢ and every complex
number A. If we denote this mapping by 7, ie.,

T. ) = 1@, (382)

then T, is a linear functional on 3. By Riesz’
theorem, it must be of the form

T. I = 1@ = (., . (38b)

Using Eq. (28) and the definition of the scalar
product Eq. (29), we infer that |e,) = |2) and

(@ | e) = e(2) = exp (32), (392)
or equivalently
(es, &) = exp (ab). (39b)
Equation (39a) implies that
@) = (e ) = [ dute) exp @
(40)

- [ du(2) exp (a2)f@)

In other words exp (aZ) acts like a delta function
in the Hilbert space of entire analytic functions.
Although neither orthogonal nor normalized [see
Eq. (39b)], the vectors |e,) are complete in the
sense that

J10=[0le)du@e o @D
The proof is immediate since
(| e = f@), (42)
and
e | g) = g(a), (42b)

so that Eq. (41) reduces to the definition of the
scalar product. The completeness relation is ex-
hibited in another fashion by the assertion that the
operation of taking the trace of an operator A can
be accomplished by the operation [ du(a’){a’ |A] @'},
ie.,

Tr A = fd,u(a’)(a' |A] a’). (43)
For example
Tr o' %) = [ du(@)@ ') @)
- f du(a’)e™ V0 (8
X <a' [6(1/\/;)“6—“)“.
X ¢V B gy (442)

1 Bas
= da’ da’ e¥

5. S. SCHWEBER

V2iaag o1/ (a8

Xe (44b)
= 27 §(a) 8(B), (44¢)

the familiar result. In (44b) the factor exp (—|a’|?)
from the measure element du(a) canceled the factor
exp |o'|* = {(d’ | a').

We conclude this section by exhibiting the unitary
operator (¢ | ¢) which maps 3¢z on the Hilbert
space of configuration space wave functions fi.e.,
L®(— o, +)]. If we call (g | ¥) = ¢(g), and to
avoid confusion, (2 | ¥) = f(2) we then wish to
exhibit the kernel

@lg = Ak 9, (45)
having the property that'!
1o = [ e, 0v(@ dg, (460)
Wo = [ 4G, 1) dud,  (46b)
and guarantees that ||f]] = ||¢|| and that the map

is one-to-one. The conditions on the kernel A(z, q)
which ensure that these requirements are satisfied
are that

[ 408 9 4G 0 = e @) = 0., (4T8)

[ 4 3% 9 a6, 0 = sa - o). (@)

The unitarity of the kernel can be inferred from the
completeness of the set e,.(z) occurring on the right-
hand side of (46a). An explicit representation of
A(z, ¢) is obtained by noting that

@ la*| ¢y = U/ V2 g — ipl ¢')
= V(e + 52 (@)
=2& | ¢),
and similarly that

# la] ¢') = (@/d)’# | ¢,
= (1/V2 |q + ip| ¢

= (1/\/5)(q' - %)(z |¢),  (48b)

(48a)

11 The inverse relation (46b should be interpreted as

W9 = Lim. [ 4G, Ohe) dutd

since (46b) does not always converge, whereas this last equa-
tion does. See.the explicit representation for the kernel A(z,g)
given by Eq. (48).
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which equations imply that

A, @) = —3F + &) + V22 (49)
The conditions (47a, b) further assert that ¢ = =~'/%,
In an analogous manner one verifies that
Bz, p) =& |p)

= (/7 exp [— 30" + 3 + V2] (50)

We are now ready to derive the Feynman integral

representation for the transformation function
<allt/l l a,tl>-

C exp

III. THE FEYNMAN INTEGRAL OVER PATHS IN
PHASE SPACE

We are interested in deriving a Feynman integral
over paths representation for (¢t | ¢'t’) for a
system with one degree of freedom deseribed by
the Hamiltonian H. It will be assumed in the
following that H is written in normal form with
all a* operators standing to the left of all a operators
so that (a” |H| a') = H(a", a'){a'’ | a’) = ¢ number,
The procedure that we will employ will again be to
break up the time interval ¢/ — ¢ into N 4 1 equal
intervals of duration e and to repeatedly insert
the unit operator expressed as

[ et} duta) te)| = (51)
It is clearly sufficient to consider the transformation
function

(a”t” ] altl) — <au ;e—iH(t"—t')l a/)
= (" [ ), (52)
since
@ Lty = [[ auan
X (q”t” la”t”)(a”t” | a’t')
X (a't" | ¢'¥) dula’), (53)

and the transformation function {at | ¢t} is known.
Upon inserting the resolution of the identity (51)
into (52) we obtain

@ fary [ [ dua) -

X {a"” le_mel axXay le_mel Ay-y) -

du(a.)
{ay le7* | a’).
(54)

In the limit as N — o, i.e., for infinitesimal ¢, we
can evaluate each factor to order ¢ as follows:

837
<ai+1 Ie—“Hl ai) ™~ (ai+l |1 - ieHl a:‘>
= (a,~+1 l a;) — 1eH(@;.1, 0;){(@;41 l a;)
ge—ieH(ai+x.ai)<aj+1 |ai>' (55)

The expression (54) for the propagator {a”’t" | a’t’)
valid to order e thus takes the form

(a”t” | a't’)
- f f 1 [exp [—iH(@;11, )

N
X {41 ] @;)] III du(a;), (56)
with a, = ¢’ and ay,, = d’’. We can further simplify
Eq. (56) by using the normalization condition
{ais1 | a;) = exp (@;,,a;). We next explicitly separate
from the measure element du(a;) the Gaussian factor
and write

dula;) = ™" d%a;,
(a = ar + iai))

so that the expression for the propagator becomes

(57a)

d®a = (1/7) da, da; (57b)

((I”t" [ a’t')
N
= f f HdBa 6(1/2)|0'|’+(l/2)|a"|’
m=1
X exp [E (=4 farnf*

-+ a;:dz - % {azlz - ieH(a—l-l-—l; az):l' (58)
The limit N — o, (N 4 1)e = "’ — ¢’ defines the
Feynman sum. As ¢ — 0, the exponent in Eq. (58)

can also be written as

o« . -
. LV T G — Qg Ay — G
lim Y, {165 liam *1 - — - a,

>0 [=0

_ ieH(dm,al)}-—)if‘:;:w ,{ (( 5 22 da(t)

— 20D ) — rGa, o)) (59)
If we symbolize
lim J[ d%a. = D{a()]. (60)

N—ow m=1

Equation (58) is then the desired expression for the
Feynman integral over paths representation of the
propagator {a’’'t"" | a't’)
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[—(1/2)|a’’|® —(1/2 ’ie
e a’’| '(a”t" l a’t’)e[ (1/2)ia’ (3]

= f f Dl[a(t)] exp [7, f::t',
X Lla), at), ), da/diy dt |, (o)

since
< o d“”) a(h) - Ha(), d®) =L (62)

is the Lagrangian for the system when the dynamical
variables of the system are taken to be the g vari-
ables. The factor exp (—1 |a’’|*) and exp (—3% |a'[*)
occurring on the left-hand side of (61) are normaliza-
tion factors arising from the fact that our states
|a’) are not normalized but satisfy the normaliza-
tion condition (a’ | a’) = exp (|a’®). The state exp
(—1% |a’|*)-]a’) is a normalized state.

The advantage of defining the Feynman integral
in terms of the a variables lies in the following
circumstances: In configuration space the expression
(¢’ | ¢'t") is not necessarily an ordinary function
but rather a distribution. (Recall that for ¢/ = ¢
it is the delta function.) Questions of convergence
are therefore ‘‘delicate.” In ‘‘phase space” on the
other hand (a”’t”" | a’t) is not only a function, it
even is analytic. For example, in the case of a
harmonic oscillator whose Hamiltonian is H = wa*a,
so that H(d@”’, o’) = wad’’a’, the finite number of
Gaussian integrals involved can readily be evaluated
to yield

(a"t" Ia’t’) — —ie(N+l)w)

exp (@'’a’ e
), (o)
and in fact only absolutely convergent integrals are
encountered. It is of course true that some of the
intuitive appeal of the original Feynman approach
has been lost in that the integration is now over
phase space [since d®a = (1/#) dp dg]. However
this very fact suggests that this particular approach
ought to be particularly useful in the problems
encountered in the determination of the classical
limit of both quantum and quantum statistical
mechanies. OQur motivation for the study of the
Feynman formulation in terms of the @ variables
is that in such a formulation some of the mathe-
matical ambiguities found in other approaches are
not encountered. In particular, this approach permits
a study of the absolute convergence (or lack thereof)
of integrals such as those encountered in Eq. (58)
for certain classes of Hamiltonians, It thus paves
the way for a rigorous formulation in terms of a

= exp (@''a’ e
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measure over paths in phase space as well as for
the study differential version of the dynamical
principle and thus make contact with the Schwinger
action principle.”” Here we shall only study the
“derivation” of the usual rules of quantum me-
chanics if the form (61) is adopted as the basic
dynamical principle.

IV. THE FEYNMAN PRINCIPLE

Let us adopt as the Feynman principle'* the as-
sertion that the transformation function {a”’¥’ | a’t’)
is given Eq. (61) with the integration over paths
defined by Eqgs. (58)—(60). We shall explicitly assume
that our Lagrangian is of the form given by Eq.
(62), i.e., that it is of first order in d,a(t) and 9, (a(?)).
We shall then show that the usual rules of quantum
mechanics follow. If the Lagrangian is of first order
in d,a and 9,4, we can approximate the exponent
in (62) by

t,,al’
f L dt
t’a’

N . -
- Oy T Qp Qi T g
= Z L(ah ay, ) € °

1=0 €

(65)

Hence upon breaking up this sum
N i—1 N
ne-(5+3)

(LT

— O Gy — G
(a8 gy

X L(a,, a, -
(with ay,; = @ and a, = a’), we deduce that
(a”t" la’t’) — e+(1/2)la"l’

X f fexp [% i Lia,, azﬂ)] ZNI_I1 d’a,

=i =i+l

. i1
X f feXp [% ;L(az,am)]
i—1
dB 'dBa,' +(1/2)1la’|?*
X H a; e
= f(a”t” l a,~t,-><a,-t,~ I a’t’)e—la”’ dBa,'

= f(a”t" | a;t;) du(a){a;t; | a’t’). (67)

If we now identify the left-hand side of Eq. (62)
as the Hermitian scalar product of two vectors in

12 J. Schwinger, Phys. Rev. 82, 914 (1951); 91 713 (1953).
13 This section 1s patterned after the work of J. C. Polking-
horne, Proc. Roy. Soc. (London) A 230, 272 (1955). In the
present section we shall differentiate between operators and
eigenvalues by denoting the former by boldface letters.
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Hilbert space [which is consistent with the right-
hand side of Eq. (62)], Eq. (67) then allows us to
infer that the set |a;t;) is complete:

f la;t;) dula;) (a;t;| = 1 (68)

We next define the operator a(f) in terms of its
matrix elements, by the equation

6_(1/2)|ﬂ”“<a”t’, la(t)l a't') e—(l/2)la’|'

= [+ [ ola)-at) exp [—% det] (69)

If we set t = t, then since a(t) is not integrated
over in the right-hand side, we deduce that

(a”t” la(t)l a’t’) — a’(a”t” l a’t’). (70&)
and using the completeness relation (70), we obtain
a(t) [a’t) = o |0/, I). (70b)

The definition (69) of the operator a(t) therefore
implies the interpretation of the kets |a’, ') as
eigenvectors of the operator a(f). Similarly one
readily verifies, using the decomposition property
(66), that

DI Gy |Plagt) - a(t)] a't)e

[ Je i) v

X a(t) --- a(t,) Dlad)],

where P denotes the time-ordering operator.

The statement that the operator a(t) satisfies the
same equations of motion as the classical c-number
variables a(t) follows from the fact that

(@1 |o1/sa(t)] a’t’) = e

Xf fol)a(t)

nai= [

The integral on the right-hand side of Eq. (72a)
vanishes since the integrand is a total derivative,
namely,

(71

as2yla’l?+la’’|?)

(i/#)Ilalt)] 51[“(0]

salt) 2

L[a(t)] (72b)

(h/)[8/8a(t)] exp (l[a(D)]/D),
and the particular variable of Da(t) referring to
the time ¢ in question can be directly integrated.
For both limits of a(¢) the integrand, as interpreted
by Eq. (58), will vanish, so that
81/sa(f) = oI/sa*(t) = 0. (72¢)

It should be stressed that in (72a) the symbol
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81/6a(t) is only given a meaning by the right-hand
side, where 6I/8a(t) assumes its usual variational
meaning in terms of the classical variables ¢ and a,
namely: Consider new functions a(¢, €¢) such that

a(t, 0) = a(t) and such that at ¢t = " and ¢ = ¢”,
da(t, €)/de = 0. By 8I/6a we then mean
81 = (d/de)Ilalt, &]]c-o- (73)
We next define the operator b(t) by**
@’ ()] o'ty = a’{a’’t"’ | 't'). (74)

From the fact that we have interpreted {(a’’t" | a't’)
as the scalar product of two vectors in Hilbert
space, upon taking the complex conjugate of Eq. (74)
and comparing the resulting equation with Eq.
(702) we deduce that

b(t) = a*(?). (75)

One next computes, using the above enumerated
properties that

(@t |[a(t”"), b(¢)]] a’t")
Ry
X du(a’") """ ()] a’t’)
- f(a”t” [b(#)a(t'")| a’’’'#'")
X du(a’")(a""t" | a't’)
= [ (-
X (@'t | a’t'y du(a’"’)
= f(la"’t — @'

X (a”’t” | G’t’) d;z(a”’). (76)

The right-hand side of Eq. (76) can be evaluated
by substituting for {a’”’t” | a’t’) its explicit form
as given by Eq. (62). The result is the expected
one, namely,*

<al/tll I[a(tll),b(ﬂ/):” altl> — <allll/ [altl>,

II III)(aIIt/I |allltll>

(77
whence
[a(®), a*(#)] = 1.
14 Alternatively we can define b{t) by
@t |o(t') | a’ty = [9/3a’(t" Na"t" | a't').

15 The correctness of the resulting formula is checked by
noting that

fd”(al/l)a///(w —a’ 613"0"'((1I”)"
= n(a")" — (n — 1)@

- @

(78)
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V. THE FIELD THEORETIC CASE

The treatment of a quantized field can be pat-
terned after the example of a system with a finite
degree of freedom. We shall here consider only the
simplest situation, namely that of a real scalar field.
To develop the formalism by analogy to the case
of a system of particles, we expand the field
é(x) [r = (2° = ¢, x)] and its canonically conjugate
variable 7(z) into a complete set of real orthonormal
functions ¢,(x) which have the properties that

[ dron®es) = sun, (79)
2 en®enx) = dx — x'). (80)

The expansions are
¢(x) = ; g(Dea(x), (81a)
0() = [ o600, (81b)

and
98

w(z) = ; P(Den(x) = (3 (82)
p(t) = [ dae@n), (82b)

where £ is the Lagrangian density of the field system.
In the quantized theory the expansion coefficients
g.() and p,(t) are Hermitian operators which satisfy
the commutation rules

[Qn(t)) pm(t)] =1k 6nm, (833:)
[0:(8), ¢x()] = [P(8), Pu()] = 0,  (83D)

which in turn imply the usual equal-time canonical
commutation rules for the field operators ¢(x)
and 7(x):

[¢(x), 7(@")]zemzer = th 8(x — XI). (84)
We next introduce the operators
a,() = (2h)7"*(qu(?) + ipa(2)), (85a)
a%(t) = @07 (g.()) — ip.(9), (85b)
which satisfy the commutation rules
[0.(9), a2()] = 8um, (86a)
[a.(), an()] = [a%(9), a%()] = 0.  (86b)

Simultaneous eigenfunctions of the operators a,(t)
{n = 0,1, 2 ---) can be written in the form
121, +++ 24, -+ ; t) with
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;B

2, ...;t):zn lzl’ e

n=0,1,2 -

an(t) lzl, c e zn’ “ ..

(87)

These eigenfunctions are vectors in a separable
Hilbert space which is the direct product of the
Hilbert spaces {|z,)}, {lz.)}, --- . The mathe-
matical characterization of such direet product
spaces has been given by Von Neumann.'*™'® We
can express the vectors |z, -++ 2,, -+ ; £) in terms
of the eigenfunctions of the number operators

N.(8) = a¥(Ba,(h), (88a)
N Inl’ SRR TR 15)
=7 [y, Ny, e B, (88b)
as follows:
lzl, - ...;;;)
e (2)™ -+ ()™ - - -
T myl o)
X |y, Mgy oo g s B
= exp [Z z:a%()] [0). (89)

An arbitrary normalizable state vector of the field
system |¥) can be expanded in terms of these basis

vectors, the expansion coefficients
Yz, - - Z, o ) (90)

now being entire analytic functions in each of the
variables z,, 2, - -+ . The Hermitian scalar product
of two vectors |¥), |®) is defined as

@l = [ [ 1L dute)

X ¢(217 “ e

zn,...) =(21,...

Zny * ')\I’(zly e (913)

(91b)

the integration over each set of variables z;, y;
being carried out over all values of z;, y;: —» <
(x:, ;) < . We here note that

2, * .),

dﬂ(zi) = 7|'_1 exp (_2,‘2{) dxi dy,

cee e, 2, )
= II exp 22) = exp (X 22),

and also that in terms of the fields U(x) and U(x)
defined by

@', =,

(92)

'8J, von Neumann, Compositio Math. 6, 1 (1939).

!7 It can be shown that in terms of von Neumann’s theory,
one is dealing here with the incomplete direct product for the
equivalence class € of {f°;} where all f9,(z) = 1. This is as
should be since the Hilbert space is isomorphic to Fock space
(see Bargmann!3),

18 V. Bargmann, Proc. Nat'l Acad. Sci. U. S. 48, 199 (1962).
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Ux) = ;z,-gai(x), (93a)
U@ = Z Zipi(X), (93b)

the expression Zi Z;z; can be written as
Yza = [ dv UQUG. (94)

Formulas which are the generalization of Eqgs.
(45) to (50) can also readily be written down for
the present situation.

We next turn to the computation of the trans-
formation function (¢, -+ Z, -++ |x) where the
state |x) is an eigenstate of the field operator
o(x), 1.e.,

o) b = x@) . (95)

{x |¥) is thus the amplitude for finding the field
system described by the Heisenberg state vector
I¥) in the field configuration x(x, z,) at time ¢ = z,."®
An explicit representation of the basis vectors |x)
can be obtained in terms of the eigenstates of the
operators ¢,(t), n = 0, 1, 2, - - - . If we denote these
eigenstates by |¢f, ¢, + -+ ; {) with

g0 lgt, 5, «-+ b oo -5 D)

=q:\g, ¢, 00 gl sty (96)
then the vector |x) has the following representation
5 b, 97)

where the x,’s are the expansion coefficients of x(x)
in terms of the orthonormal set ¢,, i.e.,

x(@) = ; X Bea(X).

;X) = |X1;X2: 0t Xy

(98)
The kernel of interest (z,, -+ 2, -+ |x1, *** X ***)
is then readily computed and the result is

<67122"'2n {XU Xy U >

= I1 7" exp [—(1/2)E + XD + V22x]. (99)
This transformation function allows one to com-
pute the transformation function {(x''t" | x't') =

19 Tn the case of a noninteracting real scalar field, the
vectors |x ) will in general only exist only for x (z) which
are normalizable solutions of the Klein-Gordon equation, i.e.,
if we denote by x (k) the Fourier transform of x(x)

x(x) = fd4k 8k — WDxWe ™,

x(—k) = x(k),
Jx ) will exist only for x’s such that d%8(k*—pu?) |x (k) P<
In the case of interacting fields the exact conditions have not
been investigated.
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O xt ot I xd, x4 -+ 3 ) from the knowledge
of (27,2 -+ ;" |2, 2 - ;t). Let us therefore
compute the latter. The steps in this derivation
are analogous to those involved in obtaining Eqs.
(58) to (62). One again hreaks up the time interval
{" — ¢ into N 4+ 1 equal intervals of duration e
and repeatedly inserts the resolution of the identity

f f [21,22 ce) Ud#(zixzuzz, l = 1. (100)

One thus obtains the following expression for the
propagator

<z{/; Zé’, ey ¢’ ‘ zl” Zé) e ﬂ)
= [ [ T aue) TT duG?) - TT dutet?
i3 T2 iN
X e, 2, - |e‘“H| ziN), ZéN)’ ey e
X <zl(l): zél); Tt lev“Hl 21,25, - '>; (10D

where H is the Hamiltonian of the field system which
will be assumed to have been written in normal
form (i.e., all creation operators standing to the left
of all annihilation operators) so that

@ [ H 2P, 80
= H(_Z(”l), Z“’)(Z(”” ,Z(i)>.
We have denoted by Z‘° the set 2{", 2{”

z .
1y %2 -
If we again separate from the measure element

(916) the Gaussian factor and write

(102)

I = TLe™ " 2a ay?, o)

the expression for the propagator becomes, with
Z® = Z"and 2V = 2"

(Z”t” 'Z't')
- f f IT dutet?) -+ T1 dutiy)
: 3%

N N . )
X [T exp 2027 V2" —ieH(Z* | 2]
i=0 i

= [ ... da,, dy,,
= [ et

N
X [T exp (22 (=3 ")
i=0 i

+ ;EFA—)ZE:') _ % lzgi)lz}]

X exp [—ieH(ZV ™, Z7))
X exp [§ 20 {12V + |24},

H dzr,, AYiw

v ™

(104)

which in the limit € — 0 becomes equal to



842
<Z/It/l , Z't')
= e} X {1 + i [ oo [ o0z

xew i [* s 5 G

~ £(02,(0) — {H(Z(), zam] : (105)
where we have written D[Z(¢)] for
D[Z(1)]
= lim INI dzy, dys, INI A% QY (106)
Newo I T e s

When expressed in terms of the fields U(z) =
3 z:(0)ei(x), Eq. (105) can be written as

exp [$ ZII ki’ "z | Z'8) exp [% ,Z 511

= f fﬁ)[U(x)]

zrrerr
X exp ,:7, f dt f P30T
zorer
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X 8,.U@) — 8, Ux)Ux) — 3T, U)}}
(107a)

= [ [ oU@) e [z [ d%s((])] (107b)

where 3¢(U, U) is the Hamiltonian density for the
classical field, expressed in terms of U and U, with
H = [ d°z3¢, and £ is the Lagrangian density. The
first-order form for the Lagrangian is again to be
noted. In Egs. (107a) and (107b) the expression
D[U(x)] is given meaning by Egs. (106) and (105).
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Maxwell’'s equations are formulated in a number of different representations: (a) As a single
four-component spinor equation whose transformation properties are almost identical with those of the
Dirac equation. (b) As a pair of uncoupled two-component spinor equations, in two different repre-
sentations. One of these is similar to the Weyl equation for the neutrino field and the other to the
two-component spinor form of the Dirac equation. (¢) As a single equation in which the field variables
are 2 X 2 matrices. In terms of these new field variables corresponding conservation laws are derived.
Identification of these conservation laws with the standard ones is made. The transformations that
are appropriate to the maintainance of covariance of the field equations are discussed.

I. INTRODUCTION

AXWELL’S equations have an important place

in the development of both the classical and

the quantum theory of fields. As a field theory

describing macroscopic classical electrodynamies it

is eminently successful. The application of the theory

to microscopic phenomena by Lorentz, however,

gave rise to a number of difficulties such as the

infinite self-energy of the point electron, its self-

acceleration, and the concomitant radiation by the
accelerated point electron.

The classical electromagnetic field served as a
model for Yukawa's meson theory. It has been taken
as the prototype for the construction of quantum
field theories because of a greater understanding of
electromagnetic forces as compared with other types
of forces. However, some difficulties of the present-
day quantum field theories are traceable to those
present in classical theory.

A theory, developed by us,' attempts to resolve
these difficulties by considering the interaction be-
tween particles rather than the free particle fields
as the elementary entity. The field variables are
then reinterpreted in terms of the interactions be-
tween particles instead of the intrinsic properties
of the isolated particle. Contained in this theory
is a reinterpretation of the Maxwell field equations.
According to this interpretation, Maxwell’s equations
are nothing else but a covariant means of obtaining

* The work of one of the authors (MS) was supported
in part by a grant from the National Research Council of
Canada. . )

+ Present address: Physics Department, Boston Univer-
sity, Boston, Massachusetts. )

' M. Sachs and S. L. Schwebel, Nuovo cimento suppl. 21,
197 (1961).

force field variables through which to represent a
source field or vice-versa. Thus, within the frame-
work of the theory, we can only accept the par-
ticular solutions of Maxwell’s equations as physically
meaningful.

Within this interpretation, it follows that there
is no special reason for maintaining the vector form
of the Maxwell field equations if it is possible to
express them in other covariant forms. It is our
object in this paper to present the reader with
several new mathematical forms of Maxwell’s equa-
tions. The new forms are particularly interesting
because of their transformation properties. These
lead to generalizations because of the appearance
of generalized conservation laws. One of these
forms [Eq. (7)) is used in our formulation of quantum
electrodynamics.' However, it should be emphasized
that, independent of microscopic phenomena, these
equations can also be useful because solutions of
Maxwell’s equations applied to macroscopic phe-
nomens may be more readily determined in some
cases from the forms of the equations that we
present here than from the conventional form.

The mathematical forms of the Maxwell field
equations that we present in Sec. IT require only
that the principle of covariance be satisfied In order
to obtain the transformations of the field variables
defined by these equations. In particular, two of
these forms of Maxwell's equations [Egs. (7) and (8)]
are so similar to the corresponding forms of the
Dirac equation that both sets of wvariables, one
representing the Maxwell field and the other the
Dirac field, have the same transformation properties
under the elements of the proper Lorentz group.
In Sec. IIT we discuss the conservation laws which
are intimately connected with the transformation
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properties that prescribe the covariance of these
new forms of the field equations.

II. FORMS OF MAXWELL’S EQUATIONS AND THEIR
TRANSFORMATION PROPERTIES

I1.1 Review of the Conventional Forms

The well-known form of Maxwell’s equations is®
V-H=0
V:E = 4np.

V xH — 3E = 47j

In this form, the electric field variable E(x) trans-
forms like a polar vector and the magnetic field vari-
able H(x) transforms like an axial vector when the
charge density p(x) is assumed to transform like a
scalar. Further, the imposed requirement of covari-
ance of (1) requires that proper Lorentz transforma-
tions on E and H will yield field variables in the new
inertial frame that are particular combinations,’®
respectively, in terms of E, vx H and H, vx E.

Next, a form of Maxwell’s equations that makes
its covariance more obvious is in terms of two field
equations in the field variable F,—an antisym-
metric matrix. The field equations are®

3,F,, = 4nj,
3,F,, + o,F,, + o,F,, = 0.

@

Here again, it is only when we specify that the four
variables [p(x), j.(X), j2(X), 75(x)] must transform
as a four-vector that the principle of covariance
ensures that F,, transforms as a second-rank tensor.

In the covariant forms of Maxwell’s equations
discussed below, no additional statement has to be
made about the a priori transformation properties
of the source terms. The principle of covariance
alone determines these properties. Also, in view of
the ensuing discussion, it should be emphasized
that (2) was constructed by identifying the ele-
ments of F,, with components of E and H in a
particular Lorentz frame. (This is the procedure
that will be followed below.) However, Lorentz
transformations preserve the covariance of (1) if
the field variables transform as three-vectors while
the covariance of (2) is maintained when the solu-
tions transform as a tensor field. In the forms of
Maxwell’s equations demonstrated below, the field
variables transform (isomorphic with the proper

2z Units are chosen with ¢ = 1.

% See, for example, L. Landau and E. Lifshitz, The Classical
Theory of Fields (Addison-Wesley Publishing Company, Inc.,
Reading, Massachusetts, 1951).
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Lorentz group) neither as vectors nor as tensors.

The conserved quantities follow from the equa-
tions of continuity. These are the equations that
relate to the four-divergence of a function whose
time component (or components) are the conserved
quantities. For example, in the case of equations
of the type (2), we have the continuity equation

3)

where £, are the components of the four-Lorentz
force density,

T, = 1/4m)(F,F.\ —

a;‘Tnv = kv = j#F}“’

%F/Z!)\ 6;w)

is the energy-momentum tensor and § T,, d’z is
the conserved energy-momentum vector of the field.
[This, of course, follows from the integral form of (3)
combined with Gauss’ theorem.]

In the discussion that follows, we will demon-
strate new covariant forms of the Maxwell field
equations and corresponding conservation laws. It
will be seen how the new conservation laws contain
the old ones and therefore represent a generali-
zation. Throughout this development it will be
assumed that the underlying symmetry that governs
the structure of the field equations is described by
the proper Lorentz group (i.e., discontinuous trans-
formations such as spatial and temporal reflections
are not contained in the group). Also, we do not
restrict ourselves to a spin-one field, rather we
allow a reduction from the vector field to a spinor
field representation. The justification for this follows
from our interpretation of the Maxwell field equa-
tions.

II.2 A Four-Component Spinor Form

Spinor formulations of Maxwell’s equations have
been proposed by several authors.* It is our aim
here to present different forms of spinor equations
than those cited in reference 4. In particular, some
of these equations have the same transformation
properties as the Dirac equation (in its two-com-
ponent form). We start with a discussion of the
four-component spinor form.

Defining the complex vector

G=H—~E

the two-component functions

4 0. Laporte and G. E. Uhlenbeck, Phys. Rev. 37, 1380
(1931); J. R. Oppenbeimer, sbid. 38, 725 (1931); G. Moliere,
Ann. Physik 6, 146 (1949); T. Ohmura, Progr. Theoret.
Phys. (Kyoto) 16, 684 (1956); R. H. Good, Jr., Phys. Rev.
105, 1914 (1957); H. E. Moses, ibid. 113, 1670 (1959).
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( ” _ .
6 = L G, J T, = dni p+ ]3}
G, + G, jf -+ zyz @)
6 = {—Gl + sz} Ty = amg| 0T Z]z}
G, Y + j'3
and the four-component functions
6 = m I 5)
P2 T,
and using the notation
X = {x, = if; 2.} 3(=9/0x) = {0, = —19,; 0}
- ([ 0}
¥ = {vo¥s; i} Ys = YoY1Y2Ys Yo =
0 —17
4 0
Ye = —1 o ¢ = ¢>T'Yo ¢I: = ¢
— 0 0
*k=1,2,3)

where ¢, are the usual Pauli matrices and I is the
unit 2 X 2 matrix, it is a straightforward matter
to verify that the bispinor field equation

¥, 0.6(x) = T(x) (6

is a representation of Maxwell's equations in the
form given by Eq. (1).

Since 7, differs from v, only in the time component
Yo = 7Yo¥s, the similarity between the form of
Maxwell's equations (6) and the Dirac equation

v, ,¥(X) = —m(x)

should be noted.

It should be emphasized here that as far as the
field equation (6) is concerned, the transformed
spinors ¢/ (x') = A¢(x) and 1'(x") = BT(x) are not
form-invariant with respect to the conventional field
variables E, H, j and p; e.g., ¢(E, H) + ¢(E’, H').
Thus, once a connection between the new field
equation and (1) is established in one Lorentz frame,
then we choose to consider the new form of the
field equations thereby abandoning the old vector
field variables for the new spinor field variables.
The conserved quantities do, however, match those
of the conventional formalism, along with the
predictions of new conserved quantities.

(6"

I1.3 Two-Component Spinor Forms

The Weyl Form

If we operate on Eq. (6) from the left with s,
this field equation splits into two uncoupled two-
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component spinor equations

0, 0$.(0) = To(x)  (@=1,2) (7

where oy = iI. With T, = 0, Eq. (7) is the Weyl
equation for the neutrino field.® The covariance of
this form of the field equations (7) is demonstrated
in the Appendix. It is shown there that when Lorentz
transformations take ¢,(x) into S¢,(x), the source
term T,(x) must transform as (S")™'1,(x) in order
to maintain the covariance of these equations.
Thus, in terms of these variables, ¢:Tﬂ (o, 8 = 1,2)
are invariant forms.

The invariant metrics which define the two-
component spinor algebra are®

¢;T'l:0'2¢1 = Il
T;'io'le = Ig

i = ;)

If we express ¢, and T, in terms of the conventional
variables (in a particular Lorentz frame) according
to Fq. (4), the invariants take the form

I, = E — H* 4+ 2B-H = F3, + 2ie,n,F P>,
IQ = j2 - P2 = .75

which are the invariants of the conventional form-
ulations.

The Dirac Form

Operating on the left-hand side of one of Egs. (7)
(say, the equation with @« = 2) with the Wigner
time-reversal operator W, Egs. (7) become

g, 0, = T

= ®)
GuOupy = Ty
where
¢ = {oo, — o}
¢, = Wo, T, =W,
and

W = (oK,

where K denotes complex conjugation.

The covariance of the two-component spinor
equations (8) are determined by the same trans-
formation properties as those associated with the
Dirac equation in its two-component form

g, 0, = —imy

§ See P. Roman, Theory of Elementary Particles (North-
Holland Publishing Company, Amsterdam, 1960), p. 107,

® For a more comprehensive discussion of spinor algebra,
see the article by Laporte and Uhlenbeck.*
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Gu Oux = —1mg

This is derived from Eq. (6’) by calling
‘p:[l//l] and ¢ = ¢, + ¥, X = ¢1 — ¥
ve

I1.4 A Matrix Form of Maxwell’s Equations

Still another form of the field equations is ob-
tained by combining the uncoupled set of equations
(7) to form a single equation in which the field
variable and source term are themselves 2 X 2
matrices. When this is done, the result is

o, 3,8(x) = Z(x) )

where (9) was constructed by allowing
$ = (¢’1 - ¢2) = (Tl - Tz)

to be the 2 X 2 matrices involved in the field equa-
tion. In specifying the covariance of the field equa-
tion (9) however, just as before, we do not maintain
form invariance in terms of the variables ¢,, ¢,.
Thus, the variables #(x) and Z(x) are to be re-
garded as 2 X 2 matrices and covariance of (9)
is maintained with

&(x) = dx) = S'¥'(x)S
(x) — 2x) = 8 2'x)S

where S is defined in the Appendix [Eq. (All)].
This representation of Maxwell's equations is closely
related to the conventional treatment in terms of
second-rank spinors with mixed dotted and un-
dotted indices. Since this formalism has an ap-
preciable literature,* we will not develop it here
anew.

It is also noted that (9) may also be expressed
in terms of quaternions by choosing as units the
identity I and the Pauli matrices (multiplied by 7).
Equation (9) then takes the form

[ Gu{o‘k(Hk - ’LEk)} = 47ri0',,j,,
where Hy, — 1, = 0.

III. CONSERVATION LAWS

The procedure for deriving relations that are
interpretable as conservation laws is very similar
for all forms of Maxwell’'s equations. To eliminate
such repetitive manipulations we shall undertake
only the calculations for Eqs. (6) and (7) and leave
to the interested reader the task of obtaining the
counterparts to these results for the remaining
equations.

Multiply Eq. (6) on the left by ¢'0;, where O;

M. SACHS AND S. L.

SCHWEBEL

is one of the operators of the set
{O:} =

Take the Hermitian adjoint of Eq. (6) and multiply
it on the right with O;¢. Adding or subtracting the
equations obtained with the same selection for O;,
we find that

{1, %0, Vs, Yovs) -

0,378  =¢r — Tp (102)
0,BveT) = FrT + T (10b)
30, BrevsTo®) = SvorsT — Trvss (10c)
3.Bvs®) = v + Trid. (10d)

The procedure with regard to Egs. (7) is simpler.
Multiply one of these equations (which we denote
by the subscript «) by ¢; and the Hermitian adjoint
of the other of these equations (denoted by the
subscript 8) by ¢. and then add. We thus obtain

0. (650,8:) = &¥a + Tide (@, 8=1,2). (1)

Equations (10) and (11) are the conservation
laws that we sought. Expressed in the field variables
¢ and T these equations are unfamiliar ones indeed.
However, if we undertake to express them in terms
of the usual field variables E, H, p, and j, we find
that Egs. (10) and (11) give the familiar forms which
describe the conservation of energy and momentum
of the electromagnetic field. For example, Eq. (10d)
becomes

(1/87) 0.(B* + H°)
+ (1/4m)V-(ExH) = —E-j  (12)

which is the usual energy-momentum conservation
law.

Equation (11), which is a more compact form of
Maxwell’s equations, yields the above conservation
equation when the two equations obtained for
a=f=1and a = 8 = 2 are added.

A rather interesting distinction between Eqgs. (6)
and (7) arises from their invariance under trans-
formations belonging to the proper Lorentz group.
This is, that the transformation properties for the
field variables and the source terms of Eq. (7) are
such that all four equations that appear in (11)
are Lorentz invariants, while such is not the case
for the conservation laws (10) that are associated
with the bispinor form (6) of Maxwell's equations.
This additional symmetry along with the fact that
Eq. (7) represents Maxwell's original formulation
as a set of two uncoupled spinor equations serves
as a strong stimulus to explore further. In addition
to the application of the form (7) of Maxwell’s
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equations to our formulation of quantum electro-
dynamics,’ the implications in the formulation of
the classical electrodynamical interaction have also
been discussed” and will be published in the near
future.

APPENDIX
A proof of the covariance of Eqgs. (7),
(@a=1,2 (AD

under a proper Lorentz transformation follows below.
The Lorentz transformation is given by

6,00, =T,

(A2)

where a,, 13 real for u, v = 1, 2, 3, a, 18 real, and a,,
and a,, are pure imaginary for p = 1, 2, 3. From
the invariance of z2, we obtain the relations

6vv

T, = G,

Ay, =

(A3)

o
Quelye = 0Oyy.

The principle of covariance requires that in the
coordinate system {z.} Eq. (Al) becomes

0, 09t =T (a=1,2). (A4)
If we assume that
oL = So. T, =TT, (A5)

where S and T are 2 X 2 matrices independent of

{z1}, and that {27} is related to {z,} by Eq. (A2),

then (A4) takes the form
T6,a,S 9,9, = T, {@a=1,2)

Consequently, the principle of covariance can be
satisfied if

T7'.0.8 = o, (A6)
or
0,0, = To,S™* v=20,1,2,3). (A7)
For» =0
o, = TS, (A7)

We now take the Hermitian adjoint of (A7"). Because
of the Hermiticity of the Pauli matrices o4, & =
1, 2, 3, the reality of a, and the pure imaginary
character of ¢, and a,, for ¢ = 1, 2, 3, we find that

(TS™' = 1787 (AS)
For » # 0, we also find that
(Te,87H" = (Te,87Y). (A9)

7 M. Sachs and 8. L. Schwebel, Bull. Am. Phys. Soc. 5,
505 (1960).
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Writing this equation out, we find
(8o, I" = Te,87
or
oT'S = 8Ts, (=1,2,3).

But from (A8), T'S = StT. Thus, TS commutes
with the three Pauli matrices ¢, 0,, and ¢. It follows
that

T'S = b (A10)

with b a real constant. That b is real follows from
(A8) or from the fact that 778 = S'T. We can
normalize T by requiring its determinant to be
unity. Then from (A7’) it follows that the deter-
minant of S is unity and hence the constant & in
(A10) must be 1. Thus,

T = (8§ =(SH™". (A10")
Equation (A6) may now be rewritten as
S'c,0,8 = o,
or
8'e,S = a,0,. (A11)

To finish the proof, we must establish the existence
of S. To do this we consider an infinitesimal proper
Lorentz transformation

z, = (8 + en)z, (A12)

where ¢,, are small. The invariance of 22 requires
that e,, = —e¢,,. Under this transformation we have

S =144 e\, (A13)
and
ST =17 + éuvx:v
where A,, are the matrices which are to be deter-
mined and &, are the complex conjugates of e,,.
Since €,, = —e¢,, these parameters are not linearly
independent. However, if we specify that \,, = —\,,,
we may then treat the parameters e,, as linearly
independent for we then obtain redundant equations.
The alternative is to define the double summation
€l 88 D usy €,y We will use the first procedure.
Applying Egs. (A12) and (A13) to Eq. (All),
we find
Ea,g)\j,go',, + €aphap = €,0,. (A14)
If u = 0 (0, = ¢I), then
i(éag)\:‘g + Gag)\aﬁ) = €p,0,.

The Hermitian adjoint of this equation is
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—i(eaphap T+ Eaghug) = €00y
Thus,

€0, = —éo »=1,2,3). (A15)
When ¢ # 0, the Hermitian adjoint of (Al4) is

.\t - _
€80 M e T €aphago, = €40, — €000 = €,0,.

The last equality follows from (A14). The summation
over kis for k = 1, 2, 3. Since the ¢,’s are linearly
independent it follows that

k=1,2,3 w0

€ = €Eui

(A16)

€0 = —E€up.
Returning to Eq. (A14) and making use of Egs.
(A15) and (A16), we find that for u = 0, » # 0
7 = 200, + ) (A17)

The right-hand side is not to be summed over u.
Foru=0,v=0

AND 8. L. SCHWEBEL

o, = —20\ho0 = dohey) = —2i(As, — No)).  (ALS)
Foru=0,»=0
0o = —2(\hou — TAw)- (A19)
Equation (A17) has the solution
Ao = 20,0, (us0,v5%0
with
Ao = =M

Equation (A18) has the solution
Aoy = —1040,.
Equation (A19) is solved with

— 1
)\MO = 400,

Note that Ay, = —A\,, as required.
Thus, we have evaluated all A,, and determined
the matrices S of Eq. (A13).
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I. INTRODUCTION

HE most general dynamical transformation of

a physical system can be represented by a
linear mapping of density operators to density opera-
tors. It was pointed out in an earlier paper’ that there
are many such dynamical mappings which are not
Hamiltonian mappings, that is, there are linear
mappings of the set of density operators into itself
. * Supported in part by the U.S. Atomic Energy Commis-
51or}r. Research assistant visiting under the cooperative
program from Antioch College, Yellow Springs, Ohio.

LT, F. Jordan and E. C. G. Sudarshan, J. Math. Phys.
2, 772 (1961).

which can not be represented by unitary transforma-
tions on the Hilbert space of state vectors. The
present paper is a continuation of the investigation
begun in reference 1, and answers some questions
which were left open there. In particular, we consider
whether there can be non-Hamiltonian dynamical
mappings which represent a continuous time de-
pendent evolution of a physical system.

In Sec. II the property that a family of dynamical
mappings represent a continuous time dependent
evolution of a system is formulated in the require-
ment that it forms a continuous one-parameter
semi-group. The requirement that it form a con-
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tions on the Hilbert space of state vectors. The
present paper is a continuation of the investigation
begun in reference 1, and answers some questions
which were left open there. In particular, we consider
whether there can be non-Hamiltonian dynamical
mappings which represent a continuous time de-
pendent evolution of a physical system.

In Sec. II the property that a family of dynamical
mappings represent a continuous time dependent
evolution of a system is formulated in the require-
ment that it forms a continuous one-parameter
semi-group. The requirement that it form a con-
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tinuous one-parameter group and the requirement
that it is a continuous family of Hamiltonian map-
pings, i.e., that it is representable by a continuous
group of unitary operators on the Hilbert space of
state vectors, are apparently more restrictive con-
ditions. In Sec. IIT it is shown that the latter two
requirements are equivalent. Every continuous
group of dynamical mappings is a continuous family
of Hamiltonian mappings. But in Sec. IV an ex-
ample is given of a continuous semi-group of dy-
namical mappings which is not a group and, there-
fore, is not a family of Hamiltonian mappings.

The one-parameter groups of dynamical trans-
formations which we call ‘“‘time dependent’ can be
used to represent other symmetry transformations
on the system besides transformations in time. In
fact, it is no problem to generalize our results from
one-parameter groups to representations by dynami-
cal mappings of many continuous groups such as
the Lorentz group. That such representations must
be generated by continuous unitary representations
on the Hilbert space of state vectors® then follows
in analogy to our proof in Sec. III that the group
property implies that a time-dependent family of
dynamical mappings is a family of Hamiltonian
mappings. This proof does not require the assump-
tion that the absolute values of inner products of
state vectors or ‘“transition probabilities’” are pre-
served but proves this fact from the requirement
that density operators are mapped linearly to
density operators.

II. TIME-DEPENDENT DYNAMICAL MAPPINGS

In the quantum mechanical deseription of a
physical system by operators on a seperable Hilbert
space 3C, the state of the system can be represented
by a density operator on 3C. A density operator is
a positive semi-definite, self-adjoint operator which
has unit trace. These operators form a convex set.
The extremal elements of this convex set are the
pure state density operators; they are projection
operators onto one-dimensional subspaces of 3C.
The properties of density operators were outlined in
some detail in reference 1. It was shown that density
operators belong to the Hilbert space £ of operators
p on 3¢ for which® Tr (o%p) is finite, the inner product
in £ being defined by

(p, @) = Tr (po). 2.1

2 B, P. Wigner, Ann. Math 40, 149 (1939).

3 Tt is sufficient for our purposes to consider only bounded
operators which form a linear space without causing any
problems of domains.
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The pure state density operators span the space £,
so that a linear mapping on the density operators
uniquely defines a linear mapping on £. A dynamical
transformation of the physical system may be
represented by a linear transformation of £ which
maps the convex set of density operators into itself.
If A is a linear operator on & such that, if p is a
density operator, then

2.2)

is also a density operator, we will call A a dynamical
mapping.*

In order to represent dynamics in the usual
sense, that is as a continuous time-dependent evolu-
tion of the state of the system, we must have a
family of dynamical mappings A(f),

p— po(t) = A()p 2.3)
depending on a real parameter ¢, such that
A(DAE) = At + 9) (2.4
for non-negative values of ¢ and s, and
A0y = 1. (2.5)

In other words we must require that the dynamical
mappings A(#) form a one-parameter semi-group.
In addition we must require that the expectation
value

(@) = Tr (op(®)) = (o, A(t)p)

of the self-adjoint operator ¢ belonging to £, for
the time dependent state p(t), be a continuous
function of the parameter ¢. Since the trace of the
product is the inner product in £, as is indicated in
Eq. (2.6), this means that A(f) must be weakly
continuous as a function of ¢ The mathematical
condition for a time dependent evolution of density
operators is then that we have a family of linear
transformations of the form (2.3) on &£, and that:

(1) A®),0 £t < =, isa weakly continuous one-
parameter semi-group of dynamical mappings (linear
transformations of £ that map the convex subset
of density operators into itself).

If we want the dynamics to be reversible, that is
if we require that every dynamical mapping have an
inverse which is a dynamical mapping, then we
need the stronger condition that:

(D) A@), —o» <t < 4+, is a weakly con-

(2.6)

4 We will use the same notational convention as in reference
1. Capital letters A will represent operators on £ and Greek
letters p, w, o, operators on 3¢ (elements of £). Greek letters
¢, |[{will denote vectors in 3¢, and small letters a, ¢ will denote
scalars,
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tinuous one-parameter group of dynamical mappings
A@®)™" = A(=1).

Finally we are interested in time dependent
Hamiltonian dynamical mappings which are defined
by the condition that:

(ITI) There exists a (strongly or weakly) con-
tinuous one-parameter group of unitary operators
w(t) on 3¢, such that A()p = w(t)p w'(f) for each p
belonging to £.

Clearly (I1I) implies (IT) implies (I). We will see
that conversely (II) implies (III), but that (I) does
not imply (II).

III. HAMILTONIAN MAPPINGS

In this section we will show that a time dependent
family of dynamical mappings is a family of Hamil-
tonian mappings whenever it is a one-parameter
group. In reference 1 conditions were given which
are necessary and sufficient for a dynamical mapping
of the general form (2.2) to be a Hamiltonian map-
ping. However, no consideration was given to the
time dependence of these mappings, or to the
implications of time dependence which could possi-
bly restrict the allowed dynamical mappings to
Hamiltonian mappings. It is the purpose of this
paper to consider these questions and thus com-
plete the study of the relation of Hamiltonian
quantum dynamics to the more general dynamics
of density operators.

If a dynamical mapping takes pure state density
operators to pure state density operators, then it
defines a mapping of normalized vectors in 3 to
normalized vectors in 3C. For each vector this
mapping is defined up to a phase factor. If these
phase factors can be chosen so as to yield a linear
mapping on 3C, we say that the dynamical mapping
induces a linear mapping on 3C. In the earlier paper'
it was stated that if a dynamical mapping maps
pure state density operators to pure state density
operators and induces a linear mapping on 3¢, then
it is a Hamiltonian mapping. This statement is true
only for those dynamical mappings which map the
set of pure state density operators onfo itself. In
Theorem 2 of reference 1, the possibility for a
dynamical mapping to map the set of pure state
density operators one-to-one onto a proper subset
of itself was not given proper consideration. Before
moving on to the new questions, we will give a cor-
rected statement of this theorem, giving explicit
attention to this particular feature:

Theorem. Equivalent necessary and sufficient
conditions for a dynamical mapping to be a Hamil-
tonian dynamical mapping are:

JORDAN, PINSKY,

AND SUDARSHAN

(i) There exists a linear unitary operator « on
3¢ such that the dynamical mapping maps each
operator p in £ to wpw'. (This can be taken as the
definition of a Hamiltonian dynamical mapping.)

(ii) The dynamical mapping maps the set of pure
state density operators onto itself and induces a
linear mapping on JC.

(i) For each member ¢'” of any set of basis
vectors in 3C, there exists a normalized vector ¢,
such that the set of these vectors spans 3¢, and the
dynamical mapping maps ¢ ¢t to ¢ Pyt®

(iv) There exist linear operators « and ¢ on 3,
which have inverses, such that the dynamical
mapping maps each operator p on 3C to wpaf.

(%)

Now we can proceed to the consideration of con-
ditions under which time dependent dynamical
mappings represent Hamiltonian dynamics.

Theorem. A time dependent family of dynamical
mappings A (¢) is a family of Hamiltonian mappings
(satisfying condition III) if it is a weakly continuous
one-parameter group (satisfying condition II).

Proof. If the dynamical mappings A(f) form a
group, then for any value of ¢ the dynamical map-
ping A(t) has an inverse dynamical mapping 4 (—%).
Now A(—1{) can not map a density operator p which
is not a pure state density operator to a pure state
density operator. Forlet p = ap, + (1 — a)p., where
0 < a < 1, and p, and p, are distinct density opera-
tors. Then A(—t)p = ad(—t)p, + (1 — a) A(—V)p:
is not a pure state density operator unless
A(—t)p, = A(—1t)ps, which can not be true, since
A (—t) must be one-to-one if it is to have an inverse.
Hence, only pure state density operators can be
mapped to pure state density operators by A(—1).
From this we can conclude that A (¢) must map all
pure state density operators to pure state density
operators, and must, in fact, map the set of pure
state density operators one-to-one onto itself, since
it has an inverse dynamical mapping. The group
property, therefore, implies that we have an induced
mapping of JC one-to-one onto itself. We need to
determine that this induced mapping is linear.

Let ps be the projection operator whose range is
the one-dimensional subspace of 3C spanned by the
normalized vector ¢. Then,

Tr (py0,) = (¥, §)[°.

The density operators are the operators p on 3¢ of

3.1)

§ The notation is the same as in reference 1. yo! is a
linear operator defined on 3¢ by its matrix elements with
respect to any set of basis vectors¢ ¢ in 3€ as (¢ (), yole ¥)) =
@, ¥)a, ).
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the form
p= 2. Aipss,

where 0 < a; < 1, Z,- a; = 1, and ¢, are a set of
orthonormal veetors in 3C. Since A (f) maps the set
of pure state density operators one-to-one onto itself,
we can let

A(t)Pdu = Psi’s

where ¢/ form a set of distinct normalized vectors in
J¢. Then,

= A()p = Z Qipgr-
Now
Tr (p°) = Z a;
and
Tr (o) = 2 ai + 2 aua; (@1, 4D

> Tr (p%).
By applying the same argument to A(—t), which
maps p’ to p, we get that
Tr (o%) = Tr (o)

which, together with the previous result, implies
that

Tr (o) = Tr (o),
which can be true only if

TI‘ (P¢.~’P¢,") = ](¢:7¢;)!2 = 0

for ¢ # j. Hence, we can conclude that orthogonal
projections are mapped to orthogonal projections by
A(t), or in other words that sets of orthonormal
vectors in 3C are mapped to sets of orthonormal
vectors by the mapping induced by A(f). From this
it follows that, if p is a completely continuous
symmetric operator belonging to £ which is mapped
to o' by A(t), then

Tr (%) = Tr (o)

since a completely continuous symmetric operator
has a pure point spectrum. In particular, since
p, — ps is a completely continuous symmetric
operator, we have that

Tr ((py, — P¢]2> =2 — Tr (pyps + peoy)

is equal to

Tr ([pyr — per)) = 2 = Tr (pyepsr =+ porpy ),

where p,- and p,- are the images under the mapping
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A@) of py and py, respectively, which implies, by
Eq. (3.1), that

(¥, &) = (¥, )P

The mapping induced on 3¢ by A() therefore
preserves the absolute value of inner products.

Wigner® has shown that if a mapping of a Hilbert
space preserves the absolute value of inner pro-
ducts and is defined up to phase factors, then
these phase factors can be chosen to make the
mapping either linear and unitary or antilinear and
antiunitary. The latter possibiliby is eliminated by
the requirement that the dynamical mappings A (¢)
form a weakly continuous one-parameter group
with 4(0) = 1." Hence, for each value of ¢ we have
that, for any operator p belonging to £,

At)p = w(t)pw' (1),

where w(f) is a unitary linear operator on 3¢ which
is defined up to a phase factor. The operators w(f)
form a one-parameter group up to a phase factor,
that is

w(Bw(s) = c(¢, st + 9),

where ¢(Z, s) is a complex number of absolute value
one.

From the weak continuity of A(f) it follows that,
for any vectors ¢ and ¢ in 3¢,

Tr (w(®)pyo’ (Dp) = (B, $)[*

is a continuous function of {. The operators w(f),
therefore, give a continuous unitary ray representa-
tion of the additive group of real numbers. It has
been shown by Bargmann® that in such a case the
phase factors of the w(t) can be chosen so that the
() form a continuous one-parameter group of
unitary operators on 3C. This completes the proof
of the theorem.

We notice that the proof of this theorem remains
valid if, instead of a representation of the additive
group of real numbers, we are interested in a repre-
sentation by dynamical mappings of any locally
compact topological group for which we can use the
theorems of Bargmann® to substitute a continuous
unitary representation for a ray representation
(representation up to a phase factor). For any
symmetry group of this type, such as the Lorentz

6 E. P. Wigner, Group Theory and its Application to the
Quantum Mechantics of Atomic Specira (Academic Press Inc.,
New York, 1959).

7 The continuity condition is not needed here. That w(?) is
unitary is implied by the group property. For () is equal to
within a phase factor to the square of o(¢/2), which is unitary
whether «(¢/2) is unitary or antiunitary.

8 V. Bargmann, Ann. Math. 59, 1 (1954).
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group, we can deduce the necessity of a representa-
tion by unitary transformations on the Hilbert
space of state vectors.” The requirement that the
induced mappings preserve the absolute values of
inner products, or that ‘““transition probabilities” be
preserved by the symimetry transformations, need
not be assumed; it can be proved from the require-
ment that each symmetry transformation maps
density operators linearly to density operators.

IV. NON-HAMILTONIAN MAPPINGS

In this section we will show that the group
property is necessary if a time dependent family of
dynamical mappings is to be a family of Hamil-
tonian mappings. We present an example of a
family of dynamical mappings A(f) which have
almost every property one might ask for except the
group property. Let w(f) be a continuous one-
parameter semi-group of operators on 3¢ which are
isometric but not unitary. Examples of such semi-
groups are well known.’ For each operator p belong-
ing to £, let

ADp = w()pe(9).

It is easy to see that the A(f) form a continuous
one-parameter semi-group, and that, since pure
state density operators are mapped to pure state
density operators, each A(f) is a dynamical
mapping. Therefore, the A(f) satisfy condition I.

4.1)

9 F. Riesz and B. Sz. Nagy, Functional Analysis, translated
from the second French edition by L. F. Boron; (F. Ungar
Publishing Company, New York, 1955), p. 396.
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But each A(t) does not have an inverse dynamical
mapping, so they do not satisfy condition II.

In addition to the property of time dependence,
we have that for each ¢ the A(¢) of this example is
an extremal element of the convex set of dynamical
mappings which maps the set of pure state density
operators one-to-one onto & subset of itself, induces
a linear mapping on 3C, preserves the entropy or
the trace of the square of density operators, and
preserves the multiplication of operators on JC.

Every continuous one-parameter semi-group of
isometric operators is generated by a maximal sym-
metric operator,”® so the transformation (4.1) can
be thought of as the solution of a ““Schrodinger equa-
tion” for the pure states with a maximal symmetric
Hamiltonian operator. It is also known that such
a semi-group can be made into a unitary group by
extending the Hilbert space. The extension of the
maximal symmetric generator of the semi-group is
the self-adjoint generator of the unitary group.’
Hence, the dynamical mappings defined by the
isometric semi-group can be thought of as the
restriction of a family of Hamiltonian dynamical
mappings to a subspace of the pure states.
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A method is given for estimating the dimensions of different types of boundary surfaces which
are relevant for the domains of holomorphy, without using local commutativity, of the 4 and 5 point
Wightman functions in scalar product space. The procedure is a straightforward application of the
explicit parametrization given by Killén and Wightman for vectors on the boundary, The DANAD
and other hypersurfaces for the 4 point function are deduced. For the 5 point function, in addition to
generalizations of hypersurfaces corresponding to lower point functions, a new type of hypersurface

appears which can be denoted in a matrix form Z = DUMUD but not in the form Z

= DANAD.

1. INTRODUCTION

UCH effort and interest has centered in recent

yvears on the study of relativistic quantum
field theory based on the properties of vacuum
expectation values of products of Heisenberg field
operators, or in terms of Wightman functions.!
Beginning with very general physical requirements
on the theory, such as Lorentz invariance, absence
of negative energy states and local commutativity,
one attempts to obtain the mathematical and
physical consequences of these assumptions. In the
deduction of the consequences of the general re-
quirements, the theory of analytic functions of
several complex variables has played an important
role since, by virtue of the spectral conditions and
relativistic invariance, the Wightman functions are
boundary values of analytic functions of several
complex variables analytic in a region called the
future tube. By virtue of their analyticity and
invariance properties these functions are also
analytic functions of the scalar products of their
4-vector variables, or of their invariant variables.?
Local commutativity allows an extension of the
domain of analyticity of these functions.

A complete determination of the domain of
holomorphy,* using local commutativity, has been
carried out* for the 3 point but not for the higher
point functions. A possible first step in the procedure

* Supported in part by the National Science Foundation
and the Office of Naval Research.

t Present address: Palmer Physical Laboratory, Princeton
University, Princeton, New Jersey.

1 A. 8. Wightman, Phys. Rev. 101 860 (1956).

2 D. Hall and A. S. Wightman, Kgl Danske Videnskab.
Selskab, Mat.-fys. Medd. 31, No. 5 (1957).

3 For the definition of this term, see A. S. Wightman, in
Disperston Relations and Elementary Particles (John Wiley &
Sons, Inc., New York, 1960), p. 229.

4 3. Killén and A. S. Wightman, Kgl. Danske Videnskab.
Selskab, Mat.-fys. Skrifter 1, No. 6 (1958).

of determining the domain of holomorphy for these
functions is to find the image in scalar product space
of the mapping of the tube. We call this image the
primitive domain. Killén and Wightman® have
given an explicit parametrization of vectors corre-
sponding to the boundary of the primitive domain,
for all the functions. This enables one to investigate
in detail the types of boundary surfaces that could
arise. In this note we make a straightforward
application of this parametrization to derive the
boundary surfaces for the 4 and 5 point functions
in scalar product space.” A detailed study of the
hypersurfaces for the 4 point function has been
hitherto carried out by several investigators.””'
The results we derive for the 4 point function have
also been obtained by Killén using different tech-
niques.

The contents of the present note are as follows:
In Sec. 2 we outline the arguments leading to the
definition of B{™ (N) surfaces (n < 4) which make
up the boundary. In Sec. 3 we estimate the dimen-
sions of these sets and pick only those which can
possibly be hypersurfaces. It is shown that there
are only five basic types of hypersurfaces. The first
three (the Cut, S, and F) have already been studied®
by the methods of this note. In Sec. 4 we show the
equivalence of the fourth hypersurface to the
DANAD. (It appears for the 4 and 5 point func-
tions). Finally in Sec. 5 we prove that the fifth

5 Appendix II of reference 4.

6 Professor A. S. Wightman informs me that he has
obtained a similar derivation for the 4 point function bound-
ary [J. Indian Math. Soc. 24, 625 (1960)].

7 D. J. Kleitman, 1959 (unpubhshed), see reference 9.

8 R. Jost, 1959, see reference 10.

9 G. Kallen in D‘Lsperswn Relations and ElementaryPartwles
(John Wiley & Sons, Ine., New York, 1960), p

10 G, Kallén, Nuclear Phys 25, 563 (1961)

11 C, Fronsdal, J. Math. Phys. 2 748 (1961).

12 . Eriksson’ (to be published).
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type of hypersurface, which appears for the 5 point
function, cannot be expressed in the DANAD form,
but can be expressed in a modified form Z =
DUMUD. In Appendix A a list is made of the
equations in terms of invariant variables for the
basic surfaces, and in Appendix B an alternative
proof that points of DUMUD lie on the boundary
of the 5 point is given. The arguments there indicate
that the primitive domain is a domain of holo-
morphy.

2. DEFINITIONS AND PRELIMINARIES

As usual we restrict ourselves to the case of scalar
fields A;(z). Our study is then concerned with the
properties of the Wightman function

WPk, &, - )
= W("+1)(x1 — xz, T, — e X, — xn+l) (2.1)
0 |4:(@) 4:es) -+ Apra(ans)] 0) @2

which, due to the absence of states of negative
energy and spacelike momenta, are boundary values
of a function

T3,

I

WS (e, &0y o0 80), §o= &= i,
i=1,---n (2.3

analytic' in the open set"

—e <gF < e, >0, 2" >0,
i=1,---n (2.9

called the future tube 7,. The Wightman functions
are invariant under transformations of the proper
orthochronous homogeneous Lorentz group L!. The
Bargmann-Hall-Wightman theorem® states that
W™ is also an analytic function of the scalar
products ¢;{x = 2, J, kK = 1, -+ n. As {; varies
over the tube T,, z,;, varies over a domain 91, in
scalar product space (9 space).

Our object is to determine the boundary (denoted
dM,) of 9, for n = 3, 4. To achieve this, it is
useful to consider the extended tube 7/ which is
defined as the set of all points Ay, 2 = 1, -+ n,
where ¢; & T, and A € £, the group of all complex
Lorentz transformations of determinant 4 1. The
extended tube T? contains the tube T, as a subset.
Since a complex Lorentz transformation leaves
scalar products of space-time vectors invariant, the
extended tube also maps onto 91T,.

To determine 0, one uses certain general

13 The scalar product of { is defined here as ¢? = §®2 — g2,
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properties®'* of the mapping of vectors ¢; onto

their scalar products ;& = 2,z It can be shown
that the image of 977 is 99, and that 99N, is con-
tained in the image of 47,. Hence it is not necessary
to consider all points of 7. Let B, = (8T,) M
(0T, ie., the intersection of the boundary of
the tube and the boundary of the extended tube.
In fact the image of B, itself is d91,. On the other
hand, there exists no complex Lorentz transforma-
tion A € £, which carries points of B, into T,.
It is thus possible to partition the points of B,
into disjoint subsets B{™, m = 1, -+ n: B{™ is
the set of points ¢;, 7 = 1, --- n, of B, such that
there exists a A € £, carrying any (m — 1) element
subset of ¢, into 7',,_;, but there exists no A & £,
carrying some m element subset of ¢; into T.,.

Let those vectors of B{™ which cannot be trans-

formed into T, be relabeled ¢;, 7 = 1, -+ m. They
are characterized by'®
=0, 2°>0, i=1,--m (25
; MEAR) =0, 2 N=1,
A>0, i=1,---m, (2.6

where A denotles the antisymmetric tensor product.'®

Suppose there are N linearly independent vectors
among the 7;, ¢ = 1, .-+ m. We relabel them 7,,
z =1, --- N. We can then express the other vectors
in terms of them as

77k=25kf77fy k=N4+1, - m,
j:l’...N
7]1(0)>0, l=1,m

(2.7
7 = 0, (2.8)

and Eq. (2.6) may be written® in the more explicit
form

NE T Z MBrik = Z aiin;,

@ =oa (real)’’ (2.9)
k=N+1,---m, ¢,j=1,---N
Sh=1, N>0, I=1--m (2.10)

We see from Eqs. (2.7) and (2.9) that of the 2m

4 A good part of what follows in Sec. 2 is a summary of
the results of reference 5. We omit a discussion of the limit
points mentioned there.

* We have normalized the X;, and also set them strictly
positive, since if one is zero, say A;, then ¢4, ¢ =1, -+« (j — 1),
(j +.1), -++ m belongs to B, ™ 1) too, which contradicts the
definition of B, ™).

16 (ft A ,“)(M) = £;W ‘,”(V) _—
p# < v are space-time indices.

17 & denotes the transpose of the matrix a.

£:7 7;®, where
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real vectors (¢, n;, © = 1, -+- m), the maximum
number that are linearly independent'® is m.

We shall denote by B{™(N) the subset of B{™
defined by Eqs. (2.7) to (2.10) where the indices of
the vectors in these equations are permutations of
the original ones in Eq. (2.3). The subset of 991,
arising by mapping the points of B,™ (¥) will be
referred to as the surface B{™ (N).

3. THE SURFACES B,™(N) n = 2,3, 4

From the definitions of N and m we have
1 < N £ m £ n, and since we are dealing with
4-space, we also have N < 4. We shall restrict our
discussion, in the following, to the 3, 4, and 5 point
functions, so that n = 2, 3, 4, respectively. The
number of complex scalar products is (n/2)(n 4 1)
and the vectors ¢, giving rise to them are, in general,
linearly independent since n < 4. A surface of real
dimension n{n 4+ 1) — 1 = D (say) in the space
Cin2ymey of (n/2)(n + 1) complex variables [or
n(n 4 1) real variables] will be called a hypersurface.
For a given n we wish to know which of the B{™ (N)
sets could give rise to hypersurfaces. We expect the
boundary 891, to be covered by all such sets together
with their limit points.

We shall first consider the surfaces B (N) and
obtain upper bounds for their real dimension. This
upper bound will be denoted by P. We take, as our
point of departure, the explicit parametrization
given by Egs. (2.7) to (2.10) for vectors of B{™ (N).
Since m = n we have 1 < N < min (n, 4).

The real parameters \;, a;;, B, will be allowed
to range over all values subject to the restrictions
(2.10), @ = @, and (2.7) to (2.8), respectively. The
7 k=N--1,---n,dependonthey;,7=1,--- N,
through Eq. (2.7) and the §;,7 = 1, --- N, depend
on the 7; through Eq. (2.9). From Eq. (2.9) we have

>\f§f = Zaun,— - ’D\H‘If - Z )\kﬁkigky

i,j=1,--N, k=N+1,---n (3.1
Also, from Eq. (2.7) we obtain
S =& — 1 Eﬂkmi;
j=1,---N, E=N4+1.---n. (3.2)
The scalar products z;; = ¢, 4,7=1, - -+ n, would
then contain the real parameters A, oa;;, B,
niN; (l < .7); Nk, Eid (k < l)) 7’;.7 = 17 N:

k, 1 = N 4 1, --+ n. The total number of these
parameters, the restrictions in (2.7) to (2.10) having
been taken into aceount, will be our estimated upper

18 This result has been proved also by other means in
reference 11.
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bound for the (real) dimension of the surface B (N)
and is denoted by P.

The number of independent X\, is (n — 1), of
a;; is IN(N + 1), of n;m; is 3NV — 1), of 9.6 Is
Nn — N),and of &£, is$(n — Ni{n — N 4 1). I
N = 1 the number of 8, is (n — 1). Butif N > 1, the
condition (2.8) that all the 5, lie on the forward cone
(none being zero) gives a relation on the #’s and
they are not all independent. For example, if
N = 2,n = 3, then n; = 8,5, + B:7, and Eq. (2.8)
implies 8,8.m1: = 0. Now .9, > 0 since 71, 72
are linearly independent and by our stipulation
72i” > 0in Eq. (2.8) we cannot have 8, = 0 = f,.
Thus 8, = 0or B, = 0. If N = 3, n = 4, then
2 = Bumy + Bame + Bama, giving e, BiBimim; = O
and at least one 8; # 0, which equation may, in prin-
ciple, be solved for one of the 8, in terms of the others
and the 5,7; (¢ < 7). Hence, if N > 1, the number
of independent parameters 8; is (n — N)(N — 1).
Adding up these numbers, we obtain

P={%n(n+5)—2 if N =1
Intn+ 1D —JNWN—-1D4+aN—-1i N> 1.
Thus, letting R = D — P,

R=nn+1) —-1—-P

in — 2)m — 1), N=1
{%(n — NYn — N + 1), N> 1.

No hypersurface is possible if £ > 0. On the other
hand if & < 0 then we have suitable candidates for
hypersurfaces. In fact inspection of Eq. (3.3) shows
that the upper bound P has been chosen judiciously
enough to give & > 0 for all the B{” () surfaces
(n < 4). We see that (since n > N)

(3.3)

R = 0, if and only if {" =1,2 for N=1
n=N for N>1I.

The values in Eq. (3.4) (1 < n < 4) are

(m, N) = (1,1),(2,1),(2,2,3,3),& 4. (3.5

The surfaces are,” respectively,
B, B, B2, B"(3), B®
and denoted by the respective names

19 The 2 point function cut is only obtained by taking a
suitable limit for the points of Bi. This is because we have
excluded the tip of the light cone for the vector 7 in our
discussion. This is also a boundary point of the tube. So,
to be quite accurate, we could possibly have N = 0 when
Egs. (2.5) and (2.6) no longer apply. However we notice
that {# = £ in this case, and that if £ > 0 we are also on
the boundary of the extended tube. This boundary ({2 > 0)
is in fact the cut.



Cut S F DANAD DUMUD.
(3.5a)

They are, except for the last, already well known®'*°

and one readily satisfies oneself that they are in
fact hypersurfaces and not of lower dimension. The
DUMUD hypersurface for the 5 point function is
discussed below in Sec. 5. We notice that the 3
point function is exceptional in the sense that it
gives a hypersurface for N < n as well asfor N = =n.
The numbers P are given in Table I. For brevity
we shall sometimes refer to the DANAD and
DUMUD as the A and U surfaces, and denote the
cut by C.

The surfaces B{™ (N), m < n remain to be dealt
with. In these cases Eqs. (2.7) to (2.10) parametrize
some m-element (proper) subset of the vectors
{i, ¢ = 1, -+ n, each remaining ¢; lying within the
tube T,. The totality of points of B{™ (N) is given
by vectors ¢,,, t.. satisfying Egs. (2.7) to
(2.10), where o denotes any permutation of 1, --- n.
Of the $n(n + 1) scalar products z,,,;,, 2,7 = 1, - - - m,
those with ¢, j = 1, --- m are parametrized in
precisely the same form as z,,,,,¢,7 = 1, -+ min
B{™(N). Thus B{™(N), m < n, can give rise to
hypersurfaces® for no values of (m, N) other than

(m, N) = (1, 1), (2, 1), (2,2), (3, 3). (3.6)
We introduce generalizations of the surfaces

C, S, F, A of (3.5a). The generalized surfaces are
denoted by

C,‘, S,-:;, Fi,-, A,‘jk VVhere i < j < k,

i k=1,--n  (3.62
The z.,,r, s = 7, 7, k, in A;;, satisfy the same equa-

TasLE 1. Upper bounds for dimensions of B,(*}(N) surfaces.

No. of Upper bound
linearly for
(n 4+ 1) point Dimension of independent dimension of
function boundary 991, N B."™)X(N)
n D=nn+1)-1 N P
2 5 2 5
1 5
3 11 3 11
2 10
1 10
4 19 4 19
3 18
2 16
1 16

20 Roughly speaking, each W®+t1) n > 1, can have “lower
point function boundaries.” This 18 already clear for the
3 point. For the 4 point, Killén has numerically plotted
plane sections of 991(; exhibiting the intersection of DANAD
with 8;; or F'i; (reference 10).
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tions as 2., r, ¢ = 1, 2, 3, in A, the
otherz,,,r,s = 1,2, --- 4, r, s 5% 1, j or k, being free.
The F.;, S;;, C;, are defined in similar fashion. Then
all points on the surface B,™ (N), m < n (apart from
limit points) must lie** on the appropriate surfaces
of (3.6a). For example, any point of B;*(3) lies on
Ajza, A124, A134, or Asa,.

To summarize, for points on 99, it is sufficient
to consider the hypersurfaces B{” (N} with (n, N)
given by Eq. (3.5), together with the surfaces
B™(N), m < n, with (m, N) given by Eq. (3.6).
The former set of surfaces B{”(N) are precisely
C, 8, F, A, and U, whereas each of the latter set
B™(N), m < n is contained in the generalizations
of C, S, F, and A. There are, in all, only the Cut,
and four other basic types of surfaces. For example,
in the case of 891, we need only consider B{¥(4),
B®(3), B{(2), B{®(), and B{’(1). Points of
B* (4) form the U (or DUMUD) surface (Sec. 5).

4. THE DANAD BOUNDARY FOR
THE 4 POINT FUNCTION

We demonstrate now that the DANAD boundary
for the 4 point function is precisely the surface
B{¥(3). The equations for the latter, from Egs.
(2.7) to (2.10) are

NE = 2 agm,

3
)\,‘ > 0, Exl = 1) i)]= 1)27 3! (4‘1)
1

7 =0, & = a (real),

where the 7, are 3 (variable) linearly independent
vectors on the future light cone. Equation (4.1)
gives

$o = Z (aii/)\i -1 51‘1')771' (4-2)
and
Zip = (il = Z (aii/)\i — 1 51‘1’)77:'771
il
X (a;k/)\,, —_ 1/ 61k). (43)
Let mm = My, j, 1 = 1, 2, 8. Then I = M.

M;; = 0and M;, > 0,7 # L It is possible to express
the scalar products of the »; in the form

nim = Mil = w; N
where u; >0, §=1,2,3,
and N; = {O j=1 (4.4)
1 j=1; j,1=1,23.

2 On the other hand, parts of the surfaces (3.6a) certainly
lie in the interior of the singular region for the function.
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In fact, the u, are given uniquely by
M= (M12M13/M23)1/2, Mo = (M12M23/M13)”2,
ps = (MysMos/Mi)">. (4.5
The use of Eq. (4.4) in (4.3), with the substitutions
A, =
D, =

ﬂi(aii — i\ 5ii)#i
d; 8.5, d:. = (:ui)\i)_l}

(4.6)

gives
i = Z diAijNilAlk dk;
il

or in matrix form®

Z = DANAD (3 X 3), (A= A4,d > 0.

This expression is identical to that of Jost® and
Ksllén®'%; the real part of A is a symmetric matrix
and the imaginary part is diagonal with strictly
negative elements.

The other hypersurfaces for the 4 point are parts
of the 3 point type boundaries F,;, S,; (three of
each) and the three cuts C;, 1 < ¢ < j < 3. Equa-
tions for these surfaces (including the DANAD)
in terms of the 6 complex variables 2,; in M space
are given in Appendix A. The DANAD boundary
is denoted by A,,;.

5. THE DUMUD BOUNDARY FOR
THE 5 POINT FUNCTION

In this section it is proved that a new type of
surface appears when we consider the 5 point funec-
tion. This is the surface B{*(4) which we show
below can be written, in matrix notation, as
Z = DUMUD (4 X 4) but not in the form
Z = DANAD (4 X 4).

The equations for vectors on the boundary satisfy
the same Eqs. (4.1) to (4.3) except that now the
subscripts range from 1 to 4. There are 4 linearly
independent vectors #; on the future light cone,
giving six independent scalar products #,7,(¢ < 7).
It is not possible, in general, to find four u;,
j =1, -+ 4 satisfying Eq. (4.4). However those
points of B;*(4) where Eq. (4.4) is satisfied give
us a l17-dimensional subset forming the (4 X 4)
DANAD. This surface certainly lies on the boundary
M, but is of 2 dimensions too low to be a hyper-
surface.

Let
ninl=Mily j;lzly"'47

(M=M,M;;=0,M;,>0 for j=1, (5.1)

2 An alternative proof that all points Z = DANAD
(4 X 4) lie on the 5 point function boundary has been given
in reference 9.
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and then Eq. (4.3) can be written in the form
Z = DUMUD, (5.2)
where
Di=did;, di=Q0)">0 (53
and
U=a—-iD'=17. (5.4)

This is 19-dimensional hypersurface.”* The other
possible hypersurfaces for the 5 point are parts of
the four 4 point type boundaries A.j;;, the 3 point
type boundaries F,;, S;; (six of each) and the four
cuts C;, 1 < 7 < j < k £ 4. Equations for these
surfaces, in terms of the 10 complex variables z;
in 9N space, are given in Appendix A.

Another proof that DUMUD gives points on the
boundary is given in Appendix B. We note here
that the points of the surfaces B{®(2), B{¥(3), as
well as B{®(4), are all expressible in the form (5.2)
with 2-, 3-, and 4-dimensional matrices, respectively.
The results of Appendix B give specific functions
(A"") bhaving singularities at all points of these
surfaces. Those surfaces not, covered by the forma-
lism of Appendix B are analytic hypersurfaces
(C;, S:5). (So is F;;.) It follows that the primitive
domain is a domain of holomorphy.
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APPENDIX A. 9t SPACE EQUATIONS FOR
THE BASIC TYPES OF SURFACES

We use the notation z; = z;;, y; = Im 2;; ais a
real symmetric matrix, M is a symmetric matrix
with strictly positive nondiagonal elements, zero
diagonal elements, and d; > 0. Then we have the
following equations:

Thecut C; :2;, = p, 0 < p < .
Sii(i < ]): QZH + IL'ZL + Z,‘/k = 0,

0<k < o, Yy < 0.

% The DANAD (4 X 4) surface is that part of the
DUMUD (4 X 4) satisfying the 2 restricting real conditions
Mu M;u = Mla Mz4 = Mu Mza. It is of dimension 17.
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Fi (@< §):2 =zz/r+r,
0<r < o, ya; > 0.

A (2 < j < k): After elimination of only the
diagonal elements of «, we have

ypyazﬂa = ‘IMDQZPZG + aﬂﬂzl} + bl’dzd + CPG’

where
Y = =2 d(ay My, + M)
Ope = 2diae, M, M,,, b, = 2do0,M,.M,,
Coa = 4 dy dicg M o0y e + a0, My + a0 ML)°,

and p < ¢ are two of the numbers ¢, §, k, r being the
third.
U: The 10 invariant scalar products are

2y = d; di Z aikMklali - Mii - i[di Z aikMki
+dizaikMki]; IS'L.S]S4'

APPENDIX B. ALTERNATIVE PROOF THAT
Z = DUMUD LIES ON BOUNDARY

We give, in this Appendix, an alternative proof
that all points Z = DUMUD (n X n) lie on the
boundary 991, for n = 2, 3, or 4.

Let A = a — %A, (n X n),n = 2, 3, or 4, where
a = a (real),

Ay = A 8y, A >0, (Bl)
and let 9;,, ¢ = 1, -+ n, be linearly independent
vectors on the forward light cone, ie., 77 = 0,
7{” > 0. Then the points

&=d; Z A (B2)

within the tube 7, or on its boundary. Writing

= d; 8,5, d; > 0, n;9; = M,; (which is > 0 or
0 according as 7 # jor ¢ = j, M = M), and
z;; = ¢4, we obtain

Z = DAMAD

lie
D,;

(B3)
and that these scalar products must lie inside or on
M,.

On the other hand, the Fourier transform G of
the boundary value W™V (¢) of W™V(¢,) is
given'®'** by

W, o 5) = [ dp - dp.

X exp (=i D pit)Gppy) () -+ 0.  (BY)

This enables one to write

# 3, Killén and H. Wilhelmsson, Kgl. Danske Videnskab.
Selskab, Mat.-fys. Skrifter 1, No. 9 (1959).

A. C. MANOHARAN

W) = [ I] doiGlan) 88w aw)  (BS)
isk

where
AR ai) = fdp1 < dpn exp (=% 2. pify)

X 9(1)1) cr 9(pn) I(Ik pipr — a;) (B6)

and the integration range over the masses in Eg.
(B5) being defined by

ax >0, =% P >o0al gk,

Qjk
vee (=)t det (@) > 0. (B7)

The z dependence of W(z) is contained in the A"
function which has been explicitly evaluated.**
Writing ¥ = Za and denoting the eigenvalues of
Y by o,, the singular manifold for the A} function
is given by

1752

3 4 (¢)'? = ¢ (real number).
i=1

Let us choose masses ¢ = D'M D7, that is,
a;; = di'M,; d;'. These masses satisfy the condi-
tion (B7) and are thus within the range of integra-
tion in Eq. (B5). We also have, for this choice of a,

Y = DAMAMD™ = D(AM)’ D™.

The eigenvalues of (4M)® are those of ¥, namely,
;. Thus

> k(@) =Tr AM = Y A M.,
= Z (@; — 1AM ;= Z ;M
¢ (say),

This means that the points Z in Eq. (B3) must lie
on or outside 09M,. Combining with the previous
result, Z = DAMAD lies on 09N,

The above argument is valid for any choice of A
provided its elements are strictly positive. The
extra parameters may, in fact, be dropped by setting
A = D7, when we get the DUM UD form considered
in the body of the text.

I

(real number).

Notes added in proof.

(@) N. H. Moller, using techniques different from
ours, has independently obtained (preprint) hyper-
surfaces for the 5 point function. His method
consisted of Iinvestigating the singularity domain of
the A{*’ function. A transformation d,e;; d; — a;;,

% There is no correlation of = signs in the sum.



PRIMITIVE DOMAINS FOR WIGHTMAN FUNCTIONS

M, — d;M,; d; in our equation Z = DUMUD
(cf. the last equation of Appendix A) takes it to
the form Z = UMU and preserves the restrictions
on the parameters «;;, M,;, and U;;. The latter
form is identical with his.

(b) The article cited in footnote 6 contains proofs
of results we have summarized in Sec. 2 regarding
the parametrization of vectors which give rise to
991,,. Using the new results contained in that article
it is possible to give a direct treatment of the
main limit points we have not discussed in the text.
Special points of B{™ arise when ¢ A %, = 0 for
some of the vectors ¢;, ¢ = 1, --- m. In the case
7; # 0 we have £, = an; which means that these
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points belong to BV, i.e., the cut C;. On the other
hand, in the case #, = 0, that is to say some of the
vectors {; are real, it has been shown that the
parametric Eqs. (2.6), (2.7), (2.9), and (2.10) still
hold with the following provisions: When Im {; = 0
for some values of 7, the %, with the same values of
1 no longer stand for Im ¢, but denote auxiliary
vectors satisfying £m: = 0, 27 > 0, #{” > 0.
Parameters may again be counted almost exactly
as done in Sec. 3. The only difference now is that
on account of the additional restriction Im ¢; = 0,
which is seen to be independent of the parametric
equations, these special points of B{™ cannot give
rise to hypersurfaces by themselves.
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If a local Heisenberg field vanishes, or where appropriate has an infinite zero, on one of the

momentum space domains @, p* =

—~a% ®,0 < p? < m% and p = 0; or €, p* > M2 then the field

is a generalized free field. Counter examples show that this conclusion cannot be drawn if the field
vanishes on the momentum space domains D, 0 < M2 < p* < M2 p % 0; or §, p = 0. It follows
that if two fields in the same Borchers class are equal on one of the domains @, &, or €, then the
fields differ at most by a generalized free field in their Borchers class,

I. INTRODUCTION

OCAL quantum field theories, at present, seem

to separate into two types: one type which
can neither be solved exactly nor be shown to
exist mathematically, and another which can be
constructed in closed form. The first kind, hopefully,
allows the description of a wide range of physical
phenomena, such as the interactions of elementary
particles. The second kind, typically, describes
trivial systems, such as collections of noninteracting
particles. Some middle ground would be very
valuable—cases of field theory which are soluble,
in some sense, and have physical interest.

Of less importance, but still of interest, is the
question: What restrictions, in addition to the
general requirements of field theory, force a theory
to be physically empty? Answering this question
will help narrow our search for this middle ground,

* This research was in part supported by the U.S. Air

Force through the Air Force Office of Scientific Research and
Development Command under Contract AF 49(638)-24.

and may increase our understanding of the structure
of quantum field theory.

In this paper we discuss the effect of the require-
ment that the Fourier transform of the field A(p),
should vanish or have an infinite zero on some
domain in momentum space.'” For Lorentz in-

1 (G. F. Dell’Antonio, J. Math. Phys. 2, 759 (1961)
gave a weaker result of the kind discussed here. Dell’ Antonio
showed that A(x) is a generalized free field if A(x) satisfies
the usual repuirements of local quantum field theory and
A(p) vanishes for both p* < 0 and p* > M2 We thank
Dr. Dell’Antonio for communicating his results prior to
publication.

2 H. J. Borchers (private communication) has found
results equivalent to our cases @ and € below (and also
equivalent counter examples for cases D and &) using methods
of the theory of analytic functions of several complex vari-
ables rather than the wave equation technique we use.
Dr. Borchers informed us of his result for case € before we
obtained a result for this case. Our knowledge of Dr. Borchers’
proof using the kantensatz was helpful in constructing
our proof via the wave equation. In addition, Dr. Borchers
has pointed out that since p(k2) = 0, k&2 > M2, where p is
the Killén-Lehmann weight of the two point function,
implies A(k)¥o = 0, k2 > M?, which in turn implies the same
region of vanishing for f,(¢) as A(k) = 0, k* > MZ [see Sec. 3
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I. INTRODUCTION

OCAL quantum field theories, at present, seem

to separate into two types: one type which
can neither be solved exactly nor be shown to
exist mathematically, and another which can be
constructed in closed form. The first kind, hopefully,
allows the description of a wide range of physical
phenomena, such as the interactions of elementary
particles. The second kind, typically, describes
trivial systems, such as collections of noninteracting
particles. Some middle ground would be very
valuable—cases of field theory which are soluble,
in some sense, and have physical interest.

Of less importance, but still of interest, is the
question: What restrictions, in addition to the
general requirements of field theory, force a theory
to be physically empty? Answering this question
will help narrow our search for this middle ground,
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and may increase our understanding of the structure
of quantum field theory.

In this paper we discuss the effect of the require-
ment that the Fourier transform of the field A(p),
should vanish or have an infinite zero on some
domain in momentum space.'” For Lorentz in-

1 (G. F. Dell’Antonio, J. Math. Phys. 2, 759 (1961)
gave a weaker result of the kind discussed here. Dell’ Antonio
showed that A(x) is a generalized free field if A(x) satisfies
the usual repuirements of local quantum field theory and
A(p) vanishes for both p* < 0 and p* > M2 We thank
Dr. Dell’Antonio for communicating his results prior to
publication.

2 H. J. Borchers (private communication) has found
results equivalent to our cases @ and € below (and also
equivalent counter examples for cases D and &) using methods
of the theory of analytic functions of several complex vari-
ables rather than the wave equation technique we use.
Dr. Borchers informed us of his result for case € before we
obtained a result for this case. Our knowledge of Dr. Borchers’
proof using the kantensatz was helpful in constructing
our proof via the wave equation. In addition, Dr. Borchers
has pointed out that since p(k2) = 0, k&2 > M2, where p is
the Killén-Lehmann weight of the two point function,
implies A(k)¥o = 0, k2 > M?, which in turn implies the same
region of vanishing for f,(¢) as A(k) = 0, k* > MZ [see Sec. 3
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variant theories, it suffices to consider invariant
regions in momentum space corresponding to inter-
vals in the variable p°, together with the origin,
p = 0. We will treat the cases:

2

Q,p°'=—d; ®0<p°<m’ and p=0;

C,p">M; 9,0 M <p’<M;,p#0;

and &,p = 0.

We use the same script, capital letter to label the
case and the corresponding region in momentum
space. With one rather singular exception,’ the
cases we consider exhaust the possible connected
invariant regions in momentum space. For each
of cases @, ®, and @€, we show that vanishing of
A(p) on the corresponding domain implies that
A(z) is a generalized free field."”*” For cases D
and & we exhibit a counter example to show that
in general, the above conclusion cannot be drawn
for A(p) vanishing in D or &.

As corollaries of these results, we show that if
fields which commute with each other at space-like
separation in configuration space (i.e., are in the same
Borchers class®) are equal in either of the regions
@, ®, or G, then the fields differ at most by a general-
ized free field which commutes with both of them
at space-like separation in configuration space (i.e.,
is in their Borchers class).

In Sec. 2, we discuss the main mathematical tool
which we use in this work, Géarding’s analysis of
distributions on a four-vector (in a Lorentz metric
space) which vanish for space-like value of their
argument. Section 3 contains the proof of our results
including the corollary for cases @, ®, and @ and
Sec. 4 contains counter examples for cases D and &.

(d)), it suffices to assume that p vanishes above some mass
for case €. We thank Dr. Borchers for communicating his
results prior to publication.

3 After the present paper was completed, we received
a preprint “Support of a field in momentum space,” by
Derek W. Robinson, Institut fir Theoretische Physik,
ETH, Zurich, which contains a result equivalent to our
case @. We thank Dr. Robinson for communicating his
results prior to publication. Note added in proof. Dr. Robinson
has informed us later (private communication) that he has
also obtained independently results equivalent to our cases
® and €.

¢ There is an earlier result of a similar kind, namely,
that if the Killén-Lehmann weight of a field is concentrated
on a single mass, then this field is a free field of that mass.
This result was proved independently by P. G. Federbush
and K. A. Johnson, Phys. Rev. 120, 1926 (1960); R. Jost,
Lectures on Field Theory and the Many Body Problem, edited
by E. R. Caianiello (Academic Press Inc., New York, 1961),
pp- 127-145; and B. Schroer (unpublished).

§ The exception is §, 2 = 0, and p = 0.

¢ 0. W. Greenberg, Ann Phys. (N. Y.) 16, 158 (1961).

7 A, L. Licht and J. 8. Toll. Nuovo cimento 21. 346 (1961).

¢ H. J. Borchers, Nuovo cimento 15, 784 (1960).
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2. GARDING’S ANALYSIS OF LOCAL DISTRIBUTIONS

Our main mathematical tool in this work will be
Garding’s analysis®"'® of temperate local distribu-
tions f(z), where by “local”’ we mean that f(z) = 0,
2> < 0. Since this work is not well known, we give
a brief summary of Garding’s analysis following
Wightman’s exposition’ and refer the reader to
that exposition for a more detailed discussion.

Gérding showed that for every local temperate
distribution f(z) there corresponds a unique temper-
ate distribution G(g, o) defined by

—_ _l_f 21/2 iq zF, 4
Glg, o) = @ cos o(2)%e"*f(x) d'z,
which satisfies the five-dimensional wave equation,

62 3 62 62
(a_qﬁ -2 T gg)G(q, o) =0, )

iseven in ¢
G(Q; U) = G(Q} —U); (2)

and whose restriction to the plane ¢ = 0 satisfies
1 iq z,
G0, 0) = 10 = G [ " T@ a2 @)

Conversely, for every temperate G satisfying Eqgs.

(1) and (2) there is a unique local temperate f
whose Fourier transform f is given by Eq. (3);
and in particular the null functions G = 0 and
f = 0 correspond uniquely to each other.

According to Eq. (3), statements concerning the
support of f{(g) in momentum space lead directly
to statements about G(g, o) in the plane ¢ = 0."
If @ vanishes in some region of (g, ¢) space there
are three principles which allow this region to be
enlarged:

1. If G and all its normal derivatives vanish
on a time-like curve, then G vanishes in the double
cone region subtended by that curve.’

® L. Gérding, (unpublished). This work is discussed by
A. S. Wightman, Dispersion Relations and Elementary Par-
ticles, edited by C. de Witt and R. Omnes, (Hermann et Cie,
Paris, France, 1960,, pp 291-308.

10 The analysis of local functions due to Jost and Lehmann,
and Dyson; R. Jost and H. Lehmann, Nuovo cimento 5,
1598 (1957); and F. J. Dyson, Phys. Rev. 110, 1460 (1958),
also leads to the results found here when the Jost-Lehmann-
Dyson method is extended to treat more general regions
of vanishing of f(g) than were originally considered (private
communication from H. J. Borchers and R. Stora).

11 T4 is important to note that it is permissible to consider
the distribution, G(q, ¢), restricted to a given value of o,
because Malgrange and Garding have shown that a temperate
distribution which satisfies the wave equation is C*® in its
space-like variables when integrated with a test function
in its time-like variable, and vice versa.? This theorem of
Malgrange and Gérding also allows the discussion of an
infinite zero in the commutator matrix elements of Z(p)
which are considered in Sec. 3.



HEISENBERG FIELDS

2. If G and its first normal derivative vanish on
a space-like disk, then ¢ vanishes in the double
cone region subtended by that disk.’

3. A solution of the wave equation with prescribed
initial data on a given space-like surface is analytic
at any point which cannot be reached by character-
istics from regions on the given space-like surface
where the initial data is nonvanishing. (For an odd
number of space-like dimensions the above statement
holds in a stronger form with ‘“‘vanishes” replacing
“is analytic.”) If the solution of the wave equation is
known to vanish somewhere in the region of ana-
lyticity, then this third principle allows the region
of vanishing to be extended to the whole region of
analyticity.'*""®

Statement 1 is remarkable since it states that
the values of G in a solid five-dimensional region
are controlled by the values of G and its derivatives
on a single time-like line. Statement 2 is Huygens
principle. It follows from Asgeirsson’s lemma, how-
ever, that these two statements are equivalent.’
Statement 3 follows from the form of the funda-
mental solutions of the wave equation.

3. PROOF THAT A(x) IS A GENERALIZED
FREE FIELD FOR CASES @, ®, AND ¢

(a) Requirements of Quantum Field Theory

We list the usual requirements of local field
theory™: I. relativistic transformation propertics;
II. unique, normalizable, invariant vacuum state ¥,
and no negative energy states or states of space-like
momenta (spectrum); III. vanishing of the com-
mutator [A(x), A(y)] for x — y space-like (locality);
IV. completeness of the set of states obtained by
applying polynomials in the smeared field operators
to the vacuum state ¥,. In addition, we will
strengthen property II to require that the states
above the vacuum all have nonzero mass, i.e., for
all (improper) energy-momentum eigenstates ¥, ,,
p* > u® > 0. We consider the case of a single neutral

12 We thank Dr. J. Peetre for bringing this third principle
to our attention.

13 We conjecture that a still stronger principle of vanishing
holds: (2’) (Generalized Huygens principle). If from some
point, P, all straight lines lying in or on one cone intersect
one or more disconnected regions in which G and its first
normal derivative vanish, then G vanishes at P. We can
express this conjecture heuristically by saying that light
must travel in straight lines.

A, 8. Wightman, Phys. Rev. 101, 860 (1956); and
“Problemes mathematiques de la theorie quantique des
champs,” University of Paris lecture notes, 1957 (unpub-
lished).
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scalar field; however this simplifying assumption is
not essential.

(b) Reduction to Proof of Vanishing of a
Matrix Element of the Commutator

We will show below that for cases @, ®, and €,
(T,.a, [A(2), AW)]T0)

vanishes unless ¥, , is the vacuum state [where
{¥, .} is a complete set of (improper) energy-
mementum eigenstates labeled by energy-momen-
tum p and other quantum numbers «]. From this
fact it follows that the commutator behaves like
the ¢ number

A (@ —y) = (¥, [A@@), AT

acting on the vacuum state ¥, where A’ is an
integral over masses of free field commutator fune~
tions. Then

{lAl@), AY)] — 7 4@z — P}¥ = 0,

and a fundamental argument due to Jost,'® which we
will not repeat in this note, leads to the conclusion
that the commutator is a ¢ number, i.e.,

[A@), AW] =7 (@ — v).
This c-number property of the commutator, to-
gether with the requirement (property II) of no
negative energy states, implies that A(x) is a
generalized free field. The only assertion in this
paragraph which remains to be proved is the first
one,

Fp.u(x) y) = (\l,p.a: [A(CL’), A(?/)}‘I’o) = O}

unless ¥, , = ¥,.

(4)
We devote the next three subsections to proving
Eq. (4) for cases @, ®, and C.

(¢) Domains @, ®, and €

We will show that if, in addition to the general
requirements of subsection 3(a), the Fourier trans-
formed field 4 (p) vanishes or has an infinite zero on
any one of certain domains of momentum space,
then A(x) is a generalized free field. [The require-
ment that for p in some region [A(p), 4 (z)] vanish
for all z, which leads to the same results, is not
really weaker than vanishing of A(p).] In the cases
where we require an infinite zero of A(p) on a given
domain, this requirement can be replaced by
A(p) = 0 on any arbitrarily small open domain
which includes the original one. The cases for which
we show that A(z) is a generalized free field are:

15 R, Jost, Lectures on Field Theory and the Many-Body
Problem, edited by E. R. Caianiello (Academic Press Inc.,
New York, 1961), p. 136.
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@: A(p) = 0, and (3/9p*)"A(p) = 0, n
integral, for p* = —d’.

®: A(p)=0, 0<p><m®; and A(p)=0,
and ®(3/3p")A(p) = 0, for p = 0,
where ® is an arbitrary polynomial
of differentiation.

e:Ap) =0,p° > M.

(d) Requirements on the Commutator Function

For convenience in proving Eq. (4), we introduce
the commutator function, f, .(x), from which the
center-of-mass coordinate dependence has been
removed

fp.a(x) = (\I/p.a; [A(x/2); A(—x/2)]\1/0),

and also the Fourier transforms, F,(k:, k) and
f,(q) of F and f, where, for example,

@) = [ datigee.

We have suppressed the quantum numbers «, since
they play no part in our discussion. It is straight-
forward to find the relations between the large and
small f's. They are

Fia, ) = " (s — )
and
Foky, ko) = 8(p + ki + k)fo(kr + D).

¢ = SPACE (0=0)
70

Fic. 1. Domains of vanishing of f,(¢) for case @: f,(¢) = 0
in the shaded regions from property 11, spectrum (the exist-
ence of a lowest mass state is not used for this region), and
f»(¢) has an infinite zero on the hyperboloids H.: (¢ = 3p)? =
—a? from the assumption that A(k) has an infinite zero on
k2 = —q?

0. W. GREENBERG

The conditions on f, are
fp(l') = O) ?

from property IIT (locality),
f.(e) = 0, outside the union of ¢ > —%ip and
q < ip, where k, > k, means (k, — k,)* > 0,
kK — k3 > 0,
from property 11 (spectrum) and
7-(¢) = 0 on domains @, ®, or @, one at a time
from vanishing of A(p) where, in detail, these con-
ditions are
Q:fulki + 2p) 0, and (3/0k7)"
(kv + 3p) = 0, n integral, for
k¥ = —a®; and the same with -k,
replaced by —k;, and &k, 4+ Ip
replaced by —k, — 1p.
®: 1k + 3p) = 0,0 < ki < m’
ki + 3p) = 0, and @(3/0kY)
Lk + 3p) = 0, k&, = 0; and the
same with k; — —k,, and k, 4+ ip —
—ky — Ip.
C:f,(ks + 3p) = 0, k} > M?; and the
same with k, — —k,, and k, + %p —
—k; — %p. Since p is time-like here
(spectrum) we choose p = (p, 0) with
no loss of generality.
(See Figs. 1, 2, or 3, respectively.)

<0

(e) Vanishing of f, for Cases @, &, and @

Now we show that f,(z) vanishes for cases @, ®,
and €. We refer again to Figs. 1, 2, and 3 in which
the shaded regions and heavy lines are domains
where G,(q, 0) = f,(¢) vanishes. We note that in
cases @ and & the only use we make of property 11,
spectrum, is to place p on the time axis without loss
of generality. In case C the only use we make of the
strengthened spectral condition which prohibits
light-like states is again to place p on the time axis.
We consider the three cases in alphabetical order
and show for each that principles 1, 2, and 3 allow
the regions where @, vanishes to be enlarged to the
whole (g, o) space.

This conclusion follows for case @ in two steps.
First we use principle 1, which is valid for the family
of time-like curves {7} lying in the hyperboloids
(@ — 3p)* = —a’ and (¢ + 3p)° = —d’, with
end points (p + (¢’ a®'"? q, 0) and

—ip — (@° — &% q, 0), for all || = A, provided
G, and all its derivatives vanish on this family of
curves. This last condition holds since (i) all deriva-
tives along the surfaces of these hyperboloids
vanish since G, vanishes on these hyperbloids,
(ii) all derivatives normal to the surface of these
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hyperboloids, but in the plane ¢ = 0 vanish by the
infinite zero hypothesis, (iii) all odd ¢ derivatives of
@, vanish because G, is even in ¢, Eq. (2), and finally
(iv) all even ¢ derivatives of (,, starting with
8°/3¢°, vanish since G, satisfies the wave equation
Eq. (1). Using principle (1) for longer and longer
families of lines {T\} we find that G,(g, ¢) vanishes
in the union, €,, of the family of double cones
with vertices at (3p + (@ — @*'* q, 0) and
(~3%p — (@ — &®'?, q, 0), for all |g] = A. For any
finite point P : (0, q, ¢) in the ¢° = 0 plane there is
aXo D for X > )\, P is included in C,,'® and thus in
the limit A — «, G, (g, ¢) [and by similar arguments
(8/8¢°)G,(g, o)] vanishes in this ¢° = 0 plane.
Now from principle (2) we conclude that G,(q, o)
vanishes everywhere, and, therefore, so does f,(x),
which completes the proof that A(z) is a generalized
free field for case Q.

The same conclusion follows for case ®& from
similar arguments based on the region of vanishing
for this case (Fig. 2).

For case @ we first use principle 1 which suffices
to prove vanishing of G,(q, ¢) in

a: {Um Vi | (k430" = M*, k° + 3p > 0};
B:{UnVao |k —3p)’ =M,k — jp <0};
and
v : {VwVan | k+ )" =0, + 3p >0,
X k] > 3} N VU Vi [ — 30)° = 0,
X k" — 3p <0, [k| > 3},

where V7, ,, is the five-dimensional forward (back-
ward) cone with vertex at (g, o). It is clear intuitively
and is confirmed by an envelope calculation that
these regions are

o Vi M V?—p/z.—M);
B: Vi M V-
Y- (Q: 0') GE [V:—p/Z.T) U V(_p/‘-’.r)]: T arbitra‘ry'

Regions « and B are the intersections of five-di-
mensional cones; region v is a cylinder, with base
the original region of vanishing in the ¢ = 0 plane,
and with developable sides orthogonal to this
¢ = 0 plane. Since «, 8, and v are disjoint, principle
2 leads to no further increase in the region
of vanishing.

In order to prove that G, vanishes identically, it
suffices to connect « and B to yv. We do this by
proving vanishing in the neighborhood of a point

and

18 For P = (0, q, o), A2 = (p%) o2 + a2 —(3p®)32 + a2
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Fie. 2. Domains of vanishing of f,(q) for case ®: f,(¢) = 0
in the dotted region bounded by J..: (g = ip)? = m2, (A(k) =0,
0 < k* < m?), and f,(g) has an infinite zero at ¢ = =ip(A(k)
has an infinite zero at k = 0). The figure is drawn for the
cagse m? < (3p)>.

¢ -SPACE (0= 0)

F16. 3. Domains of vanishing of f5(¢) for case €: f,(¢) =0
in the vertically shaded regions v (spectrum) and in the
dotted regions o and 8 bounded by K.*: (¢ &= ip)? = M2,
¢ + 3p > 0,and K. ": (g — 3p)? = M?% ¢° ~ ip <O, re-
spectively, (A(k) = 0, k2 > M?). The figure is drawn for
the (least favorable) case M2 > p2
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F1e. 4. Intersection in the ¢ = 0 plane of regions which
oceur in the discussion of case C.

(w, 0) which lies in the ¢ = 0 plane in the region
between the four-dimensional cone V7i,,,, and the
upper sheet of the hyperboloid, (¢ + ip)® = M7,
which approaches it asymptotically. (See Fig. 4.)
The argument which we will give for vanishing of
G, near (w, 0) is a simple geometrical one based on
principles 2 and 3. However, to give formulas
for all the regions involved is cumbersome, and may
cloud the simplicity of the argument. For this
reason, we first state the argument qualitatively,
with reference to Figs. 4 to 7, and postpone the
details of the argument to the next paragraph. Our

$°%0 PLANE

F1a. 5. Regions of interest for case € in the ¢° = —v plane,
The figure shows the intersection of the regions of interest
with the two dimensional plane containing ¢ = w and o.
Formulas for the various regions are given in the text. 7"’ is
the region inside the circle C”’. T is bounded on the left by
an arc E of "' with extrema E., above and below by arcs
of the circles C'=, whose centers D = are given by q = 3pw,
o = =wop = =[w” — (|w2 — 3p)2*’2, and whose radii are
both v, and at the right by a segment of the straight line L,
whose end points L. are given be ¢ = (3p + v)%, ¢ = =op.
{ is the region inside the intersection of the circles Q..
T is that part of 7' which does not lie in @. Note that no
points of the intersection of the characteristic cone from (w, 0)
with the plane ¢° = —v, i.e., points on the circle C’/, lie in T'.
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objective is to show that G, is analytic in a neighbor-
hood of (w, 0) which includes points in « and v at
which ¢, vanishes. Then it follows that G, vanishes
in the neighborhood of (w, 0), and this new region
of vanishing connects the old regions « and v. We
show analyticity in this neighborhood of (w, 0) by
using principle 3 applied to the data in the inter-
section of the backward cone of dependence of
(w, 0) and some plane ¢° = —v, v > 0, region T"".
(See Figs. 4, 5, 7.) Prineiple 3 will imply analyticity
at (w, 0) provided we can prove, from our informa-
tion about regions of vanishing of G, that G,(w, 0)
cannot obtain a contribution from characteristics in
the plane ¢° = —». We use principle 2 in two steps
to show this. First we consider the domain of de-
pendence of (w, 0) in the plane ¢° = 0, the region
§’. (See Figs. 4, 6, 7.) We note that vanishing in vy
restricts this region to S. The domain of dependence
of (w, 0) in the plane ¢° = —v is then restricted to
the domain of dependence of S in this plane, which
we call 7. Vanishing in 8 restricts this domain of
dependence of (w, 0) still further to 7. The crucial
point is that for proper choice of w and », T contains
no characteristics which can reach a neighborhood of
(w, 0), which proves the desired analyticity at w.

Now we go through this argument again giving
formulas for the regions involved. We choose (w, 0)
to be any point such that

=i+ W < w’
S _%p + (w2 + ﬂ12)1/2.

The region 7* in the ¢ = —v plane is bounded by
the surface C',

€ (g~ W+ o = W+ o))
= 0 plane is bounded by the

w0>M—%p;

(See Figs. 5, 7)

The region 8’ in the ¢°
surface B,

B:(g—w’+s =™

The region S in the ¢° = 0 plane is bounded by the
surfaces B and D,

(See Figs. 6, 7)

D:lq| = 3p. (Iigs. 6, 7)
The region 7” in the ¢° = —uv plane is bounded by
the surfaces ¢, C., and L, where C. and L are
given by

C. : envelope of (q—3p8)*+(cFe,)’ =
v®, for all é, where é is a unit 3-
vector and (Figs. 5, 7)

op = [ — (w — §p8)°]'7,

L:lql = %p +o. (Figs. 5, 7)
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Finally, the region 7T in the ¢° = —v plane is
T =T — TN Q, where @ is bounded by the
surfaces Q.

Q.:q + (¢ F M)’ =+ i)’

The region T contains no characteristics which can
reach (w, 0) provided that we can choose w and v
(subject to our initial conditions on w) so that
all points {£} in the intersection of the cone V¢,
with the plane ¢ = —» which lie in 7" are in Q,
and thus not in 7'. This requirement will be satisfied
provided @ contains the extreme points of {E}, i.e.,
points with the largest ¢ coordinate, which we call
E.. The points E. have coordinates

E. {q = q = [0 — 0/u")(iw] — 1010
g = *£a, Bl ) N

= (1 + v/w")[w"” — (
where 1 is a unit vector in the direction of w. The
condition that E. & Q is

@G + (o0 + M) < @+ 307,

and is satisfied in the large |w| limit for a range of
w’ connecting « and v provided v > (2M*)/p, which
can always be satisfied by proper choice of v. Thus,
a and v are connected by a region of vanishing,
and use of principle 1 shows that G,(g, ¢) vanishes
identically. This concludes the proof that A(x)
is a generalized free field for case €.

[w]

(f) Heuristic Remarks

If we consider that A (p), for p off the mass shell,
can be measured in some kind of “impulsive probe’
experiment, then we might represent a matrix
element in which A(p) has space-like momentum,
i.e., produces momentum transfer in interacting
with some ““ B” particle, by a diagram like Fig. 8(a).
A corresponding crossed matrix element where A (p)
carries time-like momentum would be represented
by the diagram in Fig. 8(b). Case & states that if
all diagrams which correspond to A(p) carrying
momentum transfer have an infinite zero at some
—p° = A* > 0, then the crossed diagrams which
correspond to A(p) carrying mass also vanish; and
in fact A(p) leads to no physical effects at all.
Similar remarks hold for case &. For case €, by
virtue of Borchers’ result® that p(p*) = 0, p* > M*
suffices, the absence of high mass intermediate
states in the propagator implies the absence of all
physical effects. Note that the matrix element
(2 | A(0) | 0) can contribute to p(p®) for arbi-
trarily high masses, so that no conclusion can he
drawn (on the basis of the present arguments) from
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Fig. 6. Regions of interest for case € in the ¢° = O plane.
The figure shows the intersection of the regions of interest
with the two-dimensional plane containing ¢ = w and o.
Formulas for the various regions are given in the text. S’ is
bounded by the circle B. 8 is bounded by an arec of B and
a_segment of the straight line D, whose end points D. are
given by q = 3pi, ¢ = op (see Flg 5 for ap).

the requirement ;,(n | A(0) | 0) = 0, n > 2, which is
weaker than that of case €.

4. COROLLARY FOR CASES @, ®&, AND ¢

Next we consider two fields A (x) and B(z) which
(a) describe theories which have properties I through
IV above, (b) are in the same Borchers class B,

Fic. 7. Regions of interest for case € in the three-dimen-
sional subspace spanned by the ¢ axis, the ¢° axis, and the
vector ¢ = W. The circle C’’ and the objects associated with
it are in the ¢° = —v plane; see the caption of Fig. 5 for a
detailed description of these objects. The circle B and the
objects associated with it are in the ¢° = 0 plane; see the
caption of Fig. 6 for a detailed deseription of these objects.
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A(p)
------- F1e. 8. (a) Hei-
B senberg field A(p)
as a probe carrying
4 space-like momen-
y tum, —p? = A? =
\a (k — kP >0.(b)
H Crossed diagram:
i) ! Heisenberg field
i carrying time-like
! momentum p* =
w=k+k)2>0.
B B
4 4
(b)

and (c) have Fourier transforms which agree'” on
the domains @, @, or €. For case @, vanishing of the
Kallén-Lehmann weight of A — B suffices; however,
equality of the weights of A and B in @ does not
suffice. Since A(xr) — B(z) satisfies the hypotheses
of the discussion above, we conclude that A and B
differ at most by a generalized free field in their
Borchers class 8.

5. COUNTER EXAMPLES FOR CASES D, AND ¢
Finally, we discuss cases ©, 0 < M} < p° < M3,
17 By agree, we mean A(p) = B(p) on open sets; A(p) =

B(p), and
©/9p")"A(p) = (8/3p")"B(p)  _
n integral, on single hyperboloids; and A(p) = B(p), and

®/9p") A(p) = ®(3/9p")B(p)

at the origin.

GREENBERG

p # 0, the region between two double-sheeted
hyperboloids excluding the origin; and &, p = 0,
the origin, and exhibit counter-examples to show
that A(p) = 0in D or & does not imply that A (z)
is a generalized free field. The counter example for
case D is the Wightman polynomial'® A(x) =
¢o(x) + g : ¢o(x)’: where ¢,(x) is a free field of mass
m. This example satisfies properties I through IV,
and is not a generalized free field. However, the
momentum space formula

A(k) = $olk) 8(K° — m”)
+g [ dp &Gk + p) dlGE + 7 — m]

X $u(3k — p) 83k — p)’ — m’)
shows that A(k) = 0, 0 < k* < m%, and m® <
¥* < (2m)°, which finishes the discussion of this
counter example. We conclude this note by re-
marking that the Wightman polynomial A(z) =
¢o(x) + g : ¢o(2)* has support everywhere in mo-
mentum space except at the origin and thus can
serve as a counter-example for case &.
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Regge’s introduction of complex angular momenta is studied in more detail. The shape and number
of trajectories of S-matrix poles as functions of the energy is investigated, with particular attention
to the way they leave the real axis, and to their ends at E ~» 4 . The conditions are found under
which the 8 matrix is meromorphic even in Re I < —1/2. Some properties of the S matrix in the
left half-plane are discussed and so are its symmetry between left and right half-planes, its branch

point at E = 0, and the residues at its poles,

1. INTRODUCTION

T is one of the important consequences of quantum

mechanics that the angular momentum of all
particles must be an integral or half-integral mul-
tiple of %. Nevertheless, lately it has become interest-
ing in elementary particle physics to relax the
quantum nature of the angular momentum mathe-
matically and to consider it not only as a continuous,
but even as a complex variable. In so doing, one
makes use of the fact that nonrelativistic seattering
theory may be formulated in terms of differential
equations which, if analyzed by means of partial
waves, contain the angular momentum merely as
a parameter. The elimination of the angular aspects
removes the necessity for the angular momentum
to be quantized, and it is free to assume arbitrary
values.

That such a relaxation of the discreteness of the
angular momentum is interesting can be seen in
various ways. For example, it is well known that if
the nonrelativistic spherically symmetric potential
between two particles goes down exponentially at
infinity, then the individual S-matrix elements may
have singularities in the complex plane beyond a
certain distance from the real axis. However, if
these elements are summed up to the forward
scattering amplitude, then the result no longer con-
tains any singularities in the upper half of the com-
plex k plane, a fact which is commonly expressed as a
dispersion relation. There must, therefore, be strong
correlations between the singularities of various S-
matrix elements in the complex & plane that assure
that in the sum making up the forward amplitude
(or even some nonforward amplitudes), the singulari-
ties all manage to cancel. These correlations should
in principle be comprehensible by considering the
various S-matrix elements as special values of a
continuous function of the angular momentum.

* Supported in part by the National Science Foundation.

Another reason, and one which induces the con-
sideration not only of continuous real but even of
complex angular momenta, is the one that led Regge'
when he first proposed it. .

The scattering amplitude of two spinless particle
interacting via a spherically symmetric potential,

f(6) = (k)™ D 21 + 1) — 1)Py(cos 6), (1.1)

may be written formally as a Watson'™ contour
integral

1(8) = (k)™

X [ WPy (= cos (S = D/cosmh,  (1.2)
c

provided that exp (2¢3,) can be considered the value

of an analytic function S, at A = I + 1. The con-

tour C is indicated in Fig. 1. Further, assuming

that 8, is regular in the right-hand half-plane

A PLANE
K—‘—.-
W2 MR 812

¥16. 1. The contour C.

1T. Regge, Nuovo cimento 14, 951 (1959).

s Added in proof. In view of some confusion in the refer-
ences to the historical origin of the replacement of this series
by a contour integral it may be well to straighten out the
record. The method is based on those introduced in the con-
text of bending of electromagnetic waves by a sphere by H.
Poincaré [Rendiconti Circolo Mat. Palermo 29, 169 (1910))
and J. W. Nicholson [Phil. Mag. 19, 516 (1910); 20, 157
(1910); Messenger Math. 37, 84 (1907)]. However, the exact
form of the general method as it is used at present first ap-
peared in the work of G. N. Watson [Proc. Roy. Soc. (Lon-
don) 95, 83 (1918)]. A. Sommerfeld {Partial Differential Equa-
tions in Physics (Academic Press Inc., New York, 1949),
pp. 282 f.) deserves credit for resurrecting it. I am indebted
to Dr. E. Guth for bringing the Poincaré reference to my
attention.
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Re A > 0, except for isolated poles at A = o, + %,
and that (8, — 1) vanishes sufficiently rapidly at
infinity, the contour can be shifted to the imaginary
axis and we get

f(8) = (2rk)™"
X f ANN[SEN) — 1Py _ya(—cos 6)/cosh 7\

A CRE

The necessary convergence conditions for large |A|
have been proved by Regge ef al.”

The virtues of the representation (1.3) are the
following. For the purpose of double dispersion
relations one must know the behavior of f(6) at
fixed energy and large momentum transfer A. Since

the latter is related to the scattering angle by
L — A%/28,

letting A go to infinity leads to the unphysical
“angle” |cos §] — ». Now Bottino et al.® have shown
that the integral in (1.3) vanishes in the limit as
|eos 8] — . Since for large |cos 8], P., (cos 6)
goes as |cos €|%°*", the behavior of f(f) is thus
determined by the pole term with the largest Re «,,
which in turn fixes the number of subtractions neces-
sary in the Mandelstam representation. It is im-
portant, therefore, to establish that the poles don’t
diffuse on the right all the way to infinity. Further-
more, since their positions are functions of the
energy, it becomes of interest to study the tra-
jectories described by the poles of S in the complex
A plane as a function of the energy.

The pole terms in (1.3) can be thought of in
specific physical terms. We may recover the physical
S-matrix elements from f(6) by

B8P, (—cos 0)/sinra,. (1.3)

cos 6 =

(8, — 1)/ik = f " deostf(OP(cos B).  (1.4)

If we insert (1.3) in this then the contribution from
the nth pole term in (1.3) is*

2/m) (e + 3)8,
—-—a)ltoa+1’

SiM(E) = (1.5)

because*

sin 7o

(l~0/)(l+a+1)

f dP,()P(~2) =

2 T. Regge, Nuovo cimento 18, 947 (1960).

3 A. Bottino, A. M. Longoni, and T. Regge, Nuovo
cxmento 23, 954 (1962).

4G, F. Chew, S. C. Frautschi,

. and 8. Mandelstam,
Phys. Rev. 126, 1202 (1962).
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This will be the most strongly varying contribution
to S near an energy F,, where Re o, = [ and Im e,
is small. There is a resonance. We may describe it
in terms of a Breit-Wigner formula by expanding
a,(F) about £ = E,. Then

11 1

[ — o, (E) NO’:L(EO) E — E, + AE 4 (/2T (1.6)
where

h Im 479 Im oz,’, —

A = E o im0

r = 2 Im o, Re &}, (1.8)

(Re a)® + (Im ap)*’

everything being evaluated at ¥ = FE,, and the
prime indicating differentiation with respect at E.°

The picture that emerges from a consideration
of the pole trajectories as functions of £ in the
complex A (or I) plane is this: For negative E, the
pole moves along the real axis to the right. When
it goes through an integral ! value it causes a
physical bound state. Depending on the strength
of the interparticle force, it may go through one or
several integral values of [, or it may never even
reach I = 0 before, at £ = 0, it turns away from
the real axis into the upper half of the complex [
plane. If it leaves at a point ! > %, then it does so
in the forward direction with zero slope and can
therefore be expected to cause a resonance as its
projection onto the real axis passes an integral
I value. Under certain conditions on the potential
it will eventually turn around and pass back into
the region Re | < —32. Thus, one has the physically
very appealing view in which several bound states
and possibly resonances are different manifestations
of the same fundamental cause. They originate from
the “same’ pole of the S matrix.

Section 2 is concerned with preparatory defini-
tions of wavefunctions and the S matrix. Section 3
contains a discussion of the physical consequences
of inequality (3.4) for successive phase shifts at
the same energy, first derived by Regge.! In Sec. 4
some details of the shape of a pole trajectory in
the region Re I > —3 are discussed. One of the
" The width of the resonance thus depends not only on
the nearness of the pole to the real axis but also on its energy
dependence. Equation (1.8) differs from (1.6) of reference 4
which failed to take the energy dependence of Im « into
account. It should be remembered in addition, as in all
resonance theories, that to speak of a “resonance’ is observa-
tionally meaningful only if it is sharp relative to other energy
dependencies in the amplitude. Otherwise the resonance
denominator need not lead to a maximal partial cross section.
Furthermore, the energy shift AE must also be small in order
for the result to be meaningful. If AF is not small then no

resonance occurs near F,, and near Ey — AE the neglected
terms in the expansion of «(£) become important.
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results is the angle under which a pole leaves the
real axis at E = 0, given by (4.8) and the subsequent
discussion. Section 5 deals with the number of pole
trajectories. The main result is embodied in the
inequality (5.9) for the number of pole trajectories
that enter the complex ! plane at I > —1.

Up to this point all considerations were limited
to the region Re I > —1;1i.e., Re N > 0. From the
point of view of direct solution of the integral
equation for the regular wave function, the left-hand
half of the A plane is quite inaccessible. The “regular”’
solution there becomes ‘“‘irregular” at r = 0 and the
integrals no longer converge absolutely. In order to
say anything about the § matrix in this region,
an analytic continuation of the wave function is
necessary. The possibility of doing that depends
only on the behavior of the potential at r = 0, and
it is shown in Sec. 6 that if rV and its first m deriva-
tives are finite at r = 0, then the S matrix is mero-
morphic for Rel > —m/2 — 1. In Sec. 7 the analytic
continuation to the left-hand N plane is exploited
for a discussion of certain symmetries that exist
between poles on the left and on the right. In Sec. 8 it
is shown that for Re A < 0, also, the first Born ap-
proximation is good at E — - ». As one of the conse-
quences, it is proved that as E — - », a trajectory
can end only either at infinity or else on a negative
integral value of I (if #V and all its derivatives exist
at r = 0). There are two Appendices; Appendix A
is concerned with the branch point of S at £ = 0;
Appendix B, with the residue of S at a pole.

2. PRELIMINARIES

We want to consider the radial Schrédinger
equation®
— + N =+ VY =Ky 2.1
where A = 1 + 3. An irregular solution f(A, k, r)
is defined by the boundary condition

lim fQ\, k&, Ne’™ = 1.

r—®©

It follows that
f(—k, k: T) = f@\, k: 1") (23)

and in any region of analyticity connected with the
real X and & axes,

2.2)

f*o‘*) _']C*,T) = f()‘x k- T). (24)
In the absence of a potential, f reduces to
.fOO\y k, 7_) — ea‘(ar/Z)()\+1/2)(7rk7_/2)1/2H)(\2)(kr)’ (25)

8 The following is entirely analogous to what is done
for integral values of [ and closely follows the procedure of
reference 7.
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H{® being the Hankel function of the second kind.
With the potential V present, f satisfies the integral
equation

f()‘) k’: 7‘) = fﬂ()\y k; 7‘)

= [ aratsrmverno, e @0
with
s r, ) = daler’)?[ (') Ya(kr)
— Jy(kr) Yy (kr')], 2.7

where J, and Y, are the Bessel functions of the
first and second kind. The standard proof’ of the
convergence of the series of successive approxi-
mations to (2.6) goes through irrespective of whether
\ is a positive half-integer or not, provided that the
first and second absolute moments of V are finite.
Everything that is known of f as a function of %
depending on various assumptions about the poten-
tial can be easily extended to arbitrary complex
values of \. For fixed 7 # Qand k& # 0, f is, by similar
arguments, seen to be an entire function of A.
A regular function ¢ is defined for Re A > 0
by the boundary condition
lim 727\, &, 1)

r—0

= 2L 4 N)/TA + 2.  (2.8)
In the absence of a potential we have
‘PO()‘) k} 7') = (%w)lmk—)‘*])\(kr): (29)

while in the presence of V, ¢ obeys the integral
equation

(P()‘; k; T) = ¢0()‘7 k; 7’)
+ [ gl r Ve, B ). (210)

Clearly ¢ satisfies

o\, =k, 1) = o\, k,7) 2.1

and
P*N*, k¥, 1) = o\, K, 1) 2.12)

in any region in the complex N and k planes con-
nected with the real axes. Again, the proof of the
convergence of the series of successive approxima-
tions goes through as in the case of integral I,
and the analyticity properties of ¢ as a function of
k are the same. Furthermore, for each fixed k and r,
¢ is an analytic function of A regular in Re A > 0.

7 R. G. Newton, J. Math. Phys. 1, 319 (1960).
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The integral equation as it stands breaks down for
Re M < 0. Its analytic continuations to that region
will be discussed in Sec. 6.

We next express ¢ in terms of the two linearly

independent solutions f(A, %k, r) and f(\, —k, r):
o\, k,r) = [FO\, Bfn, ~k,7)

— F(\, =)\, k, n]/24k, (2.13)
where F is the Wronskian

FO\E) = fo! — flo. (2.14)
For large r, therefore, '

2iko ~ F(\, k)e*” — F(\, —k)e ™"
and hence we define the S matrix as
S\, k) = e MVPF(\, k)/F(\, —k).  (2.15)

The function F is a generalization of the Jost func-
tion, the simplest one for the present purpose. In
Sec. 8 and the Appendix we shall define another
possible generalization that is more suitable for
other occasions. The definition (2.15), which for
integral | goes over into the customary one, is
shown in the Appendix to be natural, the exponential
factor being necessary in order that S be unitary
and tend to unity at £ — o even for nonintegral
1 values.

As a function of k, F and S have all the essential
properties known for integral [ values, so long as
Re X > 0. The region Re A < 0 is not accessible
until the existence of ¢ has been proved there. In
addition, F and S are, for fixed ¥ = 0 in the region
of regularity, analytic functions of A regular for
Re M > 0. We also have in any region of analyticity
connected with the real axes of A and k,

FXQ*, —I%) = F(\, k) (2.16)
as well as
S*(A*, —k*) = SO\, k).

3. THE PHASE-SHIFT DERIVATIVE

(2.17)

We want to discuss briefly a simple result first
obtained by Regge.! If we define

As=arghFh,
then by (2.15)
§= A4 (in/2)A — %

Differentiation of (2.1) with respect to \, multiplica-
tion by ¢ and subsequent subtraction of (2.1)
multiplied by d¢/d yields

26 =arg 8, (3.1)

(3.2)
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ar Y = 2N 7o,

Integration from zero to infinity gives for real k
andA > 0

—&" [P 9A/0N = 2\ f drr? > 0.
0

We conclude that for k > 0

dA/N > 0
and hence by (3.2),°
8/ < /2, (3.3)
which implies that
Sior — & < /2. (3.4)

We first observe that, & being defined only modulo
7, the inequality (3.4) imposes no restriction what-
ever on the values of successive phase shifts at a
fixed energy. The restriction becomes operative only
when put together with a demand of continuity
of the phase shifts as functions of £ and with their
behavior at k = Qand k = .

The first question to which (3.4) gives a partial
answer is this. For individual phase shifts (assumed
continuous as functions of k for k > 0) it is custo-
mary to define §;(©) = 0 and then to let &,(0)
be determined by the Levinson theorem®:

51(0) = nm,

where n, is the number of bound states of angular
momentum . Alternatively, one could define
8,(0) = 0 in order to make it continuous across
k = 0. Now that we demand a continuous connection
between phase shifts of different | values a question
of consistency arises. If we define §,(=) = 0, then
we are no longer free to dispose of the other phase
shifts.

Suppose we were to define §,(0) = 0 and let the
Levinson theorem determine §,(«); and suppose
there is an s-wave bound state and none for the
p wave. Then we would have §,(») = —7 and
hence, by (3.4), 8,(0) = &(») < —m/2. Since
this entails §,(0) < —=, (3.4) also shows that
5,(0) < —m, ete. As a result, the s-wave bound
state would force all other phase shifts to be at most

# From a semi-classical point of view the inequality (3.3)
is well known. Since the classical deflection function O is
connected with the WKB phase shift by @ = 2d6/dl (3.3)
merely states the fact that ® < . (“Orbiting” 1mp11es a
large negative ©.) I am indebted to Dr. Joseph W, Weinberg
for calling the connection with the classical result to my
attention.

? N. Levinson, Kgl. Danske Videnskab. Selskab, Mat.-fys.
Medd. 25, No. 9 (1949).
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—m at £ = 0, which makes no sense. On the other
hand, if we define 3,( ) = 0, then an s-wave bound
state means that §,(0) = =, and (3.4) is compatible
with all 6;() = 0. We conclude from this that
d,(®) = 0 is the most natural choice and that it
may be expected that §;(«) = 0 follows for all
other I, although a proof of this is still missing.

Consider now a case in which the p wave has a
sharp resonance at some energy FE, in the vicinity
of which the s and the d waves are smoothly varying
functions of E, and below which the p phase shift
is positive but less than x/2.'° The p-wave phase
shift then looks as indicated in Fig. 2 near E = E,.
Applying (3.4) to I = 0 just above E,, we find that
8,(Ey) > A > w/2. Consequently, either there is an
s-wave bound state, or else the s wave must have had
a resonance at some lower energy. This physically
quite plausible result is a simple extension of the
well-known fact that the p wave cannot have a
bound state unless the s wave has one of lower
energy."

We may also use (3.4) for I = 1 under the stated
resonance assumptions, and we then take F just
below E,. That shows that at £ ~ E,, §, < A.
These two inequalities, for [ = 0 and [ = 2, may
serve to determine whether an experimentally given
resonance is described by a local, single-channel
potential or not.

4. THE POLE TRAJECTORIES

We are now going to investigate the poles of S
for k either real or positive imaginary. Assuming
that the potential is of such a nature that F can be
analytically continued into the relevant region in
the upper half of the complex k plane, the poles
of S are due to zeros of F. An acceptable class of
potentials would be those that vanish beyond
some finite distance; another would be a (continuous)
superposition of Yukawa potentials, for which F
is regular in the entire k plane cut along the positive
imaginary axis from some g to infinity.

What we are after is the motion of the zeros of
F(\, k) in the complex A plane as a function of k.
The energy is kept real and hence for £ > 0, k
is real, and for E < 0, k is purely imaginary. The
“physical sheet” of the Riemann surface of S as a
function of E corresponds to the upper half of the
k plane. In view of (3.14), this means that for £ < 0

10 Tn other words sin? 8, = 1 before gin? §; = 0.

11 Tt should be noticed that the foregoing result refers
directly to observable resonances in the sense that sin? § = 1,
and not merely to S-matrix poles, which may or may not
entail observable resonances.
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F16. 2. The p-wave phase shift.

we are looking for the zero of F on the negative
imaginary axis, where for integral I, they denote
bound states; for £ > 0 we take the upper rim of
the cut, i.e., ¥ > 0, and hencein F, k < 0.

Taking the complex conjugate of (2.1) for o,
multiplying by ¢, and subtracting (2.1) for ¢ mul-
tiplied by ¢* we obtain for real k*

(d/dr)(e*e’ — ¢'*¢) = 2i Im Nr™? |p|?

and by integration

= lim (¢*¢' — o'*¢). (4.1)

r—o

2¢ Im sz drr™? o
0

First consider the case of purely negative imaginary
k and assume that for k = ko, A = Xy, F(\y, ko) = O.
Then ¢ is a multiple of f and thus vanishes ex-
ponentially at infinity. Consequently (4.1) reads
T [ dn ol = 0. 4.2)
[+]
This means that for £ < 0, a zero of F can occur
only on the imaginary, or on the real \ axis. It will
be shown in Sec. 7 that it cannot occur on the
imaginary N axis (except at A = 0). Hence for
E < 0 an S-matrix pole in the region Re A > 0
must lie on the real \ axis. When it goes through a
half-integer (integral 1), then it means there is a
bound state.

A little more may be said about the motion of a
zero of F along the real positive  axis by differentiat-
ing (2.1) with respect to k, assuming k* and X real
and all along F(),, k,) = 0 so that A, becomes a
function of ko In the standard way we then get

(@/dr){e’er — ole) = [1 — \)wr™"1¢,

where the subseript k indicates differentiation with
respect to k,. Since ¢ vanishes both at »r = 0 (as
r**) and at r — «, we get by integrating

[ art = 0= 0
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0rl2

dne/dks = 1/07%). (4.3

It will be of special use to us later to know how
(4.3) behaves as E — 0_. For that purpose it is
simplest to assume that V has a finite range.
The relevant contribution to be investigated is that
of the “outside’” wave function to the normalization
integral in (4.3). The appropriate normalization that
assures that the (unnormalized) matrix element of 72
remains finite and different from zero as k — 0,
is K'**,(\, k, r) for the outside wave function.
Then for Im k < 0,as k — 0,

o1) for 1>1
f a0, b, A = <0(n k) for =1
R

0™ for 1<}

This is, therefore, the behavior of dA}/dE, as
E—0_:

o(1) for I >3 (o> 1)
2
N o (B for =3 0e=1 Y
dEo
OE™ for —3<lb<i 0<N<]

Let us now consider & real £ 0. Then F(A, k)
cannot vanish on the real positive X axis. That is
because (2.14) shows that if F(A, k) = O for real
positive A and %, then F(\, —k) = 0 too; but (2.13)
implies that then ¢ = 0, which contradicts the
boundary conditions (2.8). As a result the zero
must get off the real \ axis for £ > 0. Where it
goes can be seen from (4.1) for real k. In that case
use of (2.13) and of the boundary condition (2.2)
lead to

8kRe \ Tm A f: drr? |off
= |FO\, B — |[FO\, =B (4.5
The implication is that for ¥ < 0 and Im X < 0
[FO, B > [FO, =B = [FO*, B[

and so F(\, k) cannot vanish. For & negative, F
can vanish only in the upper half of the A plane,

12 Since the right-hand side is positive, this proves the
physically obvious fact that a zero on the real positive axis
always moves to the right as the energy increases. The
expectation value of 2 depends, of course, both on %# and
on ), and (4.3) must not be mistaken for a constant. This
equation was first obtained by Regge.? However, in contrast
to his use of (5.1) in reference 2, it should be remembered
that (4.3) cannot be used when E > 0, since then ¢ is not
normalizable. .

13 The result will hold under much more general conditions,
but for a potential that vanishes asymptotically as a power
of r, it breaks down if at By = 0, A, is too large.
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and for % positive, in the lower.'* In terms of the
S matrix this means that on the upper rim of the
cut along the positive E axis the poles of § are in
the upper half of the A plane, on the lower rim they
are in the lower half.

It should now be remembered that where F(A, k)
is an analytic function of N and k and where its
derivative with respect to A\ is different from zero,
there F(\, k) = O defines A as an analytic function
of k. Consequently, A(k) is a mapping of the % to
the A plane which preserves angles in the small.
So as we let & approach zero along the negative
imaginary axis and then move on along the real
axis, if ¥ were an analytic function of k at & = 0
and if aF/dN 0, the trajectory of the zero of F
would have to leave the real axis at right angles.
As it is, this is generally not so.

Indeed, let us assume F(X,, ko) = 0. Then (4.5)
together with (2.13) shows that

2 Re Ao Im xof dr? |ff = —ke.  (4.6)

o

The integral exists since now f is proportional to ¢.
In order to learn how Im A, approaches zero as
ky — 0 we assume again that V = 0 for r > R.*®
Just as in the discussion of (4.3), the appropriate
wave function which remains finite in the outside
region as k — O differs from f by a factor of k°. So

f drr—z If|2 — kl—%f drr—z |k)\—1/2flz
0 0
=0F™™ as k-0,

since the integral remains finite. Division of (4.6)
by k2 therefore tells us that

d Im Ao/dks = O(k3') as ko, — 0. 4.7

In order to obtain the angle v, in the A plane at
which the zero trajectory leaves the real axis at
E = 0, we use (4.7) together with (4.4) in

_ 1. 0Re N/Ok,
oot vo = Elol—I~101+ 9 Im )\0/6/00'

Now (4.4) was derived for k;, on the negative
imaginary axis. However, it will hold for %, approach-
ing zero along any path in the lower half of the
k plane, and specifically just below the real axis.
Since Im A, — 0 we conclude that (4.4) holds for

" These restrictions do not hold for Re A < 0, though.
Added in proof: Numerical work was meanwhile shown that
for a Yukawa potential, zeros occur both in the third and in
the fourth quadrant; see A. Ahmadzadeh, P. G. Burke, and
C. Tat (to be published).

. 1 Again the result holds under much more general condi-
tions.
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the derivative of Re A, as k, — 0 along the real
axis. Thus we get

0(’0})‘2!0) = fOI‘ lo > % ()\o > 1)
cotyo =00 ko) = o for =34 \g=1) (4.8)
o) for b, <3 (<1,

When l, < % we may learn more by looking at (4.3)
and (4.4) in more detail. Near &, = 0 we have

. _ -
dko/dkg ~ aenr(l I/Q)kg l’

where a is positive so that the left-hand side is
positive when %, is on the negative imaginary axis.
Hence, when k, is on the real axis, then

dRe \o/dk, ~ ak}' cos=(l — 3).

This is positive for I > 0 and negative for I < 0;
for I = 0 it vanishes. Thus we have the following
result.

If the trajectory meets the real axis at a point
—1 < 1 < 0 then it does so at a finite angle pointing
backwards; if it meets it at [ = 0, it does so at right
angles; if it meets it at 0 < I < %, it does so at a
finite angle pointing forward; if it meets it at I > %,
it does so at a zero angle, i.e., it osculates it and it
hugs the real axis more and more closely the higher
the angular momentum at which it leaves.’® That
for I < 0 the trajectory leaves the real axis in the
backward direction explains, from the present point
of view, the well-known fact that an “‘almost bound”’
s state causes no low energy resonance, while
“almost bound” states of higher angular momentum
do.

The observable effect of the trajectory is of course
the resonance, and specifically its width, produced
when the pole projection on the real axis passes an
integer. If this happens at small energy then (4.4),
(4.7), and (1.8) imply the well-known fact that
T = O(EH”?).”

What happens to a trajectory after it leaves the
real axis? We may use (4.5) to get a rough limitation
on the position of a zero in the complex A plane.
If the potential vanishes for r > R then forr > R
we have f = f,; hence,

18 After this work was finished, the author learned that
Barut and Zwanziger have come to similar conclusions;
A. O. Barut and D. E. Zwanziger (to be published).

17 The present derivation of this result implies that the
I value in it is not that of the resonance but that at which
the trajectory meets the real axis at E = 0. If that happens
at 0 <1 < %, then I' = O (&); but it is then quite unlikely
that the trajectory causes a p-wave resonance at sufficiently
low energy for the formula to be applicable. In general it
is not likely to be applicable unless the [ values of the resonance
and of the point E = 0 are nearly equal.
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f: arr > f: arr® |fol".

The boundary condition (2.2) implies that as r — o,
|fi = 1 (k is real now). A closer examination of f
shows that for real X\ it approaches 1 from above; for
complex M it dips below 1 for large r, but not below
1 after the last trip below 1. As a result one may
expect, at least if Im A is not too large, that |f|®
is on the average of the order of magnitude 1 for
r > R. Therefore,

fR " dn P A fn “dmt = R,

and thus from (4.5)
2Re X Im A S R |k, (4.9)

This inequality is to be considered at best a rough
estimate. But so long as Im A, is not too large it
ought to be reasonably reliable. It should be noticed
that it is independent of the potential strength.

A more exact limit on the trajectory was derived
by Regge under the assumption that the potential
can be analytically continued into the complex r
plane, to the whole imaginary » axis. In that case
the zero trajectory must, for sufficiently large E,
cross the straight line Im A = Re A and remain
above.? Furthermore, if everywhere on the imaginary
r axis

[Im V@) < M/y?
then'
Re o Im Ay < M/2

so that the zero trajectory must always remain be-
tween the real axis and the hyperbola Re A Im A =
M/2, Thus, it is forced to turn around eventually
and move toward the imaginary A axis. The same
was shown under somewhat weaker conditions
applicable to the Yukawa potential.” The important
implication of this is, of course, that there exists
for each trajectory a value X beyond which Re A,
cannot go. This is what limits the asymptotic be-
havior of the scattering amplitude as a function
of the momentum transfer or angle, as seen in (1.3).

What happens at the turning point of a tra-
jectory? Equation (1.8) shows that the effective
width of the corresponding resonance (if the turning
point happens to occur sufficiently close to the real
axis, and at a half integral values of Re A, so that
it really corresponds to a resonance) then goes
through zero and changes sign. Any apparent reso-
nance caused by the trajectory on the return
journey is thus not a resonance at all because it
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corresponds to a downward passage of the phase
shift through #/2 and thus is associated not with
a delayed outgoing signal, but with an advanced
one. It is at best associated with the downward
passage through «/2 that a phase shift must experi-
ence if it ever goes through #/2 upwards (if it is
caused by a suitably well-behaved local one-channel
potential).*

One may like to associate a zero of F(\, k) for
real k& and complex A with one for real A and complex
k. This could be done, for example, by keeping the
real parts of k and A fixed but allowing the imaginary
part of k to vary while taking the imaginary part
of A to zero. We then have a one-to-one corre-
spondence of zeros with positive A in the upper
half of the k plane and zeros with negative & in the
upper half of the A plane. The fact that a zero cannot
get beyond a certain value of Re A presumably
means that for that value of N the corresponding
zero in the complex & plane has moved to infinity
in the imaginary direction.'®

After the trajectory has turned back it may or
may not cross the imaginary N\ axis and pass into
the left-hand half plane. Equation (4.6) must not
be mistaken for a stricture against Re A, = 0.
When the real part of A vanishes then |f| goes as
r*? at the origin and the integral diverges. On the
other hand, there appears to be no general reason
why the trajectory must always cross back beyond
Rel = —1."® In the special case of a Yukawa poten-
tial it is explicitly known to do so.'*”*' In the
Coulomb case it crosses over at infinity (at £ = 0).**
Nor is there any known general reason why a tra-
jectory cannot oscillate or spiral, thereby causing
several resonances of the same angular momentum.

5. THE NUMBER OF TRAJECTORIES

It is of obvious interest to raise the question:
How many zero trajectories are there? Since we
are presently concerned with Re A > 0 only, we

18 This suggestion appears to be contradicted by the fact
that as Re o/dE — 0, T' — 0. The resolution of this quandary
is presumably that the turning point of a trajectory cannot
have a sma].[yimaginary part. If it does not, then the shift
term AE is not small and the resonance formula has no
significance. See footnote 5.

188 Added tn proof. In the square well case it is now known
ﬁoﬁ tc(l)) do so; see A, D. Barut and F. Colagero (to be pub-

shed).

19 R, Blankenbecler and M. L. Goldberger (to be pub-

lished).

20 M. Froissart, private communication from M. L.
Goldberger.

2 A, Ahmadzadeh, P. G. Burke, and C. Tate (to be pub-
lished).

2V, Singh (preprint).
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first ask the more restricted question: How many
are there in the right-hand half plane?

Considering the fact that as we increase the
strength of an attractive potential,®® an unlimited
number of bound states are newly introduced, and
there must be at least as many trajectories as there
are s-wave bound states, we conclude that there
must (at least for a somewhere attractive potential)
be an unlimited supply of zeros somewhere in the
A plane. We may fix our attention on the zeros at
E = 0; according to the results of Sec. 4 they must
for Re A > 0 be on the real or on the imaginary A
axis; for £ > 0 they then enter the upper right-
hand quarter plane. Since increase of the potential
strength moves more and more such zeros past any
fixed point A > 0, there are only three alternatives
for the location of the supply of zeros at £ = 0:
(1) They all lie on the imaginary axis and as the
potential strength is increased, they move down
and onto the real axis; (2) there are infinitely many
of them on the positive real axis, with an accumula-
tion point at A = 0; (3) there are infinitely many of
them in the left-hand half of the A plane (or they
are “‘generated’’ there) and as the potential strength
increases they move through A = 0 onto the positive
real axis.

If we were to think about these matters in
‘“physical” terms we would be led to believe in
alternative (1). The reason is that if the centrifugal
r~* term is cut off at small distances we may think
of the centrifugal barrier as another potential. For
A < 1 that “barrier” becomes attractive. The more
imaginary we take X\, the deeper that attractive
potential becomes and the more bound states it
produces. Hence, with the cutoff present there must
be infinitely many zeros of F (which then is an even
function of A) on the imaginary )\ axis for any
negative energy. Such reasoning, however, is entirely
misleading. It will be proved in Sec. 7 that there
can in fact be no £ < 0 zeros on the imaginary A
axis. In other words, the analytic structure of
F(:, k) is changed so violently by the cutoff that
even such gross features as zero distributions are
changed radically.

Alternative (2) can be eliminated if we can esti-
mate the number of zeros of F at £ = 0 on the
positive real A axis, and we find that it is finite. The
appropriate means for that is Bargmann's in-
equality® for the number of bound states of angular
momentum I:

% For the purpose of this argument, it is sufficient that
the potential be negative somewhere. We may then multiply
the attractive piece by a positive parameter and increase it.

% V. Bargmann, Proc. Natl. Acad. Sci. U. S. 38, 961 (1952).
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n <f drr (VO |/@L+ 1). 5.1)
0

Since the number of trajectories that enter the
complex plane to the right of [ is equal to the number
that has passed through I at some negative energy
and hence is equal to the number of bound states
of angular momentum I, (5.1) is the kind of esti-
mate we want. However, as [ — —1 ie., A — 0,
(5.1) diverges and hence tells us nothing. We must
sharpen it expecially to get near A = 0.%°

Following Schwinger’s derivation®® of (5.1), we
increase the number of bound states at A = [ 4+ 1
by replacing V by —, where

Q= {—V where
0 where

V<o,
vV > 0.

The number of bound states of — U is equal to the
number of E = 0 bound states that are introduced
when — U is replaced by —¢U and ¢ is increased
from zero to one. Thus, we are looking for the
number of values that allow us to solve

50 = o [ @G, OeIeE)  62)
with 0 < o, < 1, where G, is the symmetric Green’s
function of (2.1) at £ = 0:

NG\, 77) = r/2 P
Since U > 0 we may define
= 0%
Ky, ) = [0O00)] i, 1)

(56.3)

so that

o) = [ TR ). (54)

Hence, the strengths o, at which new bound states
appear are the inverses of the eigenvalues of the
real, symmetric, positive semi-definite kernel K,.
Therefore,

@

> a’t=TrK, = f drE\(r, 1)
0

i=1

- " drroG) /20 (5.5)

% Bargmann has shown that for fixed [, (5.1) cannot be
improved without special restrictions on the potential.
For given | there always exists a potential that causes (5.1)
to be as near to equality as one pleases. Here, however, we are
interested in improving (5.1) if we fix the potential and
let I approach —34. There i8 no contradiction.

26 J 'Schwinger, Proc. Natl. Acad. Sci. U. 8. 47, 122 (1961).
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But 7, is given by the requirement that o < 1
for ¢ < my, and o{? > 1 for ¢ > m,; consequently

©

nx
S > 3o 2w,
i=1 1
and a slightly strengthened version of (5.1) follows
from (5.5):
m < [ amoe) o (5.1)
0
In order to understand what happens at A &~ 0
we stop before the last step and write instead

@ (3

A
Stz Dt 2o w1,

t=1 1

(5.6)
so that (5.5) yields
m < @V f o + 1 — o1 (5.7)
0

We now want to find an estimate of o\, the least
strength that introduces a bound state for A < 1.
We define

ER). = 2>\K)‘, ’Y)(\{)
so that (5.4) reads

= 2"

W) = [ d e ne).  69)

As X\ — 0 we have
2AG\(r, ) — (rr")?
so that in the limit as A\ — 0 (5.8) approaches

YO Yol) = [ f dr' o)} ().

The kernel now being separable this equation has
a single nonzero eigenvalue obtained by multiplying
by [U(r) r]'* and integrating:

A$ =f drrO(r).
0

The normalized eigenfunction is

v = [r’o(r)]m/l:fom dr’r”o(r’):lw.

In order to find v{" for A < 1 we now calculate it
from v{" by perturbation theory, using

NG\, 7)) = (r)'® + ()P /rs) — 1]
~ (rr)? — M) In (rs /1)

to first order in A. The perturbation of the eigen-
value is therefore given by
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f drro(r) Ay
[

= —A f i dr f . dr'rr"0(r)0(’) In (r. /r.)

I

—2A / dr f dr'rr’C(r)0¢’) In (r/r’)
o 0
and thus the lowest eigenvalue is to first order in A
= [ arroe)
]

f ) dr f ' dr'rr"0(n0(”’) In (r/r')

— 2\ .
f drrO(r)
0
Insertion of this result in (5.7) yields the desired

estimate for A = 0, in which limit the perturbation
theory becomes exact

fm dr fr dr'rr’0@V¢’) In (r/r")

n <1+ (5.9

fo " o)

The zero-order term in ;"' has canceled the first
term in (5.7). In other words, the reason why the
estimate (5.1’) fails to tell us anything as A — 0
is not that there are in fact infinitely many eigen-
values, but that, no matter how weakly attractive
the potential is, there is always at least one eigen-
value near A = 0.*”'*"* Indeed there is one at A = 0
for V = 0 since in that case (for E = 0) the solution
r'? which is more ‘“regular” at r = 0 (the other
one is 7% In 7) is also more “regular’’ at infinity.*®

As a result of (5.9), alternative (2) for the dis-
tribution of the zeros of ¥ at £ = 0 is eliminated
for a wide class of potentials. Since alternative (1)
will be eliminated later, we are left with (3). The
zeros come from the left-hand half plane. We now
want to investigate that region of the complex A

plane.
6. THE LEFT-HAND HALF PLANE

Let us first consider for orientation purposes what

27 It must be remembered that for E = 0 and small A
the eigenvalue criterion is quite weak. The demand is merely
that the solution which is dominant (‘‘irregular’’) at » — 0
also be dominant at r — . That implies that the solution
which is more “regular’’ at the origin 1s also more ‘“‘regular”’
at infinity. ‘“More regular’’ here simply means ‘“‘asymptotically
smaller.”’

28 Added in proof. S. C. Frautschi, M. Gell-Mann, and
F. Zachariasen, Phys. Rev. 126, 2204 (1962) have come to
the same conclusion.

28 It can be shown directly for an attractive square well
potential that, as the depth tends to naught, the angular
momentum of the £ = 0 eigenvalue tends to ! = — 3.
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region of the potential may determine the analytic-
ity of F for Re A < 0. The Wronskian (2.14) may
be evaluated for any r value you please; f(), k, r)
is, for fixed & 0 and r ¢ 0, an entire function
of \. Since ¢(), k, r) depends on the potential only
in the region less than r, we may expect that evalua-
tion of (2.14) near r = 0 leads to a criterion of
analyticity in Re A < 0 that depends critically on the
behavior of V near r = 0.** That expectation will
be borne out.

The crucial tool for the analytic continuation of
¢ into the region Re A < 0 will be the following
lemma:

Let f(x) and its first m derivatives exist for 0 <
z < xo. Then,

o) = v [ dn ot

and its first m derivatives with respect to y are
analytic functions of a for 0 < y < x,, regular in
the region Re @« > —m — 1, except for simple

poles at « = —1, —2, . Furthermore, the
residue of the pole at*® o« = —N is proportional
to y"

Proof: The existence of f and of its first m deri-
vaties implies that for 0 < z < z, it can be written

@) = 3 Cua* + 2@,
where

zf(z) = ‘/: dx, f:x dry -+ - ‘/:m—l Az ™ (z,.),

and hence f(x) is bounded in 0 < = < z,. Insertion
in g yields

= = —C'N—y]v__ —-a-—1 v m+al
g(a,y)—§a+N+l+y fodxx 7(z).

The first terms and all its y derivatives are analytic
functions of « everywhere, except for simple poles
at the negative integers; furthermore, the residues
there are proportional to %". The second term and
its first m y-derivatives are analytic functions of «
regular for Re « > —m — 1 and for all y in 0 <
¥ < 1. QE.D.

We now want to prove that ¢(\, k, r) may be
analytically continued to Re A < 0. We assume
that rV = U is m times differentiable in 0 < r < r,
for some r, > 0. In the integral equation (2.10)

» In addition, of course, to the general assumptions that
are necessary for the considerations of Re A > 0.

% In the following N always stands for a positive integer,
unless otherwise indicated.
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for ¢, let us write (not explicitly indicating the &
dependence)

\1’)\(7') =V ?’()" k; 7‘),

har, 7)) = 27 V2 g (K v, 1)
= (' /D) WErYO\kr) — Un(Er)OLr’),
Wkr) = (G0 *(kn) (k)

Vukr) = (Gm)"*(kr) Yo (kr),

so that all the r dependence near r = 0 is explicitly
visible. The functions U, and U, are now finite
at r = 0 for all X and can be expanded in a power
series in r. They are entire function of A for all r.

Y» satisfies the integral equation
W) = wi) + [ UEme, e 6D
which we solve by successive approximations:
o= 2
) = Wlkr)

WP = fo dr' U ha(r, )" ().

it

So for 0 < r < ry according to our lemma,
0 =900
= f & UG /)W (e Yos(kr)
0

— Un(kr)Or(kr’) ] Un(kr’)

and its first m r-derivatives, are analytic functions
of A regular for Re N > —im — 1, except possibly
for poles at A = - . However, as A
approaches a negative integer — N, the first 2N
terms in the expansion of U, in powers of (kr')
have simple zeros as functions of A, and at \ = —N,
Ur(kr') is of order ¥ as r — 0. Consequently,
&1 has no poles at A = —1, —2, --- . Moreover,
owing to the presence of two factors of 4, in the
troublesome term, ¢ "(r) is of order® r*¥. The
residue of the pole of §\"’ at A = —N — 1 is pro-
portional to r*.

We proceed by induction. Assume that §{» =
r Y™ and its first m r-derivatives are analytic
functions of Afor ReA > —im — §, (for0 < r < r,)
except for simple poles at A = —N — , N = 0,
1,2, --- (" is proportional

1 3
—%, =1, =3 -

, where the residue of ¢

3 Strictly speaking, ‘U_y contains a logarithmic term
so that ¢, appears to be of order ¥ In r. The ln term
generally cancels, though. Whether it is there or not is of no
consequence in the following.
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to *"; and that at A = —N §{» is of order r*".
Then forn > 1

‘;;‘»H)(r) = r‘"_l¢{"+l)(7‘)
=7 _[ U "y [ /r) ™ un(ler’yOr(Rr)

— WO 1" ()

and its first m r-derivatives are analytic functions
of A regular for Re A > —im — 1 except for poles
at A\ = —3, —£, ..., The poles for —\ < in are
simple because they come from ¢\™ only; those for
—\ > in appear to be double, coming as they do
both from ¢,™ and from the integral. But since the
residue of §{” at A\ = - N -, N =0,1,2, -,
is proportional to 7Y, the integration does not
introduce a further divergence as N —» —N — 1.
The poles are thus all simple. Moreover, the residue
of iV at the pole at A\ = —N — 1 is proportional
to 7*". There are no poles at A = —N because the
first 2N terms of U, have simple zeros there as
functions of A. Since furthermore ¢\ is of order
Y at A = —N, ¢V is of order r*" there.

This proves that each term in the series of suc-
cessive approximations to ¢ is an analytic function
of A for Re A > —1m — 1 except for simple poles
at A = —1, - . We must now consider the
convergence of the series.

We keep ¢\ + -+ + ¢ explicitly and start
summing the series for n > m. Then for n > m

‘I,A(nJrl)(r) = r—m—~1¢x(n+l)(r)

—3 ..
21

- fo dr,UGr) (r/r)™ (e /r) ™ Wa(for,yOu (ko)

— ()0 kr) W ()
and therefore for Re 2\ > —m — 1,

w0 < ¢ [ dn |UE)] e < -
o
(m+1+4p)7, < (P ’ m .
Wl <o [an [Can
[ wed - el w6

< CI:C fo " dr lU(r')l]pl‘(% + N)/p!

since ¥ " (7)/T(3 + \) is bounded in 0 < r < r,.
It follows that the series converges absolutely. Thus,
o\ k, r) is for each k and r < ry an analytic function
of A regular for Re A > —3}m — {, except for simple
poles at negative half integral values of X (negative
integral 1).
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In order to eliminate the poles of ¢ we define a
new function

e\ k1) = o\, b, n)/T(G 4+ M) (6.2)

which has no singularities for Re A > —im — 1.
However, at A = —%, —1, =%, --- o\, k, 1)
is linearly related to @(—X, k, r). We see this from
the discussion of the expansion of ¢ as well as from
the value of the Wronskian

¢(>‘) k; T)(O,(“A, k; 7‘) - ¢’(>\; k; T)q-a(_k, k: T)
— sin (27N) /2% (6.3)

which is obtained from the boundary condition (2.8)
and (6.2). So we have

(=N, k, 1) = Cx(l)e(N, k7). (6.4

For special values of k, however, Cy(k*) may vanish.
In other words, in contrast to a(X, k, r) for N % —1N,
#(—%N, k, r) is not guaranteed by any boundary
condition not to vanish identically in 7.

We may cite two examples in which the above
behavior is well known. One is ¢,, i.e., the Bessel
function. In that case, ¢(—N, k, r) is a multiple
of ¢(¥, k, r), but there happen to be no poles at
—N 4+ %; hence @(—N 4+ 3, &k, r) = 0. The
other example is that of the Coulomb potential. Then

@\, kb, 1) = 22TV Rk
FG 4+ N+, 1+ 2\, —2ikn)/T(1 + 2)),

where 7 ¢’/2k and F is the confluent hyper-
geometric function. F has simple poles at 2\ = —N,
and for 2\ — —N, F/T is a multiple of its value
at 2x = +N. However, if 1 + N + 4n assumes a
negative integral value too, then F/T' vanishes,
i.e., CN = 0.

The analytic continuation of ¢ to the left-hand A
plane allows us now to perform the same con-
tinuation for the Jost function F(A, k) via (2.14).
The function f(A, k, r), being even in A, offers no
difficulty; it is everywhere regular as a function of A.
As a result, if U = rV is m times differentiable at
r = 0, then FQ\, k) for fixed ¥ = 0, Im k£ < 0,
is an analytic function of A, regular for Re A >
—im — % except for simple poles at A = —1%,
—2 ... * The function

FONKR) =FOB/TG+N =f' —fe (6.5

then contains none of these poles. It serves as well
as F for the § matrix. By (2.15)

32 Some or all of these poles may be absent in special cases.
For example, if V remains bounded as r — 0 then there is no
pole at A = —3. For a square well potential of radius R,
¢ has no pole for r < R; it is essentially a Bessel function.
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SO\, k) = VR EW, k)/F(\, —k). (6.6)

Some remarks are in order concerning the con-
ditions under which the analytic continuation of ¢,
F, and S to the left-hand \ plane has been proved.
If the potential is a superposition of Yukawa
potentials,

V=f du’o(u)e™ fr

then the existence of 7V and of its first m derivatives
at r = 0 follows from the existence of the first
m -+ 1 absolute moments of o

f W o) < @, 0<p< m.

The important criterion is therefore the behavior
of ¢ for large p'.

At the same time it should be realized that while
the criterion of differentiability is sufficient, it is
not necessary. Indeed, the same type of proof would
clearly be applicable if rV near the origin, say, went
like 7™*?, where 0 < 8 < 1. Then the (m + 1)st
derivative would fail to exist at » = 0, but the effect
would merely be to introduce additional fixed poles
on the negative A axis, not at the integers or half
integers. Such reasoning can then be extended to
a very much larger class of potentials. The general
conclusion, at any rate, that emerges from this is
that the continuability of the S matrix to the left-
hand X plane depends primarily on the detailed
behavior of the interaction at small distances.

7. CONSEQUENCES OF THE
ANALYTIC CONTINUATION

We may insert (2.13) with (6.2) and (6.5) in (6.3).
The result is

F\, )F(=X\, —=k) — FO\, —=B)F(—\, k)
—1i(k/m) sin 27w\,

(7.1
For k real and A = ¢} imaginary this says by (2.16)
|F@N, k)|* — |F(—4\, k)|> = (k/x) sinh 22\,

which merely corroborates the previous finding that
F cannot vanish for positive (negative) k on the
positive (negative) imaginary axis.

For » = 4\ and k = <&’ both imaginary, (7.1)
implies by (2.16) that

1 [{7’0\, K _ FQ, —k)] ____ik'siph2m
2LF*\, k) F*(\, —k)]  2eF*(\, F*(\, —k)
Since the magnitude of the left-hand side cannot
exceed unity, we must have
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[FO\, B)F(\, —k)| > |(k'/2x) sinh 2N | (7.2)

This implies that for negative energy F cannot
vanish on the imaginary )\ axis (except at A = 0)
thus eliminating alternative (1) of Sec. 5 and the pos-
sibility, still left open in Sec. 4, that as E decreases,
a zero of F moves down or up the imaginary axis.
There are then two alternatives for the motion of a
zero at £ < 0in Re A > O as the energy decreases.
Either it approaches A = 0 as F — — « or else it
passes into the left-hand half plane. The first alterna-
tive will be eliminated in Sec. 8.

Once a zero of F moves into the region Re A < 0
for negative E, it is no longer constrained by the
previous reason to remain on the real axis; Eq.
(4.2) cannot be analytically continued, |¢|® not
being an analytic function. However, (2.16) still
being valid, if F(\, —ik’) = 0 for real k then
F(\*, —ik") = 0 too. That implies that if a zero were
to pass into the complex plane then it would have
to split in two, one passing into the upper, the other,
into the lower half plane. Such a situation is unlikely
to occur, but there appears to be no reason why
it couldn’t. We shall assume that it is at worst an
exceptional possibility; that for £ < 0 a zero in
the left half of the X plane remains generally on the
real axis.*™

Suppose that a zero of F(\, k) for E < 0 lands
on a positive integral or half integral value A = 1N,
Then (7.1) shows that

FGN, ~HF(—3N, k) = 0.

But F(\, k) and F(\, —k) cannot both vanish for
the same k& and X, because otherwise (2.13) would
imply that ¢ = 0, contradicting (2.8). Consequently
we must have F(—1iN, k) = 0. If a zero passes
through an integral or half integral value of A then
there must be a zero on the left passing at the same
energy through the symmetrical point. This con-
clusion, however, cannot be inverted. If F vanishes
at A = —1iN then (7.1) says that

FGAN,F(—3N, —k) =0

for the same k. But now we don’t know that
F(—1N, —k) 5 0, because A = —3}N are just the
values at which @ may vanish identically in 7.
If F(—3N, —k) = O then there need be no zero
at A = IN. Such a situation means that S has a
pole and a zero which meet at A = —3N and

328 Added in proof. Meanwhile, numerical work by A. O.
Barut and F. Calogero (to be published) indicates that for
repulsive square-well potentials, complex negative energy
zeros do occur. This will be discussed in more detail in a forth-
coming publication with B. R. Desai.
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they annihilate one another. Thus there is neither
a pole nor a zero of S at A\ = —31N, although there
are both nearby at neighboring energies. S then
need not have a pole at A = iN.

An example of such a situation is the Coulomb
potential. In the attractive case we have for k = ¢ |k

S=TG+ X~ [a)/TG + 2+ In).

The poles occur at 3 + N — |9] = —N; if that
happens when N = im, m = 1,2, .-, then 1 —
A — |9 = —N — m is a negative integer too and
S has a pole also at X = —im. Vice versa, if the
poleoccursat A = —imthent — X — ol = —N +m
is a nonpositive integer only if N > m. Hence, for
m > N there is no pole on the right corresponding
to the one on the left. Instead 3 + N + |y| =
N + 1 — m is a nonpositive integer and a zero of
S coincides with the pole. Similarly for the re-
pulsive Coulomb case:

S=TG+ X+ n))/TG+ N = )

for k = <|k|. There are, of course, no poles for
A > 0. For 4] = —N — X — 1 there are poles; if
such a pole occurs at A = —Im, then m > 2N + 1,

and § + X — |5 = N + 1 — m is a negative in-
teger too and a zero and a pole of S coincide.®
It is worthwhile to rewrite (7.1) directly as an
equation for the S matrix. It then reads
eSO\ k) — eFNS(=, k)
k sin 27

= TR EQ, —RE(—x, =B D)
From this one may conclude that usually
S(=3N, k) = (=)"SGN, k) (7.4)

except when F(—1N, —k) = 0 or F(+iN, —k) = 0.
The exceptional cases are just the ones in which
a pole and a zero of S coincide. S then has poles
peither at A = 3N norat A = —1N, and in addition
(7.4) breaks down. On the other hand, if S does
have a pole at X = 1N, then (7.4) holds for the
residues,

8. HIGH-ENERGY BEHAVIOR

For integral values of I it is a well-established
fact that ¢ and f approach their ‘“‘unperturbed”
values as F — o« (for f, with k in the lower half
plane or real). The proof is obviously extended
easily to all A with Re A > 0. In the left half plane,

# It would be a mistake to believe that such a coincidence of
zeros and poles at X = —3N may be a result of the anomalous
tail of the Coulomb field. It must happen, for example, for the

Yukawa potential too. Otherwise there would be a prohibition
against a pole moving through X = —3iN for large enough N.
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the extension for f is also immediate since f is an
even function of . For ¢, however, the proof needs
g little elaboration because of the need to continue
the integral equation (2.10) analytically.

If we define

v @) = B Ko, k, z/ k]
then { satisfies the integral equation
g‘(ky T) = i'oO\, )
+ [ dw'pta, @) K2 VE/ DO, @), (8.0

where
6o, 2) = (4ma) s (ae™),
olr, 2) = inxlaz)”
[Ja(a'e’?) Vilze'®) — Ja(ze'*) Yalz'e )],
E=lkle”.

We have seen in Sec. 6 that (2.10) and therefore
(8.1) can be solved by successive approximations
and each term can be analytically continued to
Re A > —im — % under appropriate assumptions
on the potential, which include existence of rV(r) =
|k] 2V (x/|k]) at r — 0. It is clear then from (8.1)
that as [k| —» =

f(?\; 3?) - g-ﬂ(}‘; x)
for Re X > —im — 3.

It follows from the fact that ¢ and f approach
fo and ¢, respectively, as |k| — o, that S approaches
unity. Since, for large k, F does not go fo unity,
it is more convenient to discuss the function

f()\, ]C = e(ivr/f.’) ()—I/Z)k)\—1/211w(>\’ /‘C} (8.2)
which is treated in more detail in Appendix A. In
terms of it we have directly

SO\, k) = f(, B/, —F)
and it has the integral representation®*
f B =1 = i(3m)" "%

[ " P VOHD e\, k, 1)
[¢3

8.3

= 1—iGn" [ dee” B Vie/ RDE @0 ).
L]
(8.4)
Divide the integral into two pieces

fowdx=j;xdx+_/:c3x.

3 This is Eq. (4.4) of reference 7.

ROGER G. NEWTON

The second piece requires no analytic continuation
to Re A < 0; it can be handled directly and for
fixed A its contribution vanishes as [k] —» «. In
the first integral we insert the series of successive
approximations to { and analytically continue each
term to Re A < 0. We then keep X # —N + %
fixed and let |k} — «. Clearly all the integrals tend
to naught provided that [k|7*V(z/|k]) — 0, ie,
r*V{r) — 0 as r — 0.*® As a result we find that for
each fixed A # —N + 2in ReX > —im — %

vk —1 as [kl > (8.5)
with Im & < 0 (because of the H,>).

If (8.5) holds for each fixed A # —N + % in the
region Re A > —3im — 3, then it must hold uni-
formly in any closed region in the A plane whose
outer boundary is to the right of Re A = —im —1,
but which is otherwise as large as you please, and
which excludes small circles around the points
X = —N -+ % That implies that there exists a
number K so that for k| > K, (%, k) can have no
more zeros in that region. The same then holds
for F(\, k). As E — 4 all the zeros of F must
move out of the region stated. That implies that
a zero must move either to Re A < —im — %, or
to infinity, or else to X = —N + 1. If all the deriv-
aties of Vr exist at » = 0, then a zero trajectory
of F can end (at |E| = «) only on the negative
integral values of [, or else at |I| = «.*** (That
disposes of the possibility of ending at A = 0,
mentioned in See. 7.)

An example in which the trajectories all end on
negative integral values of [ is the Coulomb field.
Another example in which this is known to happen
is the Yukawa potential.”>'** On the other hand,
for the square well potential all trajectories must
lead to || = . That follows from the fact that ¢
has no poles in that case.’***®

% The integral in (8.4) does not diverge as A — ~N
beeause we have seen that there the first 2N terms in ¢(or ¢)
have gimple zeros and ¢ goes as V172,

3¢ Nothing is known that would prohibit one end of a
trajectory from being at I = —N and the other at I = — N,
N 5 Nyorat|l] = .

37 It was noted at the end of Sec. 6 that the proof of the
meromorphic charaeter of S can be extended to cases in
which »V goes as r¢, say, near the origin. It is clear in view
of the foregoing considerations that in such a case the ends
of trajectories may lie at nonintegral values of —I. The
possible end points of trajectories are the poles of ¢, i.e., of F.
These are easily obtainable from c.

# This was also shown directly by B. R. Desai (private
communication). It is clear from our general reason that
this is not due to the sharp cutoff at E. For any potential
that is constant over a finite region starting at r = 0, the
trajectories must end at infinity in the M plane. In that case
¢ has no poles.
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APPENDIX A. THE BRANCH POINT AT & = 0

The Bessel funection J,(z) has a branch point of
a simple nature at z = 0; 2 "J,(2) is analytic there.
The Hankel function, on the other hand, does not
have such a simple property. The function 2*H{® (2)
is finite at z = 0, yet there is still a branch point.
It is readily shown from

eiﬂJx(Z) — J(?)

@) = i sin oA
that
HP@ ™) = —H"(2) + 2 cosm\H;" (¢ *™). (Al)
As a result, we have by (2.5)*
fo\, ke™**5, )
= fo\, k, ) — 2¢ cos a\fo(\, =k, 7) (A2)

since we want to mean f(\, —k, r) = f(\, ke *", r)
so that the connection from the positive to the
negative k axis goes via the lower half plane. The
Green’s function in (2.6) being analytic at k£ = 0,
we get the same result for f:

f\, ke”™", 1)

= f(\, k,7) — 27 cos N[N, =K, 1), (A3)
and similarly, for F,
FO\, ke ®™) = F(\, k) — 2 cosaA\F(\, —k). (A4)

Since at k &~ 0 and Re A > 0, { is of order k'/*™* F
is also of the same order there and it is convenient
to define

f()\’ k) = e(iw/2)()\-1/2)k)\—1/2F()\’ IC). (A5)
The exponential factor assures that for real k& and A

fA, —k) = fQ\, ke™™") = F*(\, k). (A6)
Insertion in the definition (2.15) of the S matrix
then gives

SO, k) = f\, )/, —F). (A7)

The function f is the direct extension of the Jost
function, as a comparison with (4.3) and (3.4) of
reference 7 shows. It tends to unity as |k| — « in
Im & < 0 and it has the integral representation (8.4).
The exponential factor in (2.15) is therefore neces-
sary in order that even for nonintegral ! values

39 This was shown also in reference 3.
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S(A, k) tend to unity as k¥ — 2= and that S be
unitary.

The function f still has a branch point at k = 0,
even though it is finite there. From (A4) and (A5)
we find
O, ko) = —e" 0, B)

+ 147N, =k, (A8)

Consequently the S matrix has a branch point at
k = 0. From (A7) and (A8) we get®

S\, ke™* ™) = S(\, —k)

— 621“')\/[1 + e21ri)\ — S()\, k)], (A9)
which for half integral N (integral ) goes over into
the usual

S\, =k) = 1/8(\, k).
Repetition of (A9) yields*

SO\, ke™™) ‘
S\, k) —1—¢"?

= - - - - (A10
(1 +e-21rz)\)s(x’ ]C) _ 1 _ 6211)\ - e—21r|)\ ( )

Therefore, when S(A, k) has a pole then
SO, ke ™) = (1 + 72" N7 (A11)

The direction of the branch cut from &k = 0 is
arbitrary. We may take it along the negative real
k axis, so that both the upper and the lower half
plane are directly accessible from the positive k
axis. As a function of E, S of course always has a
cut along the positive axis. So long as we stay on the
“physical sheet,” the additional cut along the lower
edge of the positive E axis never comes into play.

The equation F(A, k) = 0 defines A as an analytic
function of k. Since F has a branch cut along the
negative k axis and a zero of F on one sheet is by
(A4) not in general also a zero of F on another sheet,
Mk) also has a branch cut along the negative k
axis. The same remark as for S(\, k) applies. Re-
garding A as a function of E, if we stay on the
“physical sheet,” the additional cut never matters.

Added in proof. It has become customary to follow
Bottino ef al.? and to place the “‘kinematic” branch
cut of F(\, k) along the positive imaginary k axis,
where, starting at some finite value, the “Yukawa
cut’” lies. The corresponding cut of S in the E plane
then runs along the negative real axis (on both sheets)
and is referred to as the “left-hand cut.” Since the
pole position a(k) = Ak) — % is defined by
F(\, —k) = 0 and F(A, —k) has its left-hand
cut on the second sheet as a function of E, a(FE)
has no left-hand cut on the first sheet, but only
on the second.
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APPENDIX B. THE RESIDUES OF S

The residue of the S matrix at a point Ao, k
where F(\,, —k,) = 0 (as a function of A) is by (2.15)

S, = 3”()‘_1/2)F()‘0; ko)/[aFo\o; - ko)/‘”\o]- (Bl)

By the same technique used in Sec. 3, we get when
F(o, —ko) = 0

IF (N, — ko) /e = 4ihoko f @12 0o, Koo, 7)/Fha, o).
1]

But by (2.13) we then have

NEWTON
ix(ho—1/2) +
Sllhe) = el
® o aw (B3)
[, =k,
0
When k, — 0 we find that
S (ko) = OC5""*"). (B4)

Added in proof. It follows from (B2) and from the
fact that neither ¢(n, k, r), nor f(\, —k, r), nor
a(k) has a cut along the positive imaginary k-axis,
that F[A,(k), k] has no such cut either. Consequently
the residue S,(k) by (B1) has no ‘left-hand cut.”

= 3 -1 —_
¢(ho, ko, 1) = ko) FNo, ko)fhoy —ko, 7). (B2 e explicitly pointed out by J. R. Taylor
As a result (to be published).
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I. INTRODUCTION

HE analytic methods developed by Weyl,'
Titchmarsh,” and many others for the solution
of the Sturm-Liouville equation

2@+ — V@)@ =0 (! = d/dr) (1.1)

have proven to be powerful tools for the study of
the spectral properties of the singular cases of the
second-order differential equations of mathematical
physics. For example, since Eq. (1.1) corresponds
to the radial wave equation of a nonrelativistic
particle in a central field, the methods referred
to may be advantageously applied to determine the
spectral properties of the Schrodinger operator for

* Present address: Computer Applications, Inc., San
Diego, California.

1H, Weyl, Math. Annal. 68, 220 (1910).

2 B. C. Titchmarsh, Eigenfunction Expansions Associaled
with Second-Order Differential Equations (Clarendon Press,
Oxford, England, 1946).

singular potentials. In the case of the Schrédinger
equation such potentials behave near the origin
as r~° or, in general as ™" with n > 2. The spectral
properties and the solutions of wave equations with
singular potentials of this type and of a more general
character have been studied by Case.?

It is the purpose of this paper to generalize the
methods of Weyl and Titchmarsh in order to in-
vestigate the spectral behavior of the system of
two first-order differential equations,

zir) — Aa@) + b{)]z(r) = 0
z3(r) + Delr) + dn)]2(r) = 0,

with singular coefficients.
Because the system (1.2) corresponds to Dirac’s

radial relativistic wave equation for a particle in a
central field, these generalizations enable us to

3 K. Case, Phys. Rev. 80, 797 (1950).

(1.2)
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APPENDIX B. THE RESIDUES OF S
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investigate the asymptotic behavior of the solutions
of this equation and the spectral properties of its
operator. Consequently, system (1.2) is discussed
here for the case that the coefficients a, b, ¢, and d
take the form required in the Dirac equation.

For additional information about system (1.2),
the reader is referred to some other papers and
reports by the authors.*™®

II. THE DIRAC EQUATION FOR A PARTICLE IN A
CENTRAL FIELD

The relativistic wave equation as proposed by

Dirac may be written in the Hamiltonian form

th(a/at)y(r, 1) = Hylr, ). 2.1)

For the wave equation of a Dirac particle in the

central field of a fictitious nucleus, the Hamiltonian
takes the form

H = —ca-p — Bmc + V(). (2.2)

The solution of the system of four simultaneous
linear differential equations of the first order (2.1)
is a column vector with four components. The
coeflicients 3, ¢, are anticommutative 4 X 4 Hermi-
tian matrices which find their ultimate form in the
well-known Pauli spin matrices.

Since the potential function V(r) in (2.2) is
spherically symmetrie, the Dirac equation for a
particle in a central field can be separated in spherical
coordinates. We will not go into the details of the
separation process, but will instead refer to the
many excellent references.”® It may be shown thaf
the resulting radial part of the solution of the wave
equation has two components, f(r) = [r 'f,(r),
r7'f,(r)], and that the investigation of the radial
part is sufficient for the determination of the spectral
properties of the equations. Separating out the
angular dependence, the equations for the radial
- wave functions may be written in the form given
by Bethe®:

41 B. W. Roos and W. C. Sangren, Proc. Am. Math. Soe. 12,
468 (1961).

¥ B. W. Roos and W. C. Sangren, Pacific J. Math. (to be
pubhshed) .

8 B. W. Roos and W. C. Sangren, “Asymptotic Solutions
and an Equiconvergence Theorem for a Pair of First-Order
Differential Equations,” presented at the 586th Meeting of
the American Mathematical Society (unpublished).

7 L. 1. Schiff, Quantum Mechanics (McGraw-Hill Book
Company, Ine., 1950)

8P, Al M Dirac, Principles of Quantum Mechanics
(Oxford University Press, New York, 1935).

9 H. A. Bethe, Handbuch der Physzlc edited by Geiger
Steele (Verlag Julius Springer, Berlin, 1933), p. 1, 313.
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[E + mc® — VI
— heldfs(r)/dr]
[E — mé® — V(Of(r)
-+ Reldf.(r)/dr] — (hek/r)f() =
Here the parameter k can take the values +1,
+2, .- . At this point it is convenient to adopt
the system of rational relativistic units in which
i =m = ¢ = 1. In order to have the system of
Eqgs. (2.3) conform with the system (1.2), we make

the substitution z,(r) = f,(r)r* and z,(r) = f,(r)r™*
Hence,

zi) — ' E + 1 = V)lz() = 0

— (ck/nfa(r) = 0 (2.3)

(2.4)
i) + rE — 1 — V)lautr) = 0
or as given in Eqgs. (1.2)
) ~ Dal) +b0Les) =0,
zi(r) + () + d)]a, @) = 0,
where
N=E, alr) =, bl =1 — V(@©)], @.5)

7A@ = =L+ V)]

In the following sections we investigate the
spectral properties of system (1.2) for the coefficients
(2.5). After making some preliminary information
available in Sec. 3, we discuss the analog of Weyl's
limit-point, limit-circle theorem in Sec. 4. Section 5
introduces a transformation of the basic equations
and in Secs. 5 through 9 the asymptotic properties
of the relevant parameters and the solutions of the
transformed equations are investigated. In Sec. 10
the spectral properties of the Dirac equations are
discussed.

clr) =r

III. PRELIMINARIES

On the finite interval (ro, 7°) let »(r, \) = [v.(r, N),
va(ry, M, w(r, A) = [wy(r, N), w,(r, N)] be two vector
solutions of (1.2) that satisfy the conditions
vs(re) = +cos B,
’LUQ(TO) = ‘_Sin B.
The Wronskian of » and w is defined by

W, w) = 0:(wa(r) — va(w,(r).

Since W, (v, w) is independent of r and W,(v, w) = 1,
W.(v, w) = 1 and v and w are linearly independent
solutions. The general solution of (1.2) may be
written as

v(re) = —sin 8,

wy(ro) = —cos B,

w(t, ) + 1w, N).
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It is known®''" that if the general solution satisfies
Sturmian boundary conditions at r = r,, the eigen-
values will be real, nondegenerate, discrete, and
extend from N = —» to A\ = + ». The corre-
sponding eigenfunctions are real functions of 7.
For the singular case the spectrum can be investi-
gated by taking the limit of the general solution
as ¥ — . As in the case of singular second-order
differential equations, it can be shown (Sec. 4) by
a limit-point, limit-circle argument that for Im X # 0
the system (1.2) will have a vector solution:

2r, N) = wlr, ) + m(N(r, N)

belonging to the class of square integrable functions
L*(r,, ). The function m(\) depends upon the
limit of circles in the complex A plane and, for
r° — o, is either a limit-point or a point on a limit-
circle. In the limit-circle case all solutions are in
the class L*(ro, ). Furthermore, m(\) is analytic
for Tm A # 0 and m(X) = m()).

The spectral distribution function'®'' is deter-
mined by the imaginary part of m(\) and the
spectrum associated with a problem for which the
spectral distribution function is uniquely determined
is the set of nonconstancy points of this distribution
function. It may be shown that this spectrum is a
closed set. The set of all discontinuity points of the
spectral distribution function comprises the point
spectrum. The points in the point spectrum are
better known as the eigenvalues and the solutions
of the differential equations corresponding to such
points as the eigenfunctions. The continuous spec-
trum is the set of continuity points of the spectral
distribution function which are in the spectrum.
In the case where the spectrum corresponds to the
energy states of a physical system, the continuous
states of the system are to be found in the corre-
sponding continuous spectrum of the differential
equations describing the system. In the m(\)
language the point spectrum is the set of the poles
of m(X\) if m(\) is a meromorphie function.

11

IV. LIMIT-POINT AND LIMIT-CIRCLE THEOREM

Before turning specifically to the singular cases,
a theorem which is similar to that originally given
by Weyl' is developed. This theorem deals with
the solutions of Eqs. (1.2) in the interval (r,, r°).
The coefficients a(r), b(r), e(r), d(r) are assumed

10 E. A. Coddington and N. Levinson, Theory of Ordinary
Differential Equations (McGraw-Hill Book Company, Ine.,
New York, 1955).

U E. L. Ince, Ordinary Differential Equations (Longmans
Green, London, 1927).
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to satisfy the conditions

a(r), b(r), ¢(r), and d(r) are real-valued

functions and a{r) > 0, ¢(r) > 0, (4.1.3)
alr), b(r), ¢(r), and d(r) are sectionally
continuous functions. (4.1.b)

Let ' be an interior point of the interval (r,, 7°).
Consider two solutions »(r) = [v,(r), v.(r)] and
w(r) = [w,(r), wa(r)] of Egs. (1.2), such that

v(r') = 4cos 8,

wy(r’) = —sin B8,

o,(r') = —sin B,

w;(r’) = —cos B,
where 8 is real. Because the Wronskian
W, w) = W,.(v, w) = 1,

the two solutions are linearly independent. The
general solution of the system (1.2) has the form

2(r) = w(r) + mA\)e(r),

where m(\) is a complex number. By means of
elementary operations and the assumption that z(r)
is a solution of (1.2) and z(r) is a solution of the
system

z/(r) — a@) + b(r)]z0) = 0
2Z;0r) + [Ae(r) + d@)a () = 0,
one obtains
£z — 20z ()
= (A = Naa®z) =
=& N0 + 20020
= (A — Nea@z@) = 2irel) 0],

where it is assumed that \ is a fixed number, such
that 7 = Im A 5 0. The result of adding first and
then integrating from 7’ to r yields

2i7a(r) }zz ) ]2 s

2ir f [e(s) @ + o) l2:(9) ] ds

I

[2:(M2Ar) — 2:(r)2,0)];.
= W‘r(zy 2) - Wr'(z) 2)
For convenience, we now introduce the quantity

2i7V.(f, 9) = W.(f, 9)

and we obtain
frr [c(s) [2()]* + als) |z(s)*] ds

= V.22 — V.(2,5). (4.2)

The integral on the left-hand side must now be
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investigated for r tending to r, or r°. However,
since these two cases are similar it will only be
necessary to consider the case that r tends to r°.
First, consider V,.(z, ). We have

V,.@w,5)=0, V,(w,®) =0, and V,.(w,d) =
and, consequently,

m(A)

1/2¢r

— m(\) _ Im {mQ\)}
2r - T

V.23 =

will be a real number. If it would be possible to
choose m(\) in such a way that V,(z, 2) < 0 for
all 7 in (7o, ), then

[ 6@ BOF + al) 101 ds < = V.., 2

and, therefore,

[ ® BOF + a6 @F s < .

Now, since z(r) = w(r) + m(\)o(r),
V., 2) = mOmONV.0,9) + mNW.6, D)

+ mW,(w,9) + W,(w, @).
Consequently,

V.(z,2) = V.0,
V. (w, v):l

{[m()\) + VE” ’g)][ M+ 7505

Vo, ®)V, (0, — V.0,0)V.(w, w)}
V.0, )]
and from this relation it follows that for fixed r

the set of points in the m(\) plane which satisfies
the equation

4.3

Viz,2 =0
will be a circle with center
Cr) = =V, 0, 0)/V. 0,0
provided
V=V0ewVwis— VeV (iww

is a positive number. Now,

V=V wid—VesViw o

= 7 |W,(w,v)[° = 77

therefore V is a positive quantity. The radius of
the circle is therefore

R() = 1/|r| V., 9). (4.9)
When m(Q\) = C(r), V.(z, 2) is negative and it
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follows that the set of points m(\) interior to this
circle corresponds to V.(z, 2 < 0. If we now fix
a point m(N) in (4.2) and allow r to increase (r' <
r < 1%, it follows that V,(z, 2) is an increasing
function of r.

Cousider next the family of circles in -the m(\)
plane, which are represented by V.(z, 2) < 0
when r/ < 7 < 7% Let v’ < r., < ¢ < ¢°, then let
V.. (2, £ < 0 for some point m(\). It then follows
that V,.-(2, £) < 0 for this same m(}), since V,(z, 2)
is an increasing function of r. Geometrically, this
means that the circle corresponding to r”” is con-
tained in the circle corresponding to r... Conse-
quently, there exist two possibilities as r tends to 7°.
Either the circles V,(z, Z) = 0 converge to a point,
called the limit-point, or they converge to a circle,
called the limit-circle. The limit-point case occurs
when
lim V.(v, %)

r—r®

= [ 1 O + a®) b9 ds = o

This follows immediately from the defining relation
for the radius R(r) of the circle (4.4). Let this limit-
point be denoted by m(r°, A) and let 2(r) = w(r) +
m(r°, Nu(r). Since this point m(r°, A) is contained
in all the circles V.(z, 2) < 0, we obtain the im-
portant result that

[, 6 5O + ol k@F ds < w.
Furthermore, from Eq. (4.3) it follows that

V.,2) > — V.0, D) = —-

1
7V, (v, 5)
Now, since lim,.,. V. (v, 7) o, V.2, 2) > 0.
However, we also have V,(z, 2) < 0 and therefore

lim V,(z,2) = 0

ror®

Il

or

lim {2,("Zz:(r) — 2:(Nz,(r)] = 0.

rear®

The limit-circle case occurs when

lim V., 3) = f [c(s) @ -+ als) [oa() 7] ds < .

r—r°

The radius of this circle, using relation (4.4) is
given by

.
7| V.(v, )

Now, consider any m()\) contained in the limit-circle.

lim

ror®

lim R{r) =

ror®
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For such an m(\), V,(z, 2) < 0 for all » in [r', *°]
and, consequently,

[ 6@ 2@ + a® @ ds < .

It also follows then, in this case, that every solution
2(r) = [x,(r), 2:(r)] of the system (1.2) is such that

[ OF + o mOF ds < o

Equation (4.3) has the form

Ve, d) = V.6, 3)lim0) — COOF - R'6),
where C(r) and R(r) are the center and radius of
the circle, respectively, corresponding to V. (2, 2) = 0.
If r tends to #°, then
lim V,(z, 3 = lim V,@,9)[|m®}) — C¢)|® — R*(")],

ror® Ldndd

where C(+°) and R(r°) are now the center and radius
of the limit-circle, respectively. Now for a point
on the limit-circle,

m\) = C(r") + Rr"e's,
where 0 < a < 27, and hence,

lim V,(z,2) = lim [2,()%() — 20z0)] = 0.

ror? o

The results may be summarized in the following
theorem:

Theorem 1. (a) For every value N\ other than real
values, there exists a solution z(r) of the system (1.2)
such that

[0 2O + o k@ ds <

for some v’ in (ro, 7).

(b) If there exists at least one solution z(r) =
[z, (r), 2:(r)] such that

f‘ [e(s) |m:8)|° + als) |2.(s)[] ds = o,
then for any solution y, such that

f ) [1:@)" + als) [yas) [T ds < oo,

0.

i

lim [%:()7:() — v:0)5,0)]

ror

(¢) If for all solutions x(r) = [z.(r), x,(r)] such that

[ 66 mOF + @) lm@F1ds < =,

then there exist two linearly tndependent solutions v(r)
and w(r) and a circle m(r°, \) = C(°) + R(°)e’"

B. W. ROOS AND W. C. SANGREN

in the complex plane, such that
lim [2,(NZ:(r) — z@z0)] = 0

for 2(r) = w(r) + mM\v(r) when m(\) = C@°) +
R(r)e'".

It may be shown that the system (1.2) is uniquely
in the limit-point or limit-circle situation.'?

V. THE GENERAL TRANSFORMATION OF
THE BASIC EQUATIONS

The asymptotic behavior of the solutions of
system (1.2) for large N and for large values of a
coefficient when the independent variable ap-
proaches a singular point can be conveniently ob-
tained by first using the following transformation.
Let the independent variable r be replaced by

at) = [ (Da@ + bEIN® + d@1) 2 ds  (5.1)

and the dependent functions z,(r) and z,(r) by
w(r) = Fr)ay(r)

and (5.2)
W) = —F'0.0) + GO)zs(r),
where
Fr, N = D) + b@)I*el) + d)]*
G, \) = F'(@)7".
This transformation gives formally
du,/da = u,, (5.3)

dus/da = —u, + B(\, a, b, ¢, d)u,,
where
R\, a,b,c,d) = Q') ' F.

Although the transformed equations are similar in
form to Eqs. (1.2), the coefficients on the right-
hand side remain bounded for large A and for
certain important cases when a, b, ¢, or d become
large.

Now consider the following integral equations

Uilr, N) = Us(ro) sin ar) + U.(ro) cos alr)

+ f " U6)S(s) sin [af) — a(s)] ds
o (5.4)
Uslr, N) = —U.lrg) sin a(r) -+ Uslro) cos afr)

+ f' U(s)S(s) cos [a(r) — afs)] ds,

12 B. W. Roos and W. C. Sangren, ‘‘Spectral Theory of a
Pair of First Order Differential Operators,’”” presented at the
574th Meeting of the American Mathematical Society (un-
published).
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where S(r) = G'(r)F7'(r). It is easily verified by
differentiation of U, and U, with respect to a(r)
that a solution of Eqgs. (5.3) satisfies the Eqgs. (5.4).

VI. THE S(r) FUNCTION FOR THE DIRAC EQUATION

It is important for later use to determine the
order properties of the S(r) function. In particular,
we will have to determine whether or not the
function S(r) is integrable. S(r) can be written as

8@ = (1/H[a’”" + ¥H(a + b0 + d) V2
— O\ + d)(Aa + b V(e - d)?

— 6/’ + )’0\a + b)) + )72

+ (7/9)0" + d)’(Aa + b)) (e + d)7*?

— (1/2)(\a” + b)Y\’ + d)(na + b)—a/z()\c + d)_a/z],
(6.1)
where

A =E, br) = [L — VeI

cr) =r*, dr) = ~[1 + VOP*

Case 1. Let r — . Various behaviors of the
potential function V(r) may be assumed when
r — o, Consider, for example, the potential

a(r) = r*,

Vi) = 0% for r— .
It is not difficult to verify by (6.1) that in this case
S =0¢% for >0 and r— o

8r) = 0¢™>*") for §<0 and r— o

and that S(r) is integrable L(r.. ). In the same
fashion, when V(r) — 0 for r — «, 8(r) = 0@r™®)
and is again integrable L(r,, ). In numerous cases
it can also be shown that S(r) is integrable L(r,, «)
when |V(r)] > « forr — =,

Case 2. Let »r — 0, and let it be assumed that
V(r) behaves like r~” for r — 0. It may now be
shown that

S = 0¢™>") for >0 and r—0

S = 0r™ for y<0 and r— 0.
Similarly, if V(r) — 0 for r — 0, S¢*) = 0O@F™?).
S(r) is therefore only integrable L(0, r,) when
v > 1. Again, it may be expected that S(r) is

integrable L(0, r,) for many situations in which
V@) — .

VIL. THE CHARACTER OF «(r) FOR THE RADIAL DIRAC
EQUATIONS

The character of «(r) for large values of the
parameter A and at a singularity of the potential
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function must be investigated before determining
the corresponding order properties of the solutions
of the integral Egs. (5.4). In the integral Eqs. (5.4),
a(r) is present explicitly in the terms exp [ta(r)]
and exp [—ia(r)], which consitute the functions
sin «(r) and cos a(r), and is present implicity in the
function S(r). By definition, and because a(r) and
¢(r) are real and positive,

alr, \) = f [a(s)r<s)]lﬂ{[x + bgﬂ[x + ‘Zg]} ds.

First, consider the character of «a(r) for large A.
For any fixed r interior to the interval under con-
sideration, it may be shown by using the binomial
expansion that

olr, ) = M) + 9@ + OO,
where
o) = | ' [a@e©]"* s,

" b(s)c(s) + a(s)d(s)
ro [a(s)c(s)]'

Next, consider the behavior of a(r) near either of
the end points of the interval, for example, near

()_“ ds.

r = o. It is assumed that )\ is fixed and is given
by A = ¢ + 4r, where v > 0. The behavior of a(r)
near r = o is necessarily quite varied because it

depends strongly on the behavior of the four func-
tions a(r), b(r), ¢(r), and d(r) in the neighborhood
of r = . We will not attempt to present a com-
prehensive discussion of the varied behavior here.*
However, the following general comments can be
made.

When S(r) is integrable and Im «(r) tends to
plus or minus infinity, the limit-point case can be
expected. If S(r) is integrable, but Im o(r) is
bounded, then the limit-circle case can be expected.
In the limit-circle case the spectrum is discrete
whereas in the limit-point case the spectrum may
be either continuous or diserete or both.

Let us now return to the Dirac equations. Here

o) = f A1 — VI — 1 — V(]}72 ds

and it may be noted that this a(r) is a particular
case of the one discussed in a previous paper.*
Here, 1 — V{(r) and —[1 4+ V()] correspond,
respectively, to the ¢,(r) and ¢.(r) of that paper.
The results of that study can therefore be used
immediately at r = . Specifically, consider the
situation where V(r) — 0 for r — «, as in the case
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when V(r) = O(¢°) and 8 > 0 for r — . This is
an example of case 9 of the previous paper and it
was shown, for real A and when \*> > 1, that a(r)
is real and a(r) — + o, whereas if \* < 1, a(r)
will be imaginary and Im a(r) — 4+ «. For § < 0,
or more generally, if [V(r)] — o, either case 3
or case 4, of the paper mentioned, hold. In either
case, for real A, a(r) is real and |a(r)] — .

When r — 0 and V(r) behaves like r~7, where
v > 0, it is not difficult to show for real A\, that
a(r) = 0(1) and is real when 0 < v < 1, and that
le(r)] — « when y > 1. This last behavior can be
expected whenever |rV{(r)] — . Since S(r) does
not satisfy the crucial condition for our study that
it is integrable L(0, 7,) when V{(r) — 0, we will
not consider this situation here.

VIII. THE ORDER PROPERTIES OF U(r2) IN THE
NEIGHBORHOOD OF SINGULAR POINTS

In the case of the Dirac radial wave equations,
the order properties of the solutions of the integral
Egs. (5.4) are directly obtained from the results
of cases 3, 4, and 9 of reference 4. When Im o(r) — «,
it was shown that

Ur, N = e " OIM* (N + o(1)],
Us(r,N) = ¢ *[N*(\) + o(1)],

where
M\ = —(1/20) Uy(ry) + 3U.(ry)
_ l_ ® ta(a)
2% ) e S(s)U,(s) ds

N™ON) = (1/20)U,(ro) + 3U(ro)
+ %fm ¢S Uy(s) ds.
Similarly, when Im a(r) » — o,
Ui, M) = e * 7 [M~(N) + o(1)],
Ur, N) = &[N~ () + o(1)],
where
M=\ = 1/2)Us(ro) + 3U.(ro)
+ 2% fm e I8 U, () ds
N_()\) = _(I/Zi) UI(TO) -+ %Uz(ro)
+ % fm e WSO Ur(s) ds.

From the basic transformations it follows that

Uilrg) = Flro)xs(r,),

ROOS AND W. C. SANGREN

Uiro) = —F '1(7'0)751(7'0) + Glro)as(ro).

The associated initial conditions for U(r, \), cor-
responding to the two linear independent solutions
w(r, \) and »{r, ) of the system (1.2), are

Uilre) = Flro) cos B,  Us,(ra) = F7'(ro)

X sin 8 4 G(ry) cos B
Usulro) = F7'(ro)

X cos B — G(ry) sin B.

From the definition of F(r,), G(r,), it follows that
Uso(ro), Uso(ro), Urw(ro), Uszu(rs) are bounded pro-
vided A is such that

I)\(I(TO) + b(ro)[ [)\C(To) + d("'o)‘ >e> 0.

Consider those cases where A\ is real and a(r) is
real; U, (r) and U,(r) are therefore bounded. Further-
more, from Egs. (5.4) it follows that

Uilr, V) = u()) sin ar) 4 »(0) cos afr) + o(1)
Us(r, ) = —»(N) sin a(r) + u(d) cos ar) + o(1),

where

Ulw(rﬂ) = —IF(TO) Sin ﬁ)

WO = Ualro) + f " UL9)S() cos als) ds

W) = Uyrg) — f " U8 sin afs) ds.

The integrals in the last two relations converge
uniformly in A, and hence, u(A) and »(A) are con-
tinuous and bounded functions of A. It was assumed
here that S(r) is integrable L(r,, «). It may now
be verified that when X isreal and r — o,

BN — mWr,(A) = 1,

and it follows that neither y,, »,, nor u,, », can both
vanish simultaneously for the same X.

For r — 0, U,(r, N\) and U,(r, \) are bounded
functions in the Dirac case. It was noted in the
previous section that Im a(r) is 0(1) for complex
A when r — 0. Consequently, from Egs. (5.4) it
follows for small r, that

U, NS K+ [ 106, )] 156)] ds

and by a lemma in a previous paper,* U(r, \) is
bounded provided that S(r) is integrable L(0, 7,).

IX. THE CHARACTER OF m(})

It was noted in Sec. 5, that system (1.2) has a
solution z(r) = w(r) + m(A)V(r) which for nonreal
values of A is Lebesgue integrable square at each
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end of the interval. Therefore, there exists a solution
2, N) = wl) + m(\) V()

belonging to L*(0, 7,) and a solution
2-(r, N) = w@®) + m.N) V@)

belonging to L*(r,, «). First consider the solution
2-(r, A\). The functions w(r) and V(r) do not belong
to L?(r,, ). This nonintegrability can be verified
by observing that

F7'() = al) + b@1'Delr) + @]

does not vanish for any general behavior of V{(r)
in a manner that will compensate for the growth
in the term exp [—ta(r)] when Im a(r) — 4 o or
the term exp [ta(r)] when Im «(r) — — . Con-
sequently,*

wir, N = [FOMI0N) + o(D]ei*,
wi(r, A) = [F'\0M,(\) + o1,
vir, N = [FT\OM) + o(Dle* %",
vlr, ) = [F0OM 0 + o1)]e’ .

The right-hand boundary point at « is thus seen
to give rise to the limit-point situation. It may be
verified that if z.(r, \) is to be in L*(r,, =) then

ma(\) = =M .(N/M (N = —N,N/N7N)

and it is well to remember that the quantities M (A)
and N(A), which constitute m>(\), contain the
quantities S(r), U,(ry), Us(ro). In turn, U,(r,) and
U,(r,) are composed of the quantities F(r,), F~(ry),
and G(ry). From the definitions of F(r) and G(r)
[Eqgs. (5.3)], it is not difficult to verify that when A
is real and [Na(ro) + b(ro)lAe(ro) + d(re)] > 0,
F(ry), F7(ry), and G(r,) are real. When A is real
and [Na(ry) + b(ro)lAe(ry) + d(ry)] < 0, it is ap-
parent that F(r,), F~(r,), and G(r,) are complex with
argument w/4 or —w/4. Similarly, S(r,) is real
provided [a(r,) + b(ro)lhe(ry) + d(rs)] > 0 and
is imaginary if a(r,) + b(re)lre(ro) + d(r)] < 0.

In the Dirac case, Aa(r) + b(n)[Ae(r) + d(r)] =
WN4+1 =V N=-1—-V®]. I V) — 0 for
r— o, then A + 1 — V(@)IA — 1 — V()] be-
haves like > — 1. Consequently, for A> — 1 > 0
it is possible to choose an r, such that S(r), a(r),
F(r), and G(r) are simultaneously real for r > r,
and for real \. It follows from the definitions that

MY (M) v O] + i
M 200+ 70

= mx(N).

ma(\) =
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Consequently, Im m*(\) and Im m~(\) are non-
vanishing. If V(r) — 0 for r —» « and \* < 1,
S(r) and «(r) are imaginary and F(r) and G(r) are
complex with argument =/4 or —w/4. The M's
and N’s which constitute m.(\) can, when mul-
tiplied by ¢'*’* or e~ *"*, be shown to be real, and
since the M’s and N's are holomorphic in the whole
A plane, the m™(\) and the m~(\) are meromorphic
functions of A.

If V(r) behaves like ™" when r — 0 and y > 0
then U(r, \) was seen to be bounded for complex A
and S(r) integrable L(0, r,). However, S(r) is
L(0, r;) only when v > 1. By the transformation
(5.2) we have 2,(r) = F'()Ui(r, \) and z,(r) =
—F(r)yUsy(r, N) + G{r)U.(r, \). Therefore, as r — 0,
F(r) = O@¢") and G(r) = O@"**). Consequently,
.(r) = 0F") + OF@ ™) and z,(r) = O@™).
Although for an integer k either x,(r, N\) or z,(r, \)
is not integrable, the limit-point, limit-circle theory
indicates that the relevant issue is whether
 la(s) [z2(8)]® 4 o(s) |z.(s)|*] ds exists. Now

a(@) |z.@|* = 0(1) and cr) |2.()[
= 0(1) + 0¢*"" ™)

and, consequently, for v > 1, all solutions of the
system (1.2) satisfy the integrability requirements
and the limit-circle case is present.

It is not proved here, but it can be shown in a
straightforward manner, that if any point in the
limit-circle is selected, the associated mo(\) is a
meromorphic function of A, is real for real A\, and
has poles and zeros which are real and simple.”

X. SPECTRA FOR THE DIRAC CASE

In the Dirac case, where singularities exist at
both ends of the interval, the spectra is determined
by the three functions®

1 mo()‘)
mo\) — ma(d) ’ meA) — MmN’

mo(N) e (A)

and ) — my

In a given A interval of the real axis, three situations
need to be considered. First, m,(\) and m.(\) may
be meromorphic functions. Second, the imaginary
parts of my(A) and m.(\) may be nonvanishing.
Third, only one of the m,(A\) and m.(\) is mero-
morphic whereas the other one has a nonvanishing
imaginary part.

In the first situation where m,(A\) and m.()\) are
meromorphic it is apparent that the three functions
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are also meromorphic. It then would follow that
the spectrum is discrete for the associated A interval.

For the second situation it is easily shown that
the imaginary part of me(A) — m.(A) does not
vanish. Consequently, since my(\) and m.(A) are
bounded, it follows that the spectrum is continuous
for the associated A interval.

In the third situation, where either m,(A) or m..(\)
is meromorphic, Im [m,(\) — m.(\)] tends to a
finite limit in the whole interval except at certain
discrete points. Therefore, the imaginary parts of
the three functions tend to finite limits which can
vanish at most at discrete points. The associated
spectrum is therefore continuous.

The situation where V(r) — 0 as £ — o« and
V(r) behaves like r~* for v > 1 results in the
interesting spectral properties from a physical
standpoint. In this situation m,(A\) and m.(\) are
meromorphic for A* < 1 and my(\) is meromorphie,
but Im m.(\) is nonvanishing for > > 1. Con-

B. W. ROOS AND W. C. SANGREN

sequently, the spectrum is discrete for A*> < 1 and
continuous for A* > 1. This result could likewise
be expected for numerous other cases when [V (r)| —
o asr — 0and V(r) — 0 as r —» «. If, however,
[V(r)| — « asr — «, only a continuous spectrum
can be expected.

We have seen that with the formalism described
above, the well-known result that the discrete levels
are restricted to a region between -tmc® is repro-
ducible. However, we required the potential V(r)
to behave better than r~” near the origin so that a
Coulomb field, for example, was excluded. However,
the Coulomb field is just the case that is amenable
to a rigorous analysis by series expansion methods
and the spectrum is easily determined.
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The asymptotic behavior of the Weyl tensor and metric tensor is investigated for probably all
asymptotically flat solutions of the empty space Einstein field equations. The systematic investigation
utilizes a set of first order differential equations which are equivalent to the empty space Einstein
equations. These are solved asymptotically, subject to a condition imposed on a tetrad component
of the Riemann tensor ¥, which ensures the approach to flatness at spatial infinity of the space-time.
If ¥, is assumed to be an analytic function of a suitably defined radial coordinate, uniqueness of the
solutions can be proved. However, this paper makes considerable progress toward establishing a
rigorous proof of uniqueness in the nonanalytic case. A brief discussion of the remaining coordinate
freedom, with certain topological aspects, is also included.

I. INTRODUCTION

HE problem of the behavior of the metric

tensor and Riemann tensor at spatial infinity
in an asymptotically flat space-time has recently
received considerable attention for a variety of
reasons. For example, Trautman and others' have
used the asgmptotic behavior to study conservation
of energy and momentum as well as gravitational
radiation. Bergmann® has been interested in the
group properties of the transformation at spatial
infinity in order to shed light on quantization
problems.

Until recently, most of these approaches were
based on reasonable guesses for the behavior of
g,, at infinity. Bondi® and Bondi and Sachs* have
improved this situation with some beautiful theorems
on the asymptotic behavior of the metric. Their
work, however, contained several restrictive as-
sumptions; the analytic behavior of all expressions
as functions of #~' (r is a suitably defined radial
coordinate), and certain simplifying topological re-
strictions.

In the present paper, these assumptions are
dropped, and the techniques developed by Newman
and Penrose® (this reference will be denoted by
NP) are applied to the general problem of the asymp-
totic behavior of the Weyl tensor and metric tensor
for probably all asymptotically flat solutions to the
empty space Einstein field equations.

In a hyperbolic Riemannian manifold a family of

* This work has been supported by the Office of Aerospace
Research, U.S. Air Force.

t A. Trautman, ‘“Conservation Laws in General Relativity”’
(to be published); This is also an excellent source of references
to recent works on conservation laws.

2 P. Bergmann, Phys. Rev. 124, 274 (1961).

8 H. Bondi, Proc. Roy. Soc. (London) (to be published).

¢+ H. Bondi and R. Sachs (private communication).

5 E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).

null hypersurfaces may always be introduced. This
being done, in Sec. II a coordinate system and
tetrad are associated with the given surfaces,
bringing the metric into a certain canonical form.
Then a set of equations equivalent to the empty
space Einstein field equations is shown, and the
variables occurring in these equations are defined.
From these equations the asymptotic behavior of
the field can be investigated, systematically and in
detail, subject to a condition of approach to flatness
at infinity on the space-time. This condition of
asymptotic flatness is not imposed on the metric,
as is usually done, but is instead imposed on the
empty-space Riemann tensor. More explicitly,
using the orthonormal tetrad defined in See. II,
there are only five independent (complex) tetrad
components of the Weyl tensor, which we denote by
¥,. One of these components ¥,, is specified asymp-
totically as O(r~®),® which guarantees the asymptotic
flatness of the space.

In Sec. III the field equations are solved asymp-
totically, with the above condition on ¥,. In order
to do this, the field equations are divided into three
groups. The first group is integrated to find the
radial dependence of all the variables, up to an
appropriate order of magnitude. Each integration
produces an arbitrary function of the remaining
three (nonradial) coordinates. The second group of
equations sets up relations among these ¢ constants’
of integration, which allow most of the functions
to be expressed in terms of two basic functions.
The third group of equations, part of the Bianchi
identities, determines the propagation of com-
ponents of the Weyl tensor off the hypersurface.

°f(r, u, &¥) = O(g(r)) means |f(r, u, £%)| < g(r)F(u, =¥)
for some function ¥ independent of r and for all r, sufficiently
arge.

891
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In Sec. IV the general class of coordinate trans-
formations which preserves the form of the metric
is found. Some of the coordinate transformations
change the system of hypersurfaces, others do not.
Most of this coordinate freedom is eliminated in
achieving a simplification of one of the basic
variables.

In Sec. V we summarize the results already ob-
tained and discuss the independent data that can be
specified to determine a solution of the field equa-
tions. These data consist of a complex function
defined from the shear of a null congruence (Bondi®
calls it the “news function”), a two-dimensional
metric tensor for the surface » = const (Bondi
chooses this surface to be a sphere), and certain
Weyl tensor parts, including ¥,. In order to obtain
explicit information from the third group of equa-
tions (the equations which propagate the Weyl
tensor off the hypersurface), one must specify in
more detail the dependence of ¥, on ™%, other than
¥, = 0(r™%. For example, if one writes

W, =¥y > + 007%, avi/or = 0,

then the propagation of ¥; off the surface can be
explicitly worked out.

If one assumes that ¥, is an analytic function
of r™, it can be shown that the solution of the field
equations is uniquely determined by the data that
have been set and the field equations themselves.*
However, it now seems to be generally agreed that
the assumption of analyticity is probably not
essential in showing that the solution is unique. It
would be very desirable to have a rigorous proof of
uniqueness in the nonanalytic case. Our work carries
this proof almost to completeness; the final step
would be to show that the propagation of the non-
analytic ¥, off the surface is unique. Finally, the
remaining coordinate freedom is discussed.

In a recent paper, Sachs’ discusses the geometric
interpretation of several of the terms and first order
differential equations listed in Sec. II of this paper.

The range and summation conventions used here
are: lower case Greek indices 1, 2, 3, 4; lower case
Latin indices 3, 4.

II. THE FIELD EQUATIONS

In this section a special coordinate system, with
an associated tetrad, is constructed as in Robinson-
Trautman® and NP. The pertinent results of NP are
presented, including a set of equations which are

? R. Sachs, Proc. Roy. Soc. (London) 264, 309 (1961).
8 I. Robinson and A. Trautman, Proc. Roy. Soc. (London)
265, 463 (1962).

E. T. NEWMAN AND T. W.

J. UNTI

equivalent to the Einstein empty space field equa-
tions.

We begin by introducing a family of null hyper-
surfaces, which is always possible in a normal hyper-
bolic Riemannian space. (In flat space-time a
particular family might be the null cones emanating
from a timelike world line.) They may be desig-
nated by a parameter © = const, so that

¢“u ., = 0. (D

The first tetrad vector will be chosen to be orthogonal
to the hypersurfaces,

@)

Since the hypersurfaces are null, the vectors [,
will also be tangent to a family of curves that lie
within the surfaces. These curves are null geodesics;
their tangent vectors [* satisfy

. =0.

le = U,q.

Using this geometric approach, it is convenient
to take u as coordinate z'. Then Eq. (2) becomes
I, = é,.

[ ]
An affine parameter, defined up to a linear trans-
formation, can be associated with the null geodesics
lying in the hypersurfaces. This affine parameter r
will be the coordinate z°. The two remaining co-
ordinates z* will label the geodesics on each hyper-
surface u = const.
The tangents to the geodesics are given by

P =dz*/dr = ¢"u, = ¢*. (3

With our choice of coordinates, r being the affine
parameter 2°, Eq. (3) becomes

r= 8 =g
Hence, the metric assumes the form
0 :’ 110 0
_____ [ - - — - —~
I 22 | 2k
o= e 9 @
01
II ng : gmn
t |
{

In addition to the vector I, we define another
null vector n* normalized by [n* = 1, and two
unit spacelike: vectors {* and p* orthogonal to [
n”, and each other. Instead of the real spacelike
vectors p* and ¢* it is convenient to use the following
complex vectors

mt = (¢* — i)/ V2
= (¢ + 0"/ V2.



BEHAVIOR OF

The four tetrad vectors I, n*, m*, and " are null
and satisfy the following orthonormality relations

& =k
Int = —mm" =1,
L =nn = mm* = mm = Im" = I,w )
— o —H
= n,m" = n,m* = 0.

In order to satisfy Eqs. (5), the vectors m" and n*
must have the form

m* = wd, + £
nt =& + U8 + X"a;;,

where o, £, U, and X* are arbitrary functions of
the coordinates. The completeness relation

g = Un" + n'l" — m*m — m'm’

is a consequence of the orthonormality relations
Egs. (5). It permits us to express the metric in
terms of the tetrad components;

g = 2U — wi)
gt = X" — o + Fv) (6)
g = —(FT + ).

There remains the following freedom in the choice
of the tetrad; the spatial rotation

lu' = P, n*

m' =

(Creal) (7)

which depends on one parameter, and a 2-param-
eter group, the so-called null rotations

=10 n =n"4 Bm*+ B@* + BB (8
m* = m* + B,

i C
= n, m'e’",

(B complex).

These tetrad transformations leave the direction
of [, fixed. Later (Sec. IV) we will be interested in
coordinate transformations which necessitate the
choice of an entirely new family of hypersurfaces
and tetrad system. But at this point the restricted
3-parameter group Eqgs. (7) and (8) can be used to
simplify some of the calculations. We will demand
parallel propagation of the tetrad along the geodesies,
restricting the functions € and B to be independent
of r.

With the above preparations, we are in a position
to derive the asymptotic behavior of the metric
and Riemann tensors for empty space. In NP a set
of equations was developed which are equivalent to
the Einstein empty space field equations. Although
many more in number, these equations are of first
order, most of them being linear. They are es-
sentially linear combinations of the equations for
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the Riemann tensor expressed in terms of either
Ricci rotation coefficients, or in terms of the spinor
affine connection, many of the equations having
straightforward geometric interpretations.”

The field equations [using our coordinate con-
ditions, Eq. (4)] may be divided into three groups.
The first group is distinguished by a simple D = §/9r
derivative. Integration of these equations yields the
r dependence of the variables, with (in general) a
“constant”” of integration, a function of u, z°, 2*,
for each variable.

I. Radial equations:

Dg = pf' + oF, (9a)
Do = pw + oo — (@ + B8), (9b)
DX’ = (a + BE + (a + B)E, (9¢)

DU = @+ po+ @+ Bw—+7), (9
Dp = p* + o5, (9e)
Do = 2p0 + ¥,, (96)
Dr = 7p + 7o + ¥, (9g)
Da = ap + 87, (9h)
D3 = Bp + as + ¥, (91)
Dy = ra + 78 + ¥, (95)
DX = Mp + 5, (9k)
Du = pp + Xo + ¥, 9y
Dy = 1\ + 7u + ¥, (9m)
DV, — ¥, = 4p¥, — 4a¥,, (9n)
DY, — §¥, = 3p¥, — 20¥, — N, (90)
D¥, — &, = 2p¥; — 2\¥,, (9p)
DV, — §¥, = p¥, + 200, — 3N\V,, 99q)
The second group have more complicated deriva-
tives,

A = U(a/ar) + (8/0w) + X*(9/9x")
8 = w(a/or) + £(8/02").

From this group we obtain relations between the
integration ‘constants’ found ahove.

I11. Nonradial equations:

0X' — AF = (u+ 7 — vE + AF, (10a)
S~ =@ -t +@-— B, (10b)
8 — bw =B —aw+(@—Ro+ (u—p, (100
8U — Aw = (u+ 7 — Yo + X — 7, (10d)
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AN — =200+ F—3y —u— B\ — ¥, (10e)

bp—bo=0B+a)p+ B — 30 —¥, (10
ba — 88 = pp— o — 2af+ca+ B8 —¥,, (10g)
N—du="(a+Pu+(@a— 3N —T;, (10h)
o — Au = vyp — 28 + u + £° + N, (10i)
oy =AM =m—ov+(p—7+98+ A, (10))
o0r — A =284+ (7 + 1 — 3y)s + Xp, (10k)

Ap —br=(+7%—pp — 2ar — N — ¥, (10])

=A==+ F—v— Ba— ¥,
(10m)
The third group, derived from the Bianchi
identities, determines the propagation of the tetrad
components of the Weyl tensor in the wu-direction,
from null surface to null surface.

Aa — &y =

I11. The u-derivative equations:
AV, — ¥, = [4')’ - I»‘]‘I’o - [47' + 2:8]‘1’1 + 30,

(11a)
AV, — 8, = ¥, + [2y — 2u]¥, — 37¥, + 207,

(11b)

A‘I’g ad 6‘1’3 = 21/\1/1 haad 3}1‘1’2 + [_2T + 26]‘1’3 + 0"1-’4
(11¢)

AV, — 8¥, = ¥, — [Z’Y + 4#]‘1’3 + ["'7' -+ 45]‘1’4
(11d)
The complex functions p, o, @, --- are defined

either in terms of the Ricci rotation coefficients, or
the spinor affine connection. In NP they are named
““spin-coefficients.”” Their definitions in terms of the
tetrad are:

p = b, m'w, (12a)
o=l m"m, (12b)
T = L, mn’, (12¢)
a = (L, n'm — m,,m'm), (12d)
B = 3L m'm" — m,,, mm’), (12¢)
v = 3L — m,, @), (12f)
A= —n,,mm, (12g)
Bo= N,mm’, (12h)
vy = —mn,., 7. (121)

In NP it is shown that, in this coordinate system,
r=a-+ 8

As mentioned above, many of the spin-coefficients
have simple geometric meanings, such as the shear
and divergence of the null geodesic congruence, ete.
(See reference 7 and NP, Sec. 1V).
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The ¥, are the tetrad components of the Weyl
tensor (or empty space Riemann tensor);

Uy = —Cupysl*m’l'm’, (12j)
U, = —Clapysln’I"m?, (12k)
U, = —1C 05,1010’ + I'n’m "), (121
¥, = Coapyslnn?m’, (12m)
U, = —Cap,n’mn'm’. (12n)

We wish to solve the field equations with the
condition that all the ¥, approach zero as r ap-
proaches infinity. It was shown in NP that an
extremely weak (if not the weakest) assumption to
ensure this boundary condition is ¥, = O(r™°).
Here we will adopt the slightly stronger condition®

T, = ¥ + 0¢™°). (13)

(In the remainder of the paper, a zero superscript
indicates the variable is independent of r). It will
also be necessary to make assumptions on the
derivatives of ¥,;

DY, = a%,/or = —5¥0 ™" + O¢™7),  (14)
and “uniform smoothness,”
¥, = (d,-\Ifg)r_5 + 0(7'—6); Tty
d.d.d.d.%, = (dd,d,d3)r° + 0@, (15)
d.D¥, = —5d¥)r™® + 0¢77), -+,
d.d,d. DY, = —5(dd;d¥5)r™® + 06,
where (2, 7, k, m,n = 3, 4) d; = 8/9x".

Needed in the next section is the asymptotic
behavior of each of the spin-coefficients, tetrad
components, and remaining Weyl tensor com-
ponents. This information was derived in NP, using
some powerful theorems of Levinson and Cotting-
ton.*

p= = 06 E =06
o= 00" X* 0 = 0(1) (16)
o, B, N\, u, =00 U= 0@
v,y = 0(1)
¥, = 0@
v, = 0™ (17)
¥, = 0(r™°)
¥, = 0@

* We wish to study the propagation of ¥e in the u ‘‘direc-
tion.” Such a study would be more difficult under the general
assumption ¥, = O(r75).

10 ., Coddington and N. Levinson, Theory of Ordinary
Differential Equations (McGraw-Hill Book Company, Inc.,
New York, 1955), p. 103.
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III. SOLUTIONS

This section outlines the method of solving the
empty space fleld equations listed in Sec. II. The
first-order radial differential equations [all of which
are linear except Eqs. (9e, f), and these can be
made linear by increasing the order of differentia-
tion] fall naturally into certain subgroups, which
are solved simultaneously. All the theorems on
linear differential equations, existence, uniqueness,
etc., thus apply. By integrating these equations,
the r dependence of all the variables is easily ob-
tained. In general there is a “constant” of integra-
tion, a function of the remaining coordinates, w,
2°, 2*, in the solution of each of these differential
equations. Relations between these integration
“constants’ are obtained from the equations having
compound derivatives § = w(3/dr) + £(3/02"),
A = U@/ar) + (3/0u) + X*(9/9z"), by setting
the coefficients of powers of »~! independently equal
to zero.

The pair of equations (9e, f)

D p= P2 + o5,

Do = 2p0c + ¥,
with the asymptotic behavior, Egs. (16),p = —r~' +
0@, ¢ = O(r®), can be integrated for the com-
plete r dependence of p and ¢, up to O(r~°). The
method of solution uses formal integration of the
order of magnitude symbols (which is permissable),
but not differentiation of them."

In the following, g(r) and A(r) will be used generi-
cally. We have

p=—r"+ g0,

¢ = h(®), where g, h = 00".
By Egs. (e, 1),

Dg + 2r'g = ¢° + hh = 0(¢™)

Dh 4+ 2rh = 2hg + ¥, = OG™%).

The solution will be determined in steps. The first
step is to find p and ¢ up to O(r™*). Hence, the
equations to be solved at this stage are

Dg + 2r7'g = 00
Dh + 2 'k = 0F™
with the immediate solution,*?

11 A, Erdelyi, Asymplotic Expansions (Dover Publications,
Inc., New York, 1956), p. 7. The theorem is

fi of@n) dr' = O(frw [f")| dr’) , as r— o,

12 H, Margenau and G. Murphy, The Mathematics of
Physics and Chemistry (D. Van Nostrand Company, Inc.,
Princeton, New Jersey, 1943), p. 42, Eq. (2-6).
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g = e-der/r{f e/'Zdr/ro(T—4> dr + po} ,

r'Q{f o™ dr + p”} = pr 7 4+ 00,

and with a similar solution for A(r). Therefore
p=—r"+ 77 +007), o=
g = a_or—z + ()(7'_3), a_o —

By a coordinate transformation ' = r — p°(u, %),
the p°/r'® term is eliminated. Dropping primes, we
have

Po(ur zk)

’(u, 2.

p= —rt 4007
e =ar "+ 00®.
Again letting
p =~ + g)

o = o'r? + hr),
where this time
g(T), h(T) = 0(7'—3): (18)

and grouping all terms of O(r~°) under the order
symbol, we have,

Dg + 2r'g = o°¢r™* 4+ O™
Dh + 2r'h = 00

with solutions
g = r’Z{f P[a°6r™t -+ O] dr + Cl}

h = r'2{f 0% dr + (,'2} ,
g=Cr’—3c%r?+ 00
h=Cy® + 00¢™.

The conditions (18), g, A =
C, = C, = 0. Hence

-1 0'06'07'_3 + 0(7'—4)

O(™*), imply that

p=—r

(19)
o= ar 3+ 0F™.
Repeating the process, it is found that
=1 __ _o.0.-3 -5
p= —r a’¢r 4+ 0F ) (20)
o= ar’+ (5 — ¥yt + 007,
which are the desired asymptotic expressions for

p, o. At this point it should be observed that, had
the more general assumption ¥, = O(r"°) been
made, we would have obtained explicitly the forms
(19) but not the extra term in Eq. (20). It is evident
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that this extra term results from the specialization
Vo, = ¥r™° 4+ 0(™%. On the other hand, the
general term “O(r™°)” of ¥, prevents us from ob-
taining forms more explicit than Eqgs. (20), as
follows: In accordance with Egs. (20) let

kS a_o&ar—a _+_ g(r)
o= o7t 4+ Qr* + b,

p=—r

where
g(), h(r) = 0G™°),
and
Q = 5'c"" — 1.
By Eq. (91)
[ 0 =0 0-0 2
Dh+gh=202g_2<fc; _2agh+L4Q
r r 7 r

+ 2gh 4+ 007",

where the final term O(°) comes from ¥,. How-
ever, the five preceding terms are seen to be ab-
sorbed into O(r~°), so that

Dh + (2/nh = 06,

Integration gives (the integration constant is zero),
b= [ #06) dr = 1°067) = 06™),

and no new information is obtained. Similarly Eq.
(9e) fails to produce further explicit terms.

Equation (9a) is solved in the same manner as
Eqgs. (9e, ). The condition (16), & = O(') is
translated into

£ =90, g0) =067
Putting this into Eq. (9a) yields
Dg +r'g = 00

g =9g= r'l{f“" + frO(r_a) dr} = £ 4+ 007Y).

The higher order terms of £ are obtained similarly.

The next group of related equations involve «, 8, v,
and ¥,. They are Eqgs. (9h, i), Eq. (9b), and Eq.
(9n). ¥, is known to be O(r™*) by Eqgs. (17), which
allows the solutions of « and g8 from Eqs. (9h, 1) up
to O(r*). Upon performing these integrations using
the techniques shown above, it is found that

a=ar 4+ 5ar?4 0
/3 607_—1 + 0_0507,-2 + 0(7—3).

]
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By use of the null rotation Eq. (8), we may set
=& 48 =0 21)

Therefore, r = a + 8 = O(r™*), which is used in the
integration of

Do = pw + e0 — 7.

Here the r dependence is found by considering the
coupled equations,

Dw=pe+oco—r
Do = po + 60 — 7.
Inserting orders of magnitude we get
Do+ 1w = v % O(r_3),
Do+ 1'% = ¢ % + 000,
Formal integrations give

w = r"l{f cradr + 00 + Kl} .

@

r’l{f &rwdr + 06 + Kl}-

Using the information w = O(1), & = 0(1), it is

seen that
w=K¢r '+ 06+ or? f O¢™) dr

= K¢+ 007 4+ O(lnr/r) = O(nr/r)
and
@ = 0(nr/r).

When these orders are again inserted in Eq. (22),
the results are

w=Kr7 4+ 00 + O(lnr/®) = 06¢™)
@ = 00™).

Finally, when this information is fed into Eq. (22)
for the third time, we arrive at the desired result,

w = o7+ 0Fr ™).

This is sufficient to derive the r dependence of ¥,
from Eq. (9n). We have

S‘I’o = ¥, + Ek‘I’o.k = Eak‘l’g.ﬂ'_s + 0(7'_7)
by the initial assumptions on ¥, Egs. (14) and
(15). Equation (9n) becomes
DV, + 4¥ ! = F 07" — 40T " + O¢7)

where ¥, = O(™*) has been used. Integration
immediately gives
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¥, = T_4{f r[(— 425 + 5 )70

+ 06" dr + q,;}

\I’a
\I’1=—41'+

4a"W — BN,
r 7°

+ 0G0™®).
This information is sufficient to complete the inte-
grations of Eqs. (9h, i) and Eq. (9b).

The asymptotic » dependence of all the variables
may be calculated by this method. The results are
as follows:

T, = Vr® + 00, (23a)
¥, = Ut 4 (o) — B L0+ 007,  (23D)
¥, = Uy + (2a°¥] — F¥ 7t + 0%, (23¢)
U, = ¥ ® — PN o™+ 007, (23d)
T, = o — (295 + F5 0r7 + 007%).  (23e)
p= —r ' — &% + 0077, (24a)
o= ar? + (%" — Wt + 007, (241)
a=a’r + a7 + o°5%a’r™ + 00, (24¢)
8= —ar'— ¢ar’
— (¢°5°a” + 3 4+ 0¢™Y),  (24d)
T = —(1/2r°)¥; - (1/6r")(2E"¥5.
— 8 + o'F)) + 0¢7™%),  (24e)
A= AT =T 4 /(00N + $8°Y)
+ 06¢™),  (24f)
po=prt = (0N F Y+ (0%
— a0 + N T 00, (24g)
v =" — (1/2"%; + (1/7°)GE¥ .
~ a0 — §a'¥) + 007, (24h)
v =" — (1/0¥; + (1/28; , + 0¢™%).  (24i)
U= ="+ 79>+ U - Q/20F; + )
+ (1/6r°)[(EN & + £
~ 2e"¥; + &) + 007,  (25a)
X' = (1/6r")WE" + ¥ig™) + 007", (25b)
g =% — T+ SFE T+ 00, (250
w =T = (1/7)%° + 1) + 0¢™%.  (25d)

Further terms of most of these functions can be
easily calculated.
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In the above we have tacitly used a coordinate
transformation (which will be discussed) to elimi-
nate the “constant” X°*.
Another coordinate transformation can be made
at this point to simplify the remaining calculations.
The metric is in the form Eq. (4), with

gmn — _(Em'én + EmEn)
— _(Samzun +§om€on)r—2 + ..

Under the remaining coordinate transformations,
the leading term of ¢™ transforms as a 2 X 2
metrie, hence it may be reduced to a conformally
flat metric."”® (Robinson and Trautman® make g™
conformally flat. We can only do this for the leading
term of g™). Up to O(¢r™%), ¢* = ¢*, and ¢** =
g** = 0. However, since

g33 — _2503?:37_—2 + 0(7'_3),
gs4 — (503204 + §03£a4)r—2 _|_ 0(7‘_3),
g44 — _2204?:41,—2 + O(T_g),

we have £ = —it™* = P(u, z*).
At this point the remaining coordinate freedom
for the variables z° and z* is,**

2V 4wt = @ + i, ). (26)

The next step is to solve the nonradial equations,
which allow us to express most of the ‘“constants”
of integration o, »°, \°, - - - as funections of ¢° and P.

Equation (101) will be done as an example of the
procedure. Explicitly it takes the form,

o1+ Up.+ ka’k —ar,—Erat+@—7v—7p
4+ 2a1r + Ao + T, = 0.

When the differentiations with respect to r are
performed and the coefficients of the various powers
of 1/r set equal to zero,'® we find

(1) the coefficient of 1/r is identically zero,
(2) the coefficient of 1/7* is (U’ — g°), implying

U =g,
(3) the coefficient of 1/¢* is
(6°6") 1 + 26°°(Y° + 7°) — (X" + &°X°) = 0.
This defines either v° or A’ if the other is known.

13 1,. Eisenhart, Riemannian Geometry (Princeton Uni-
versity Press, Princeton, New Jersey, 1960), p. 90.

41, Eisenhart, A Treafise on the Differential Geomeiry
of Curves and Surfaces (Ginn and Company, Boston, Massa-
chusetts 1949), Chap. 2, Sec. 40.

5 For example, if given the asymptotic expression
Art + Br2 4+ Cr73 4 O(r™4) = 0(4, B, C independent of r),
multiplying through by r and taking the limit as r —» o«
implies A = 0; similarly multiplying by 2 implies B = 0, etc.
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It turns out that both v° and A° can be obtained more
easily from the other nonradial equations.

(4) the coefficient of 1/7* is identically zero by
virtue of information from the other nonradial
equations.

In general it was found the lowest nontrivial
powers of 1/r yielded all necessary information.
Coefficients of the higher powers duplicated this
information, but in a rather complicated form;
for example a coefficient of 1/7* would generally
involve the sums and products of several 1/r and
1/r* coefficients. A few of the higher powers of 1/r
gave the same information as group III, the wu-
derivative equations. Due to the tediousness of the
caleulations, we did not carry the computation of
the coeflicients of some higher powers in 1/r to
completion. Partial checks were made however,
where undefined variables appeared. When the
coeflicients of these undefined variables (namely,
Wi, ¥y, and ¥; + ¥;) were collected, they were
found to vanish identically. For this reason it
appeared that no new information was forthcoming,.

The nonradial equations yield the following
relations’®; let V = 9/02° 4 7 /02", then

vy = —%(InP),,
o’ = $PV(In P),
» = —iPV(In PP) ,,

T o @7
w’ = P[Ve" — 20°V(In P)],
A° = ¢[In (°P"*/P"))] .,
u' = U= —LPP V¥ In (PP).
Vv — ¥ = (PVe’ + 22%6° + #X°)
— (PV& + 2%« + o°X°),  (28)

V5 = PVy" — PUN + 4a°)°,
W, = ngo + 20" — N, — 49°N°.

The only functions left undefined are ¢° and P,
chosen to be the basic functions, and ¥;, ¥}, and
(¥; + ¥3). (The significance of these quantities is
explained in Sec. V). However, the propagation of
Wi, ¥, and ¥; in the » direction is determined by
group 1II, the wu-derivative equations. Equation
(11a) is worked out as as an example.

.6 Actually the integrations of group I give a more com-
plicated set of expressions than Eqgs. (23), (24), and (25),
Involving the integration “constant” Xe* in several places.
However, one of the nonradial equations, Eq. (10a), indicates
that X°3 4 {X° is an analytic function of 2% + 424 and
may be transformed away by Eq. (26).
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Yy 507 490 _ PV
7.5 7'5 7,5
4 OWD 2_0?0 3 aqlﬂ _
_’);‘50_ c:ﬂsl—(;sz’l‘O(TB):O.

Here again the explicit powers of 1/r are limited by
assumption (13). Hence
¥, — PV¥ + (v° + 57)¥;

— 2&a"¥] — 30¢°%; = 0. (29)

Similarly the next two equations of group III,
Eqgs. (11b, ¢), yield

Vi, — PV¥; + 2(y" + 29)%] — 2¢°%5 = 0
Vi1 + 30" -+ )V
— PVY; + 2a'¥; — o'¥; = 0.

The final equation of group III, Eq. (11d), yielded
identities, as far as we had carried it.

(30)

IV. COORDINATE TRANSFORMATIONS

At this point the explicit r dependence of the
metric, Egs. (4) and (6), is

12 — 1’ gl] = glk — 0,

Y
¢ =artatar+aertt o, (31)
gt = b
g™ = —2PP & 4 dy'r?
— 60°5°PP 6™t 4 -,
where
a_, = (In PP) |, a, = 24,
o=~ +¥), -,
by = —(@F"% + &%), -, (32)

d;llﬂ = 2(6_a£am£on + o_ogomgon), .

It is of interest to find the most general coordinate
transformation which preserves every relation de-
termined up to this point. We can introduce a new
system of hypersurfaces ' and a new tetrad exactly
as before, and arrive at all the previous results.
Moreover, this coordinate freedom can be used to
specify the u dependence of P, and in particular
can be used to set P,; = 0.

These coordinate transformations may be arrived
at more simply by first considering the analogous
infinitesimal transformations, z* = z* + ¢*(2"),
and using

i = 0@ — ¢
= guag-’.’a + gm’g-‘,la - gl:“:xf‘x'
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In order to preserve the form of the metric Eq.
(31), it is necessary that
% ,.11

§g" = 3" = 8" =0,
Bg™ = (b5 — biyrt A (b — Bt 4
8 = —2(P'P’ — PPy~ + (@& — dip
— 6(c" 6" PP — ¢°5"PP)r* + .-
B = (& Bt
—2(P'P" — PPy — (&8 — &y
— 6(c° ¢ P'P" — %°PPyrt 4 .- .

Under the above restrictions, the infinitesimal
transformations reduce to

&=, 2,

¢ = =+ %, )
— byt + 3T 4 -],

&= @) F Ca-2PP 8T

+ 4di'r = 20°%6°PP 870 -],
where

= ¢,

&= =00,

¢ = PP + ¢

The restrictions on ¢** result from the conformal
form of the leading term of g™, whereas the last
equation reflects the fact that when the hyper-
surfaces w’ are chosen, there is no freedom in the
choice of 7. As yet no restrictions exist on ¢**(u, z%).
If this is chosen to satisfy a certain differential
equation, the coefficient of +' in ¢**', namely,
(n P’P’) ,, vanishes.

The finite transformations built up from the
infinitesimal ones take the form,

u’ = Vo + V._lr—l + V-z”"z + Tty (333:)
" =Rr+ R, +R o'+ -, (33b)
" = Yo Y (33¢)

where the upper case letters are functions of u, z*.
The condition ¢’ = 0 leaves V, unspecified but
determines the remaining V's;

Vo= —PP(Vo) (Vo) + (Vo Y],  (34)

and V_, ete. as functions of the V,, P, and ¢".
The condition ¢**" = 0 leaves R, unspecified but
yields the remaining R’s;

R, = (VO,I)_I) (35)
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the R_,, B_; ete. being functions of V,, R,, P, and ¢°.
Setting ¢ = 0 determines Y*, as

L= _2PP(V0.1)-_1[V0.3Y§.3 + V0.4 3.4]»
the Y*,, Y*,, etc. also being determined.
Prescribing the form ¢**' and g™ as in Egs. (31)

determines R, as a function of the remaining free
variables, and imposes relations on Y%,

(36)

v = Tia)
Yis = Yo, 37)
Yi.= FY5,.
Finally, choosing
Vo = JG, o) f (PPY* qu + K@, 2Y),  (38)

where J and K are arbitrary functions of z* and 2*,
eliminates the coefficient of ' in ¢**'

(In P'P") , = 0.

The tetrad transformation Eq. (7) can be used to
make P = |Pje*® real as follows,

m* = m'e’C.
Since m* = £77'8 + 0@, £° = —i™ = P,
by choosing C = —¢, we have
P’ = |P|.
This, together with (In P'P’),, = 0, yields
P’ = P'(x"). (39)

This has the effect of immensely simplifying most
of the previous relations. Equations (27) and (28)
become (dropping primes)

¥ =0, (402)
o = LVP, (40b)
¥ =0, (40¢)
W = P'V("/PY, (40d)
* = & (40¢)
p’ = —P*VV n P, (40f)
W — ¥) = P’[V('/P) — V(&'/P)]

+ ¢°¢%, — %67, (40g)

¥ = —PV(P*VV In P)
— P& /P%),  (40h)
V= —6%,. (40i)

The u-derivative equations (29) and (30) become
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Vi, — V(P¥) — 30°¥; = 0 (40§)

¥y, — PVY; — 26°%; = 0 (40k)
vy, — P’V (¥;/P) + ¢°6°%, = 0. (401)
V. RESULTS AND DISCUSSION
The metric has the form
01110 0
g’ = _1_|: _ fz_lf _ _gz_k_ _ (41a)
01
Lt g
01
with the coordinate dependence,
g7 = —2P2< a:, + az) InP — (¥ + ¥opr!
oz or
+ %P"’[v(l‘l’}) + (%)
o v(Z)7(5) [+ o0y, )
g = —r?Re {f} +r*Re {h} + 0¢™), (41¢)
g =77 Im {f} +r° Im {a} + OC¢™, (41d)
where
P = P(@*, 2",
f = 2P*V(&" /P, (41¢)
b= 4P + PV /),
g* = —2P%" 4 2P'(" + &y
— 60°%°Pr™* 4+ 00, (41f)
¢t = —2P(¢° — &y + 007, (41g)

g44 - P2T—2 _ 2P2(a_a + 0._0)7—3
— 66°6°Pr ™" 4+ 00r™%).
More terms could easily have been calculated; ¢g**
to O(r™) and ¢** to O(r™°).
The u-derivative equations (40;,k,l), derived from

the Bianchi identities, give the propagation of the
tetrad components of the Weyl tensor as follows,

Yo, — VPI) — 36%; =0 (42a)
Y, — PVY¥, — 23 =0 (42b)
Vi, -+ o'dn — P2V(\I/§/P) =0 (42¢)

(41h)

where
G+ P-gzp)

¥ = _Pav( P’
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With these results (also considering the higher order
terms not explicitly written out) the solution of the
initial value problem can be stated simply.

The first piece of data that is chosen is ¥, on an
initial null-surface denoted by wu, subject to the
condition that lim,... (r*¥,) < . For convenience,
we use a slightly stronger condition in the form
¥, = ¥o7® 4+ 0@ ®%). It should be noted that in
this paper we do not specify ¥, in complete detail,
and hence, the data are correspondingly not com-
pletely specified. The second piece of data is given
on the timelike world-tube taken at spatial infinity.
On this tube we choose ¢’ = lim,.. (r’s), as an
arbitrary function of u, 2°, and z*. The last data
are given on the two-dimensional surface at infinity
which is defined by the intersection of the null surface
u, and the world-tube. On this two-surface we give

¥; = lim 7Y, ¥; + ¥ = lim (¥, + ¥,)

and
P’ &8 = lim (*¢*")
as functions of 2* and 2.

This information, used with the three differential
equations (42), completes the solution for the metric
tensor and Riemann tensor up to the completeness of
the data on w,. (If, for example, we had taken

¥, = Z %ﬁ
n=0 T

on o, there would have been an additional equation
for the w derivative of each ¥;.) However, aside
from the incompleteness of the u, data and the
consequent incompleteness of the solution (we could
give additional data and carry the solution as far as
desired) the problem of finding the metric tensor
for empty space, flat at infinity, appears to be
solved. It should be pointed out that if ¥, is not
an analytic function of (1/r), it has not been proven
that the solution of Eq. (11a), which yields the
propagation of ¥, off the hypersurface, is unique,
(although it is generally believed that the solution
is unique).

An interesting special case which we will consider
is ¢° Initially zero, then varying in an arbitrary
manner, and eventually becoming zero again. By
multiplying Eq. (42¢) by P~* and integrating over
2* and z*, we obtain after a few operations

[/ # @; + ¢°6%) do’ d:c":,
.1

= f Ié 06" da’ dz* 4 f V(%) da® dx*. (43)
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Remembering that the integral is over the closed
two-surface with metric
gol‘i — lim (ng”) = P2 5ii
(the element of area is P~* d2® dz*), it is easy to see
that the last term on the right is zero. We
now integrate over w, and using the fact that
[ P%6°,5°, da® dx* is positive and that ¢° vanishes
at the two end points, we have
[ P at st

U1

> 0; (44)

Uo

in other words the quantity M = —[ P7°¥; da® d«*
decreases. We can rewrite this as
M= — [ Rewsds, (45)
because from Egs. (40g) and (40d), Im ¥5; = 0
when ¢° = 0. In the case of the Schwartzchild solu-
tion M is proportional to the mass, from which
we generalize and say M is always proportional to
the mass.’
The remaining coordinate freedom is given by
transformations of the form Eqgs. (33). Asr — o,
the leading terms of these transformations are

J(@, ) + K@@', 2%,
= [1/J@, 2)]r,

= Y@, o),

u =

(46)

where J and K are arbitrary functions of z°, z*.
The Y* must satisfy

Y?a =
Y3 =

4
+Y7, (47)

FY

and the Y* are otherwise arbitrary functions of
2°, *." The transformation law of the basic variable
P(z*) is easily obtained by considering the trans-
formation of the 1/r* term in g* or g*;

17 In a recent preprint of R. Sachs, there is a detailed
discussion of the transformations, Eq. (46).
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P” = P?J7® det [YT].
The transformation
P? = P? det | V7]

represents a two-dimensional conformal coordinate
transformation of a two-surface, with metric tensor
¢’ = P%" onto itself. ** Neglecting this and
considering only P’ = PJ™', we see that Eq. (48)
represents the transformation of one surface into
another. Equation (46) indicates that J(2®, z%)
may have neither zeros nor infinities, hence from
Eq. (48) we can conclude that P’ must have the
same number of zeros and infinities as P. (We are
assuming that P, which is part of the initial data,
is given not in patches but over the entire surface.)
It thus appears that many topological properties of
the surface are retained under the transformation
Eq. (48). This leads to several interesting topological
questions. For example: What is the simplest surface
that may be obtained by Eq. (48) from a given
surface?

Such difficulties can be avoided by taking as part
of the initial data a relatively simple surface such
as a sphere,'” or possibly a torus, and restricting Eq.
(48) to the identity P’ = P; in other words, by
requiring J° = det |V 7.

As a closing remark, it may be pointed out that
Newman and Tamburino'® have found exact solu-
tions corresponding to a special case (¥, = 0) of the
asymptotic solutions found here.

(48)
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In this paper we obtain all empty space metrics which possess hypersurface orthogonal geodesic rays
with nonvanishing shear and divergence. By straightforward integration of the Newman-Penrose
equations, which are equivalent to the Einstein equations, all solutions are found in closed form
and are unique up to a few arbitrary constants. The method of integration is illustrated in detail

for the Robinson-Trautman solutions.

I. INTRODUCTION

N 1960, Robinson and Trautman published the
general solutions for the class of metrics con-

taining geodesic rays with nonvanishing divergence
and vanishing shear.! Geodesic rays are principal
null directions of the Riemann tensor, sometimes
called Ruse, Debever, or Penrose vectors which are
tangent to a congruence of null geodesics. Geo-
metrically, geodesic rays, discussed by Sachs,’ can
be thought of as propagation vectors for outgoing
gravitational fields. Because the Robinson-Traut-
man solutions contained the Schwarzchild metric,
the algebraic generalization of their class (the re-
moval of the condition of vanishing shear) was
expected to be physically important.

In this paper we obtain this generalized solution
for the shearing class of hypersurface orthogonal
geodesic rays with nonvanishing divergence. There
are two general subcases which we shall designate
as cyclindrical and spherical. By a straightforward
integration of the Newman-Penrose equations,’
which are equivalent to the Einstein equation, all
solutions are found in closed form and are unique up
to a few arbitrary constants. The method of inte-
gration is illustrated in detail for the Robinson-
Trautman solutions (see Sec. III). The assumption
of nonvanishing shear then leads to additional equa-
tions that do not appear in the nonshearing case.
Subsequently these additional equations severely
restrict our class of solutions and prohibit the limit
of vanishing shear, hence the Robinson-Trautman
metrics are not limiting cases of our solutions.

* This work has been supported by the Office of Aerospace
Research, U.S. Air Force.

11, Robinson and A. Trautman, Phys. Rev. Letters 4,
431 (1960).

2 R. Sachs, Proc. Roy. Soc. (London) 264, 309 (1961).

3 E. Newman and R. Penrose, J. Math. Phys. 3, 565 (1962).
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II. PRELIMINARY REMARKS

A vacuum metric contains a geodesic ray if there
exists a principal null direction of the curvature
tensor, defined by

LB argy b P17 = 0, (I1.1)
that is tangent to a congruence of null geodesics®"*
L., =0, rl, = 0. (11.2)

Throughout this paper we shall further demand
that the geodesic ray [ be hypersurface orthogonal,

(I1.3)

From this condition we shall adopt the same co-
ordinate system that was constructed by Robinson
and Trautman':

2t = u, (I1.4)

L, = u,.

2> = r, ris the affine parameter along
the null geodesics.
z', 7 = 3, 4, 2" label the geodesics on each

hypersurface, © = const.

Associated with this coordinate system is the follow-
ing tetrad®'®:

= é, L= &,
nt =8+ U+ X o, real null vectors
m = w & + & 8,

A =& & + E oL complex vectors

These vectors satisfy the following orthogonality
conditions

4 Square brackets on indices denote antisymmetrization.

5 See reference 3. Sec. VI, special coordinates.

¢ E. Newman and T. Unti, preceding paper J. Math.
Phys., 3, 891 (1962).
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n = —mm = 1. (I1.6) ¢ = I,,,m*m” complex shear
All other products vanish; |, m" = mm* = .- = 0. where o = 3[1,., 0" — (.0 (11.12)
It follows that We now state two pertinent theorems from NP.
g° = Un + 0l — m'm — @m'm, (11.7) Theorem I. If ¥, = —R,,,i'n’I'm° = 0 then I*
is a geodesic ray; conversely if I* is a geodesic ray,
0 1 0 O

then ¥, = 0.
w_ L g7 ¢ g (IL.8) Theorem II (Goldberg-Sachs’ theorem). If ¥, = 0
g = 0 o P ) and ¥, = —R,,In"I'n" = 0, then there exists
g 9 9 a geodesic ray with ¢ = 0; conversely if there exists
0 ¢* ¢ ¢ a shear-free null geodesic, then ¥, = ¥, = 0.

The form (I1.8) is invariant under the following
coordinate transformations:

i

r =r-4 R31,3,4, (I1.92)
uw = u, =2
shifts the r origin,
v, =), (I1.91)
=z
relabels hypersurfaces,
r=ro w=u, (I1.9¢)

¢ =z'(1,3,4,
relabels geodesics.

The following tetrad transformations do not effect
I* or the orthogonality conditions:

Fo=
n* = n* + Bm* + Bwm* + BBl
m* = m* + Bl

(I1.102)

‘null rotations,’

where B is a complex scalar independent of r,

ro=r ‘spatial rotation’
' = n* (I1.10b)
m* = me'C

where C is real and independent of r.

Associated with a null geodesic field I* are three
scalars, the divergence, the curl, and the complex
shear, whose geometrical significance has been
discussed by Sachs.? In the Newman-Penrose paper
NP? these scalars are related to two of the spin
coefficients (linear combinations of the Ricei ro-
tation coefficients) p and o in the following manner:
-0, + 7 curl 1]

p = 1, m'm =

)1/2

where curl I* = (1;,,,,*"” (I1.11)

The existence of a hypersurface orthogonal geo-
desic ray is characterized by the following mathe-
matical statements:

q,():O

curl! ¥ = 0.

(I1.13)
(I1.19)

All the general solutions for the class of metrics
containing hypersurface orthogonal geodesic rays,
outlined in Table I, have, with our solutions, been
exhausted.

The field equations and coordinate system used in
our calculations are formally the same as those found
in the preceding Newman-Unti paper NU® and
originally in NP.> One can utilize everything in
Sec. II of (NU) up to the paragraph containing Eq.
(I1.13), keeping in mind one important reservation;
the arbitrary null hypersurfaces employed by
(NU) are uniquely determined in this paper by the
curvature tensor from FEqs. (II.1) and (IL.3). Since
our I* is a geodesic ray, Theorem I implies that ¥,
be set equal to zero everywhere.

p=p;

HI. PROCEDURE: ROBINSON-TRAUTMAN
SOLUTION AS ILLUSTRATION

The general procedure used in our lengthy cal-
culations will be illustrated by obtaining the Robin-
son-Trautman solution which is a concise example
demonstrating the inherent power of the Newman-
Penrose formalism. One can, in general, construct
a tetrad in which * (here * is not necessarily a
geodesic ray) has the components {* = &% and is

TasiE 1.

Case 1. Spherical Rays
A 0

o=

p? FE oz, p 70
I. Robinson-A. Trautman (1960)

(reference 1)
B.o =0 Sec. IV
Case II. Cylindrical Rays p? = 05 =0 Sec. V
Case ITI. Plane Rays p = ¢ = 0 W. Kundt (1961)
(reference 7)

7 W. Kundt, Z. Physik 163, 77 (1961).
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tangent to a congruence of null geodesics and in
which »n* and m" are parallel propagated along the
geodesics. With such a tetrad, the Newman-Penrose
field equations split evenly into two groups, the
radial equations and the nonradial equations.

The radial equations express the partial deriva-
tives, D = (9/3r)(r = 2%), of unknown functions
in terms of known functions of r. Since ¥, is the only
variable whose partial derivative DV, does not
appear anywhere in the equations, ¥, must be
given as initial data. If there exists a geodesic ray
then ¥, is identically zero. A step by step integra-
tion of the radial equations is straightforward, the
sequence of integration being more or less dictated
by the equations. Each step yields the r dependence
of an unknown and a ‘“constant” of integration
depending only on v and z°.

The nonradial equations involve more complicated
differential operators,

Ap = ¢,.n" & = ¢.m

The r dependence obtained from the radial equations
is substituted into the nonradial equations and
relationships involving the constants of integration
are obtained essentially by comparing the coeflicients
of like powers of r. These relationships, together
with the available coordinate freedom, enable one
to determine the constants of integration in terms
of the initial data.

The Robinson-Trautman solution, which contains
a hypersurface orthogonal geodesic ray with vanish-
ing shear and nonvanishing divergence, is charac-
terized in the (NP) formalism by the following:

V=¥, =c=p—5=0, p=*0.  (IIL1)

References to the preceding paper, (NU), will be
placed to the left of the appropriate equations.
A degree sign superscript indicates a function is
independent of r; I.S. will mean an equation is
identically satisfied or void of any new informa-
tion. Initially the (NU) equations (9f), (9n) and
(11a) are identically satisfied by Eq. (ITL.1).

(ge) Dp = p2 —p = _(7- + p0)~1

One can set p° = 0 by means of the coordinate
transformation (I1.92), hence

p= —1/r (I11.2)
(9h) Do = pa—a = a®)r (II1.3)
(99) DB = pB8—B=p/ (IT1.4)
(92 Dr = pr— 1= 7/r. (I11.5)

E. T. NEWMAN AND L. A. TAMBURINO

In (NP) it is shown that r = & + B in this coordinate

system, therefore

TO — ao_’_ﬁo.

(IT1.6)

7° may be set equal to zero by the transformation

(IT 10), hence

a= —§, r=0.
(10k) M=0—=A=0
Ok  Dr=p, LS.
(90) DV, = 3p¥, — ¥, = ¥3/r’
9) Dy =¥,—>y =19 —¥3/2°
Q) Dp=pp+ ¥, —p=pr"

e 2

(10f)
9b) Do = pw I.8S.

p=wDp=0—>w=20

9e) DX ' =0—> X' = X°
@ DU=-@+7N-oU=VU°
= 0 + 7% — §(¥3 + ¥

92) D& = pi' > =07
Using (IT 9¢), we may set

2 =P, =P
The remaining coordinate freedom is
r=r/v, u =@,

¢ =¥+ = f(5, w0
where ¢ =1+ i,

(10¢) u — g =0—u° and ¥ arereal.

Substituting the above results into
(10a) 8X' — AF = (u+ 7 — 7,
EX0%r + /U = 0° + 7 -

= (/N[ + £25X°]

= E'/M/r — Y3/ + G — 1)}

/7]

(II1.7)
(I11.8)
(I11.9)
(II1.10)
(II1.11)

(II1.12)
(II1.13)
(II1.14)

(III1.15)

(1I1.16)
(II1.17)

(II1.18)

(II1.19)
(II1.20)

(II1.26)

(II1.27)

Equating coeflicients of like powers in 1/r yields

1/r— X% — £
1/r2 __)EOiUO — EMIJ'O or Mo — UO-

From (I1II 28), one obtains

£9(X%F 4 iX°) =PVX° =0

— Eo,;XO’ — 2’70£O|'

(II1.28)
(I11.29)

(II1.30)
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where From (II 7) and (II 5), the metric becomes
V = 8/0x° 4+ i(8/9z") = 2(9/3p), X° = X +iX*. ¢* = —g, = 20° — dyr — 203 /r

Because X° is analytic, X° = X°(, u), it can be ¢ =g, =1, ¢ =¢" = g.: = g. =0 (II1.46)

shown that by using the coordinate transformation  ; 1 2, o i
(IIT 19) one can set g7 =(g)" = —2F/r) 8

where U°= —P’V*In P,y°= —i(In P) ,,V’=VV.
If ¥, = 0, then (44) becomes

Vi P’V?InP) = 0. (111.47)
If ¥, # 0, then by using (IT 9b) one can set ¥ = 1.

X° = 0. (I11.31)
The remaining coordinate freedom is now

ro=r/y, W=+, =1 (11132

Equations (ITT 28) and (III 31) yield Hence Eq. (I11 44) becomes
24° =— (In P) ;. (I11.33) P, = (P/3)V*(P°V’ In P). (IT1.48)
(11Db) 60, = PV¥S/r® = 0. (I11.34) The only remaining coordinate freedom, (II1 32), is
From (34) and (20) we obtain P’ = P |df($)/d¢|. (IT1.49)
VIS = V¥9 =0 This completes the Robinson-Trautman solution

o where their p, C, K, m, H are, respectively, our
¥3 = ¥3). (I35 5 o oue S gy Y

(9p) DY, = 2%, > ¥, = ¥3/r (II1.36)

(QQ) DYy, = p¥, + 5‘1’3 — 20¥; >V,
I _ The spherical class of metrics containing hyper-
. -1 _ O, 07,.—2
= Vi (PVYS + 2209 (I11.37) surface orthogonal geodesic rays with nonvanishing
(9m) Dy =V, —y=13"—¥%/r (I111.38) shear and divergence is characterized in the (NP)
formalism by the following

IV. SPHERICAL RAYS

The remaining nonradial equations may be worked ,
out in the same manner as (26). Yo=p—p=0, p° %05, p#0, o#0.(IV.1)

(10b) o — 5t = —2at' + 2E — 2a° . Only ‘th-e initial radigl integrations will be given
in detail in order to illustrate the technique em-

=PV np (II1.39) ployed and to introduce the pertinent “constants”

(10d) U = —5 —3° = PV + 79 of integration. The pair of equations
=—1PV(nPP), (I11.40) (9¢) Dp = p’ =+ o¢ (IvV.2)
(10e) & = —2av + ¥, — ¥ (9f) Do = 20p
= PVi° + 2a5%° (I11.41) mmay be expressed as
(10g) b + 6 = up + 4ad — ¥, — 4° DM = M’ or DM~ =1, (IV.3)
= U° = —3PPVY In (PP)  (I11.42) Where
(10h) =¥ = PV (T1143) M = : : is a nonsingular matrix. (IvV.4)

Every function is now expressed in terms of P and

¥5. The final equation relates P and ¥¢. Equation (IV.3) is readily integrated to give

(110) A‘I’z —_ &1/3 = ‘_3#\1’2 han 2&‘1’3 o __ o
Mt =" 7T (IV.5)
— {0/3u — 3P 1/P}¥3 P :
= +PVVS — 23795 (I11.44)
P —r o
(101), (10§), (101), (10m), and (11d), I.S. ' B
Using (II 10b), we can set M o e, (IV.6)

P =P (111.45) R R’
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where
RP=detM™) = (0 —r") —¢%° = 0. (IV.7)

Using coordinate transformation (II 9a), one ecan
can set p° = 0, hence

2”,
If we let ¥ = MV’ then from (3) and (13) we
obtain

p =—r/R’ (divergence) (IV.8)
o = ¢°/R (complex shear) (Iv.9)
where
R=r—-5%a=|"| (IV.10)
(9n) D¥, = 4p¥, > ¥, = ¥3/R*  (IV.11)
(92) D = pt' + of (IV.12)
(12) is equivalent to
D& = M¥§, where & = Ell- (IV.13)

V=0 V= f
£
Hence
g = (" — °P)/R’. (IV.19)
Using (I1.9¢), we can set
£2° = P° and £ = P°. (IV.15)

The main features of succeeding calculations
have been illustrated in Sec. II, however, in this
case the scalars become increasingly complex and
the manipulation of them extremely tedious, though
straightforward. The nonradial equations are com-
plicated by having r dependence appear in varied
products of R and a logrithmic function L =
1ln (r + a)/(r — a), for example L/R*, Lr/R?,
L/R*, ete. These products were shown to be linearly
independent and thus the matching of coefficients
of like products becomes equivalent to matching
powers of r. With the exception of », ¥3, and ¥,,
all scalars, including the metric components, were
obtained in closed form. To avoid lengthy expressions
in the final phases of the calculation, we resorted
to using power series expansions in r for all equa-
tions containing », ¥;, and ¥,. We believe that our
use of a power series yields all obtainable
information in the lowest powers and that a more
exhaustive treatment would be fruitless. Up to the
equations

(10a) 8X° — A = (u+ 7 — & + X, (IV.16)

E. T. NEWMAN AND L. A. TAMBURINO

the Robinson-Trautman solution is obtainable by
taking suitable limits as ¥3 and ¢ — 0. However,
at this point one is confronted with the following
system of equations:

V In (¥SP [s°]™%) = 0, VIn(W3°P™%) = 0 (IV.17)
¥ = [o°|2 PV In (P*/]e°* %),
where WV = 2(3/0¢).

In the Robinson-Trautman limit, ¥¢ and ¢ — 0,
(IV.17) are identities. On the other hand, if one
proceeds to solve these equations under the as-
sumption that ¢ 5% 0 and ¥9 = 0, then these equa-
tions will eventually restrict the solutions to the
following exact metrics which do not include the
Robinson-Trautman solution as & limit.
275 5\1/2
g22 = _2_7'._(53‘_)_ + %

R? A
WA+ E) 4 AE
+ R4 - R4 )
_ L 1
g23 = 4A2(§'()3’2x3{%§ ~ 2RE (r — 2a)
r— a)}
~ g ,
(IV.18)
24 2 o\3/2_ 4 L 1
g = 4A4%()) x{ﬁ — 5&2—13—2(7‘-{- 2a)
_ (r_+1>}
R* !
it = = 2607 w26
v +a -’
ng — 1’ g34 — g13 — g14 — O
where
2
9—41. = d—é— =0—> 4 = Bu B is a real constant
ox du

B
a = A(f‘f-' 1/2; xl =u, xz =r,

R =1 — o,

¢ =2 + izt
L=3In(r+a/r—a).

In the above solutions (IV 18), the limit as
A — 0 yields flat space. Some other pertinent
variables are

p = —r/R’

¢ = o/R*

E=0" —d)/R = it = ()
¥ = 24°(¢()V /R
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Yo = —[4AEVEL + 248 + 4A G 1/R!
Y = (1/P[2A4 ., + (1/%)84¢ + - -
Y= —(1/P)[BA 1+ -+ .

V. CYLINDRICAL RAYS

The cylindrical class of metrics containing hyper-
surface orthogonal geodesic rays with nonvanishing
shear and divergence is characterized in the (NP)
formalism by the following

V,=p—p=0 p =05#0. (V.1
Initially we have

(9¢) Dp=p*+ o5 —>p= (R — 20" (V.2)

(9f) Do = 2p0 —o¢ =R —277". (V.3)

One can, using transformations (I1.9a) and (I1.10b),
readily set

p=o= —1/2r. (V.9

All the remaining scalars were obtained in closed
form in a manner analogous to that used in Secs.

III and IV. ‘
The solution does not depend on z* and contains

two arbitrary constants, a and b.

gn = —4a’(en’ay)(Inr)’
— [b + a® In (FPen*ay)]/cen’ay,
g2 = 1, gos = g2e = 0

—4Y[r + 4a’u(cn’ay) In 7]

fa = (V.5
g = —2(en’ay) Inr
a3 = —1?/2 — 40 Y?(en’ay) In 7
gss = —8uYen'(ay)
gu = —en’(ay)/a’
where
d=u 2=r o=y,

en{ay) is an elliptic function with modulus

E=1/V72,

y = 420~ on'ay?  +iH y>0
T T 22 enfay) —if y <0

One can obtain Sachs’ metric’ by shifting the y
origin by K/a, y — y' — K/a, where 4K is the
period of cn(ay, 1/ v/2), and then taking the
limit ¢ — O.
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—
lim onfay’ — K) 2 K =y /V?2
a0 (V.6)
lim ¥ = —(2y)7".
a—0
Dropping the primes and rescaling r and ¥, one
obtains the Sachs’ metric directly

g = —[b + Inr"y]

Gis =2r/y, g =1

Gia = o3 = foa = g3s = 0 (V.7
goa = —1°

s = —y".

VI. DISCUSSION-CONCLUSION

The metrics obtained in Secs. IV and V (Petrov
type I nondegenerate) together with those of
Robinson-Trautman and Kundt (degenerate) ex-
hause all metrics that contain hypersurface orthogo-
nal geodesic rays.

Since the Robinson-Trautman solution contains
the Schwarzschild metric as a special case, it was
anticipated that the solutions to the generalized
class containing shearing geodesic rays would enable
one to derive physically interesting relations con-
concerning gravitational radiation and loss of mass.
To our disappointment we found that this algebraic
generalization leads to a very restricted class of
metrics (the solutions do not depend on any ar-
bitrary functions and hence are not suited to de-
scribe a radiation field). Our spherical solutions do
not vield the Robinson-Trautman metrics in the
limit of vanishing shear, ¢ — 0, but in fact as A — 0
the metric degenerates into flat space.

The application of the Newman-Penrose formu-
lism to the class of metrics containing nonshearing
geodesic rays with nonvanishing curl will be given
in another paper.

Note added in proof. It now appears as if the non-
existence of physically interesting solutions (in the
class described in this paper) is related to the
inability of free particles with no structure to under-
go self-acceleration.
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The problem of determining a solution of the Einstein field equations for the gravitational field
from data set on a pair of intersecting characteristic (that is, null) hypersurfaces and on their inter-
section = is considered. It is shown that by giving the conformal inner metric of each hypersurface,
the inner geometry of %, the two mean extrinsic curvatures of =, and one additional extrinsic quantity
for Z, one completely determines a solution in a space-time region. In a suitable coordinate system
giving the above data amounts to giving four functions of three variables, four functions of two
variables, and one function of one variable; all these can be given without any constraints. In a given
space time with given = the functions are almost, but not entirely, known functions of their arguments.
All the derivations and discussions are applicable only in a sufficiently small four-dimensional region.

INTRODUCTION

HE Einstein field equations for the gravitational

field have various pathological properties
similar to, but more complicated than the pathol-
ogies that arise in electrodynamics as a result of
gauge invariance.” In particular, if one tries to
specify some gravitational field by giving informa-
tion about the field and its first time derivatives at
one time (that is, on a space-like three-dimensional
hypersurface), then one runs into constraint equa-
tions analogous to the constraint equation divE = 0
of electrodynamics. These constraint equations are
not easy to handle, and although various methods
bave been developed for dealing with them,” it

P

Fic. 1. The hypersurfaces U and V. One spatial dimension is
suppressed.

1 P. (3. Bergmann, Revs. Modern Phys. 33, 510 (1961),
summarizes the main difficulties and gives further references.

2 Among the more extensive treatments are those given in
A Lichnerowicz, Theories relatavistes de gravitation et de
Uelectromagnitsme (Masson et Cie, Paris, 1955); P. A. M.
Dirac, Phys. Rev. 114, 924 (1959); and the recent series of
papers in the Physical Review by R. Arnowitt, S. Deser, and
C. W. Misner, for example, Phys. Rev. 118, 1100 (1960). A
promising approach has very recently been suggested by A.
Peres (report to the Stevens conference, December, 1961,
unpublished).

would be over optimistic to claim that completely
satisfactory results have been obtained. A closely
related problem is the following: By judicious choice
of the initial surface or of the (otherwise arbitrary)
coordinates within this initial surface, it may be
possible to change or even set to zero much of the
initial data without in any way altering the physical
meaning of the corresponding gravitational field. It
is generally agreed that the physically meaningful
data on an initial hypersurface consist of only four
functions of the three coordinates within the initial
hypersurface. But unless one goes through very
complicated elimination processes, one is forced to
work instead with 12 functions—the metric of the
initial hypersurface and the extrinsic curvature®
(second fundamental form)—subject to four dif-
ferential constraints of the type discussed above
and subject to change by various coordinate trans-
formations.

Now, recent work by Bondi, Penrose, and others*
has suggested that in some arguments an improve-
ment is obtained by setting some or all of the initial
data on three-dimensional null hypersurfaces (that
is, hypersurfaces everywhere tangent to the light
cone). In this paper we consider the situation where
data are set on a pair of null hypersurfaces U and
V, and on their two-dimensional space-like inter-
section = (see Fig. 1). One can then show that the

3 Reference books for the various geometrical concepts
discussed in this paper are L. P. Eisenhart, Riemannian
Geomelry (Princeton University Press, Princeton, New Jersey,
1949); and J. A. Schouten, Ricci Calculus (Springer-Verlag,
Berlin 1954).

4 Some, though not all, of R. Penrose’s results are con-
tained in the preprint “Null Hypersurface Initial Data for
Classical Fields of Arbitrary Spin and for General Relativity’’
(1961). H. Bondi, M. van der Burg, and A. Metzner, Proc.
Roy. Soc. (London), (to be published); R. K. Sachs, :bid.
(to be published). E. Newman and T. Unti (unpublished);
A. Peres (unpublished).
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data needed to determine a field from the field
equations are quite simple, have direct geometrical
interpretations, and are not subject to differential
or algebraic constraints of any kind. Moreover, in a
given gravitational field the initial data are com-
paratively (though not completely) unique; their
values in a given field can be computed by com-
paratively, though not completely, straightforward
manipulations.

For the two null hypersurfaces U and V one
must specify the “conformal” inner metric. In
a conformal geometry one can assign a meaning to
the angle between two directions at a point and
also compare two lengths at the same point, but
one cannot make a meaningful comparison between
lengths at different points.’ In analytic terms, to
determine the conformal geometry of any space one
gives its metric tensor, but only up to a factor that
is arbitrary and may be position dependent. It
turns out that to give the inner conformal metric
of U and V is equivalent, in suitable coordinate
systems, to giving two functions of three variables
on each of the hypersurfaces U and V—four func-
tions of three variables in all. In addition to the
above data one must specify the entire inner
geometry of the intersection surface Z, the two mean
extrinsic curvatures® that 2 has by virtue of being
imbedded in a four-dimensional space, and one
other extrinsic quantity; in a suitably chosen
specialization of the above mentioned coordinate
systems, giving these additional data amounts to
giving four functions of two variables and one
function of one variable.

A comparison between the gravitational field and
a string vibrating in one dimension may help clarify
the above numerology. To specify the particular
vibration which the string is carrying out one can
either (a) give the amplitude A of the vibration and
dA/dt at time ¢t = 0, or (b) give A on each of two
lines U, V tangent to the sound cone (in an z, ¢
diagram) and also give a single number on the
intersection point = of U and V.® One sees from the
above discussion that gravitational fields behave
similarly but there are the following differences:
(a) one works in three spatial dimensions rather
than one spatial dimension, (b) the gravitational
field has two degrees of freedom rather than one,
(c) in the gravitational case the characteristic initial

§ Discussions of this problem and of characteristic initial
value problems in general can be found in R. Courant and
D. Hilbert, Methoden der Mathematischen Physik (Verlag
Julius Springer, Berlin, 1937), Vol. 2, or in I. G. Petrovsky,
Partial Differential Equations (Cambridge University Press,
New York, 1954).
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value problem is in some ways simpler than the
usual initial value problem. In addition, one would
have expected that the gravitational field differs
from a rest-mass nonzero Lorentz covariant field
with two degrees of freedom by the fact that the
gravitational field also contains “longitudinal”
modes analogous to the longitudinal modes of the
electromagnetic field. Perhaps this difference mani-
fests itself in the scheme that we are here discussing
by the fact that one has to set four pieces of data
on Z, but this point is not entirely clear.

Two limitations on the results of this paper are
worth emphasizing. First, all considerations are
carried through only locally and all assertions in
the following development should be qualified by
the statement that they hold only for a sufficiently
small four-dimensional region. Second, very com-
plicated integration processes for various field
variables will be discussed without paying any
attention to the question of where, if anywhere, the
solutions are finite.

The author would like to emphasize also that he
does not at present believe that consideration of the
characteristic initial value problem is more funda-
mental than the consideration of the usual initial
value problem. The two seem to him to be mutually
complementary alternatives.

The actual calculations and the details of the
results presented here are believed to be new. How-
ever, many of the main ideas were originally given
in the pioneering work of Darmois® and in a recent
paper by Penrose.”

COORDINATE CONVENTIONS?

In order to simplify the (in any case clumsy)
calculations, a special coordinate system will be
introduced. The final results stated in the introduec-
tion can be formulated in purely geometrical terms,
so the introduction of special coordinate frames is a
matter of convenience, not of principle.

Suppose one is given an arbitrary space-time,

8 G. Darmois, Les equations de la gravitation Einsteintenne
(Mem. Soc. Math., Paris, 1927).

7 R. Penrose, reference 4, particularly pp. 34 and 35.

8 The following conventions will be used throughout:
Capital Latin letters 4, B, etc. run from 2 to 3; small Latin
letters a, b, ete. run from O to 3. The signature of the metrie
tensor g, 18 taken as +2 (so that the metric of a space-like
surface is positive definite). Commas denote ordinary deriva-
tives; semicolons denote covariant differentiation with
respect to the metric of the four-space; colons denote covariant
differentiation of a geometrical object within T with respect
to the metric of Z. R is the Ricel tensor of the four-space;
R is the curvature scalar of the four-space, u = z% and v = z!
once we have gone over to the specially adapted coordinate
systems discussed in this section.

g°%, g4B, hAB and C, are defined by the equations
g°* g = 8¢, gAP gpo = §4¢, hAB hpe = 84¢, Cu = gap CE.
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specified by its metric tensor as a function of any
coordinates, and in this space-time a pair of null
hypersurfaces U and V intersecting in a space-like
surface =. Within Z let us choose a pair of coordi-
nates z%(4 = 2, 3) for which the inner metric of
2 takes the form

Jap = €XP [2h(xc)] 045, (1)
where 8,5 is the two-dimensional Kronecker delta.
Such coordinates can always be introduced locally.’
Next, consider the two linearly independent null
vectors defined at each point of = by the property
that they are orthogonal to every direction in Z.
One of these, say k* (with a = 0 .-+ 3, k* = 0,
k°k, = 0), must lie within the hypersurface U; at
the same time %* is the normal to the hypersurface
U since it is orthogonal to itself and to every other
direction in U. The other null vector, say m®, bears
the same relation to the hypersurface V. These two
vectors are not defined uniquely at Z; they are
still subject to the scale transformations

ke o= rk?, m’® = sm’, 2
where r and s are any functions of the coordinates
z* in =. Therefore, we can and shall demand

—1 on = 3

without loss of generality.

Next consider the lines within U that are orthog-
onal to U; these will be called rays. They are
automatically geodesics'®; therefore, one can intro-

mk, =

(a)

F1c. 2. The coordinate
system adapted to the
hypersurfaces U and V.
2 (a) A surface 2? =
const, 23 = const. 2 (b) A
hypersurface u = const.

R 2{“‘.
X=CONST.

X3=CONST

V= CONST

(b)

9 L. P. Eisenhart, An Introduction to Differential Geomelry

(Princeton University Press, Princeton, New Jersey, 1940),
. 208.

P P. Jordan, J. Ehlers, and R. Sachs, Akad. Wiss. Mainz 1

(1961).
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duce along each of them a preferred parameter,®
which will be called ». One can then obtain every-
where in U a normal vector field ¥'* by the require-
ment dz"/dv = k'* along any ray in any coordinate
system z°. If one now demands that k’* = k" and
v = 0 on Z, one has fixed the preferred parameters v
completely for a given choice of £° on Z; it will be
supposed that these conventions have been made.
Consider now the two-dimensional space-like sur-
faces v = const within the hypersurface U. Iixcept
for U itself, there is one and only one null hyper-
surface which passes through any one of these
two-dimensional surfaces. Let us call this null
hypersurface infour-space the hypersurface v = const.
In this way one extends the definition of the quantity
v to a four-dimensional region once v is determined
on U. The reader will note that the hypersurface V'
is now characterized by the equation v = 0, and
this fact will be used very often in the following
arguments.

One can now repeat all the above manipulations
on the hypersurface V instead of the hypersurface
U. One obtains another quantity, say u, which has
the following properties: (a) within V, u is a preferred
parameter along each of the geodesics that are both
normal to V and lie in V; (b) the hypersurfaces
% = const in four-space are null hypersurfaces and
the hypersurface U is characterized by the equation
w = 0; (¢) dz*/du = m" at Z. Since both u and v are
now defined in a four-dimensional region one can
now define m® and £* in a four-dimensional region
by the equations®

ke = U, m, =0, 4

Finally, we extend the definition of z* to a four-
dimensional region by the requirements
in V ik =0
The geometrical picture of the four quantities u, v,
and z* is given in Fig. 2.

Since we have defined four scalar functions, one
can use these as coordinates and it is easy to show

that the metric in terms of the new coordinates
takes the form

dss = —e " du dv
+ gapldz® + C* du)(dz® + C® du), (6)

where ¢, g45, and C* are any six functions of the
four coordinates. They obey the following restric-

zhm® =0 everywhere. (5)

tions:
g=0 on U andon V
C*=0 on V (7)
gap =€ " 845 in Z.
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Conversely, it is easy to show that whenever one
writes a metric in the form (6) and (7), the coordi-
nates u, v, and z* automatically have all the geo-
metric properties discussed above.

THE FIELD EQUATIONS

Next let us consider what restrictions the Einstein
field equations R,, = 0 place on the six unknowns
in Eq. (6). By standard manipulations one finds for
the Christoffel symbols the values given in the
Appendix. Using the Christoffel symbols one can
work out the Ricei tensor. It will be convenient to
divide the ten field equations into four groups as
follows: .

hypersurface equations; R, = R;, =0

propagating equations; R,z =0
subsidiary equations; Rw =Rou=0
trivial equation; Ry = 0.

The terminology is similar to that previously used
by Bondi and by the author. From the Bianchi
identities (R*® — 1/2¢®R),, = 0 one infers by
the usual arguments™ the following lemma'”: If the
three hypersurface equations and the three propa-
gating equations hold everywhere in a sufficiently
small four-dimensional region &, bounded from below
by U and V, and if the three subsidiary conditions
hold on the hypersurface V, then the three subsidiary
equations and the trivial equation automatically
hold everywhere in E.

It will be convenient to start by discussing how
the integration of the subsidiary equations hold on the
hypersurface V can be performed. Let us split the
quantity ¢g.p into two parts

Gap = 32hhAB (8)

by the requirement determinant (h,z) = 1. Define
quantities ¢*%, h**, and C, as follows:

7 Pgse = 66 W "hye = s6 Ca = gisC®.  (9)

One finds that the first subsidiary condition By = 0
takes on V the form*

_Qh,oo _2(}1,0)2 + hA,AnEhAE.o =0

(h.o = 0h/0u etc). (10)

11 Compare Lichnerowicz,? and the references given in
footnote 4.

12 The lemma holds only if the quantity %%, usually
called the expansion, is different from zero. One can always
arrange for k*,s # 0 to hold in some four-dimensional region
by suitable choice of =. An extensive discussion of spaces in
which k¢,, = 0 for some k* has been given, for example,
by P. Jordan, J. Ehlers, and R. Sachs.?

138 The reader should not try to evaluate the form of any
of the subsidiary conditions without first setting » = 0 so
that ¢4 = 0. The form of the subsidiary conditions when
v # 0 is very complicated; this form is not needed in the
following argument because of the lemma stated above.
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One sees from Eq. (9) that if A,z is given on V,
h is given on = and A , is given on = then the value
of k throughout V is completely determined; in fact,
Eq. (10) enables us to integrate one ordinary
differential equation along each line , = const with-
in V to get A.

The remaining two subsidiary conditions have on
¥V the form

CA,OI + JCA.] + J' = O:
Cy=09C4/ (11)

Here J and J' are “junk factors”—that is, quantities
which can be considered as known functions at any
one stage of integrating the field equations. In the
case of Eqg. (11) the junk factors have the following
property: If g, = €”h,p is known on the hyper-
surface V, then J and J’ are also known on this
hypersurface. Since h,z on V has already been
assumed as part of the initial data, and since Eq.
(10) has already been integrated to obtain h on V,
one may consider J and J’ known. One can now
integrate Eq. (11) to obtain the value of C,
everywhere on V, provided one gives as additional
data the values of C4,, on Z. In the following dis-
cussion 1t will be supposed that the integrations in
Eqgs. (10) and (11) have been carried out explicitly.
Thus at this stage one has the following data every-
where on V (including Z):

g=Cs=0 on V,

ete.

(12)

with h, hsp, and C4,, known functions on V.

Having satisfied the subsidiary conditions on V,
one turns next to the hypersurface equations. The
equation R,, = 0 has the form

—2h, — 4hag, — 20h,)° + K hag, = 0. (13)

Since ¢ = 0 on U, one can use Eq. (13) to integrate
for h in terms of A,z on U and h,, on Z; it will be
supposed that this integration has been done. More-
over, on any other hypersurface u = const = 0, oue
can use Eq. (11) to integrate for ¢ provided the
expansion k%, = ¢**h , is different from zero (com-
pare footnote 12) and g4 is known on the hyper-
surface u = const ¥ 0. The necessary initial value
is the value ¢ = 0 on V. The next two hypersurface
equations have the form

Can +JC +J =0 (19

This time the junk is characterized by the fact that
if h, hap, and ¢ are known on any one hypersurface
u = const, then J and J’ are known on this hyper-
surface. Thus, one can find C, on such a hypersurface
provided one knows in addition the initial values of
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Csand Cy,on V.But C, = 0on V and C, , has
already been obtained there by integrating Eq. (11).

One now proceeds as follows: Imagine that Egs.
(13) and (14) have been solved to yield ¢ and C, as
some complicated functionals of ~ and A, . Consider
now the three propagating equations, which have
the form

Gan,oo T Jgapo + J = 0. 15)

In Eq. (15) the junk terms J and J’ are characterized
as follows: If all six metric components are known
on a hypersurface v = const, then J and J’ are
known there. According to the remarks made about
Egs. (13) and (14), this fact means that when &
and h,p are known on a hypersurface u = const,
then J and J' are known there—admittedly, only
as quite complicated and nonlocal functionals of A
and A, 5. One therefore sees that Eq. (15) determines
the time derivatives ¢g45.0 at ¥ = const in terms of
gas at u = const and in terms of the value g 5., on
the surface v = const, v = 0. Since, as one sees from
Eq. (12), the latter has been previously obtained,
the propagating equations enable one to determine
the values of g, throughout some four-dimensional
region R in terms of all the initial data that have
been set. Then ¢ and C'4 are also determined in R
by inserting the values of ¢,» into the proper
functionals.

From the lemma and the discussion of the field
equations one sees that at this stage all the com-
ponents of the Ricei tensor vanish in £ and all the
metric components are known in RE. Collecting
results one has the main theorem:

Given hyp on U and on V and given h, C4 ;, h,,
and A2, on Z, there is precisely one gravitational
field (in a sufficiently small four-dimensional region
R bounded from below by U and by V) which has
these initial data as boundary values and obeys the
field equations.

The data can be chosen quite arbitrarily and are
not subject to constraints. As stated in the introduc-
tion, the question of how large R is (and in particular
if it is different from zero!) has not been carefully
examined.

GEOMETRICAL INTERPRETATION OF
THE INITIAL DATA

After the ugly and formal manipulations of the
previous section it is a pleasure to turn to the next
question—what do the data that have to be given
mean geometrically? The interpretation of A,p is
straightforward. Note first that the entire inner
metric of either U or V is known if and only if g4p

R. K. SACHS

is known. The reason one only needs a 2 X 2 metric
tensor to specify the inner metric is that the hyper-
surfaces U and V are null hypersurfaces. Thus, if
one were to adopt a different system of coordinates
and obtain some 3 X 3 metric in, say, U with the
values g,(e, 8 = 1--:3) one would immediately
find that this metric possesses a null eigenvector.
That is, one would find a direction k* # 0 in U
for which g,sk° = 0. Thus, of the six components
of g.s, only three would be algebraically indepen-
dent, and these three would be essentially g4s.
Stated somewhat differently, g4 gives the distance
not between two neighboring points in U but be-
tween two neighboring rays at a point in U and the
latter is the only meaningful distance that can be
assigned. Now the data given consist not of gz
but only of h,p, so that one initially knows g,z
only up to the factor ¢** which must be obtained by
integrating the field equations Ry = O and B;, = 0
on V and on U, respectively. Thus one sees that
giving 245 on U and on V is completely equivalent to
specifying the inner conformal geometry® of these
two hypersurfaces. Note that the conformal metric
must be given as a function of a preferred affine
parameter® along the rays.

To give h on T is fully equivalent to giving the
inner geometry of Z, as one sees from Eq. (8). The
meaning of 4, and kh,, is obtained by introducing
for T the two extrinsic curvatures E,; and Fup
that any two-space imbedded in a four-space has.®
Usually, in a positive definite space, these forms
are not uniquely defined; they are still subject to
orthogonal rotations of the normal directions which
define each.’ In the case of a normal hyperbolic
metric it is convenient to choose the two null
directions k* and m® as the defining normal direc-
tions. Then (in the special coordinate systems that
have been introduced)™*

EAB == kA;B (16)

Fup = My;5-

the abovementioned arbitrariness of an orthogonal
rotation now manifests itself by the fact that one

can still perform the transformations
k" = rk* m'* =r"'m* = EYp = rH,y,

Fip = T_IFAB

(17)

This arbitrariness will be discussed in more detail
later. For the moment we note from the Christoffel
symbols of the Appendix that to give A, and A 4

on 3.

4 If one introduces an arbitrary coordinate system, E,p
and F,p retain their meaning but are no longer related to
k., and m, in the simple way given by Eq. (16); the covariant
derivatives appearing in Eq. (16) are those of the four-space.
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on I, merely amounts to giving the trace (with
respect to the inner metric of Z) of each of the two
second fundamental forms:

EABQAB = h_1 FABgAB = h'o on z. (18)

These two traces are called the mean extrinsic
curvatures; they give information about the extent
to which a geodesic in 2 deviates from being a
geodesic in the full four-space.’

Finally, one can consider the two quantities Cy ;.
One sees from the Christoffel symbols that in the
special coordinates

Cin = koum® on Z. (19)

It follows from this equation and Eq. (17) that one
can still alter C,,, on = by adding an arbitrary
gradient:

Chn=Cay—(nr) 4 (20)
Thus the geometrically meaningful quantity is
CA,lB - CB,lA
= E,oF3 — EBCFE + R sk,m, on Z. 21

Here R,,.; is the full Riemann tensor of the four-
space. There is only one independent quantity
defined by Eq. (21) since both sides are antisym-
metric in A and B. It is easy to show that one can
set C%., = 0 on Z, where a colon denotes the
covariant derivative with respect to the metric
of Z. Then r is fixed up to a solution of the homo-
geneous Laplace equation on 2 and C,,, is fixed
up to the gradient of this solution by giving the
geometric quantity (21). To specify a particular
solution of the homogeneous Laplace equation, one
must give one additional function of a single variable
(namely, the relevant boundary values); this func-
tion and the quantity given in Eq. (21) constitute
the remaining independent data that must be set
in place of Cy4 ;.

Tinally, one can ask the question: To what extent
do the initial data consist of “true observables?”
In other words, suppose someone were to give us a
metric expressed in terms of some arbitrary coordi-
nate system. To what extent could we work out the
values of all the above quantities as functions of
their arguments. From the discussion given above
it is easy to see that one must make the following
arbitrary choices: one must choose, ad hoc, some
particular two-dimensional surface Z; in addition
one must choose, ad hoc, some particular coordinates
in = which express the conformal flatness of Z in
the form given by Eq. (1) (as is well known, this
choice amounts to choosing a particular solution
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of the Laplace equation in £).* Then the numerical
values of all the functions given as data are in
principle determined.

To summarize the results of this section: The
data that have to be set have rather straightforward
geometric interpretations; the functions constituting
the data are not true observables but the amount of
arbitrariness in them is relatively small.

CONCLUSIONS

A discussion of the local characteristic initial value
problem in gravitational theory has been given.
One sees that apart from questions of mathematical
rigor, a complete scheme can be obtained. There
are two very difficult and interesting questions
that have not been discussed: First, is it easier to
quantize the theory of gravitation by using com-
mutation rules set on null hypersurfaces rather than
space-like ones, or are there two essentially equiv-
alent schemes, or is it easier to use space-like hyper-
surfaces? Second, is it possible to relate in a neat
way the local methods discussed here to the more
difficult and physically more interesting global
methods that various authors' have recently
introduced. Until one can answer the first of these
questions, one cannot say whether the use of null
initial data is simply a matter of taste, as in the
classical theory, or is in principle different from the
use of standard initial data. Unless one can answer
the second question positively one will probably not
be able to draw many useful conclusions about the
results of physically conceivable experiments from
the results presented here.
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APPENDIX
The Christoffel symbols

I;. = %g“d(gbd,c + Geas — gbc.a) (AD

¥ V. Fock, Theory of Space, Time, and Gravitation (Moscow
1955); R. Arnowitt, S. Deser, and C. W. Misner?; Bondi
and his co-workers¢; R. K. Sachs.4
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are needed to calculate the Ricei tensor
Ry = To,. — Tiep + ToTo — Tl

In the coordinate system (6) they are:

Ir'n =0

Too = +3€"12(e7*) .0 + (C*Cl) 1]

Toa = 30,0 + Cuil

Ths = 3¢ 'gan

PI{I = 0

(A2)

Ifs = 3¢*"gosa
Tio = 3¢*°[Cp.. + (€7°.5]
T = 39"°[2Cp.0 — (C*C) 5]
— 3 °C*[2(e™*) 0 + (C*C0) 1]
Tes = 39*lgos.0 + Co.z — Cs.0)
+ 36°C [~ () .5 — C5.1]

(2)

Tse = Tie — 3°C*gson

Iy = 2g,

Tl = —3CAhCL — ¢..C*

I = —36°[Can — (€7 .4] + 3¢°Cpa.

R. K. SACHS

Too = —3"[(C*Ca),0 — 20°Cp.0 + C7(C4C*) 0]
I‘(I)A = _'% 20[(0808).A
- CD{gAD,O + CD,A - CA.D}]
(2)
I‘lAB = ‘“%920[0,4.5 + CB.A - JaB,0 — 2Cp Fﬁs]

r,, = (—2¢ + 2h) .
(2)

Here I'j, are the Christoffel symbols of the two
dimensional spaces © = const, » = const.

Note added in proof. The author has learned that
a paper with similar title has been submitted to
the L. Witten volume on general relativity by
Professor Bruhat; in case there is any overlapping
of subject material it should be pointed out that
Professor Bruhat’s work began as early as 1958 and
was submitted long before the submission of the
present paper, even though publication of the
present paper may happen to take place first. The
essential results of this paper were obtained simul-
taneously and independently by G. Dautcourt in
his Ph.D. thesis (Humboldt University, Berlin,
1961-62; to be published, 1963), which also contains
an exhaustive discussion of the special case k%, = 0
mentioned in footnote 12.
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A physically operational and mathematically simple definition is given for the convergence of
states for a boson field. The relevant formulation of the scattering matrix is discussed. As an example,
the scattering of a free Boson Field by a given linear time-independent unquantized source is treated.
It is shown that cases usually called “‘infrared” and “ultraviolet” catastrophes are actually convergent.

1. INTRODUCTION

IELD theories which attempt to derive asym-

totic behavior from the dynamics specified for
all finite times consider limits of the kind w. =
lim (¢t — & «)w(t), where

w(t) = exp [{H o 1] exp [—iH ;..o 1].

Two difficulties are:

(A.) Supposing H e can be formulated at all,
H;..o and H ., still cannot be formulated as opera-~
tors on the same Hilbert space in physically interest-
ing cases.’

(B.) Even in the mathematically most tractable
case’ when H;... and H.,.. can be formulated as
self-adjoint operators on the same Hilbert space,
taking w. = lim (t —» 4 «)w(f), with convergence
in the weak operator topology, still requires at
least a finite renormalization to obtain a unitary
Mdller wave operator.

The work of Segal’”® has, among other things,
gone a considerable way towards resolving (A),
which is clearly the more important difficulty. This
paper arose from considering (B). Using the work
of Segal we formulate the notion of asymptotic
convergence of states in a physically reasonable and
mathematically simple way which avoids questions
of renormalization and unitarity. Consideration is
limited to boson fields whose formal total Hamil-
tonian is at most quadratic. As an application we
extend the work of Cook to treat scattering by a
wide class of given linear sources. In particular we
give a mathematically rigorous treatment of scatter-
ing by a point source. Physically the examples

* Prepared with partial support from the National Science
Foundation, Contract G19136.

L L. Van Hove, Physica 18, (1952).

2 J. M. Cook, J. Math. Phys. 2, 33 (1961).

3], E. Segal, Ann, Math. 48, 930 (1942).

4 I. E. Segal, Kgl. Danske Videnskab. Selskab, Mat-fys
Medd. 31, No. 12.

8 I. E. Segal, Can. J. Math. 13, 1 (1961).

8 I, E. Segal, ““The Mathematical Characterization of the
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are uninteresting since the scattering matrix is 1.
Mathematically, however, they offer further hope
that the usual formalism may be altered so as to
provide a convergent theory.

2. BASIC DEFINITIONS

We reproduce some basic definitions from refer-
ence 4 and 5. Let H, to be called the space of wave
functions, be a complex pre-Hilbert space with
inner product (- , -),. The single particle structure
(or classical field) over H, Z(H), is the pair
{K, B(-, )} where K is H restricted to real opera-
tions and with inner product (- , ) = Re (-, -),
and B(-, ©) = Im (-, -),. The real operator in K
corresponding to z/ is written A.

Our basic example is the case of the Klein-
Gordon equation of mass m > 0. H can be taken
as the space of complex wave functions ¢(R) on the
hyperboloid (k, k) + m® = 0 in momentum space,
which are square integrable with regard to the
Lorentz invariant measure d’k/lk,| and satisfy
the “reality”” condition ¢(—k) = ¢(k)*. (* = com-
plex conjugation.) If e(k) = 1 as k, > 0, < 0.
The operator A is given by AY(k) = de(k)y(k).

A quantization over Z(H) is a map z — V(2)
from K to unitary operators on a complex Hilbert
space 9 such that:

V@V(z) = exp [5iBl, 2)]Ve + 2), (1)

and z — V(2) is weakly continuous on every finite-
dimensional subspace of H. [In a formal way
V@) = exp [t | ®@)¥(zx) dzx], where ¢ (x) is a
classical wave function and ®(z) is the “field at z."]

The algebra of field observables @ is the uniform
closure of U®y where M ranges over the finite-
dimensional subspaces of H, and @, is the weakly
closed ring of operators generated by {V(z) :2 € M].

A regular state E is a positive linear functional on
@ normalized so that E(I) = 1, and such that for
some quantization V(-) there is a vector z such
that E(A) = (Az, z) for all A € @. Pure regular
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states £ and F are relatively normalizable if they
are determined by vectors ¢ and y in the same
irreducible quantization space.

3. OPERATIONAL CONVERGENCE OF STATES

Definition 1. A one-parameter family of regular
states E, converges operationally to a regular state
E if for each field observable X, E (X) — E(X).

Mathematically this amounts to topologizing the
regular states as the weak dual of G. Let p(E, F)
denote the transition probability between states
E, F. 1t follows readily that when H has finite
dimension E, — FE operationally if and only if
plE,:, F) — p(E, F) for every fixed state F. Now
in the infinite dimensional case, since gquantization
is not unique, the appropriate definition of p(- , -}
is not entirely clear. It appears reasonable, how-
ever, to put p(E, F) = 0if, E and F are pure and
not relatively normalizable. Granting this the
example given elsewhere’ shows that there exists
a one-parameter family E, of regular states, which
is continuous by Theorem 1 below, but with
p(E\ E,) = 0N # p

Again as an example below (Sec 8) shows, the
physical vacuum state cannot be expected, in general,
to be relatively normalizable with regard to the
free field vacuum. [This is the difficulty of 1. {A).]
Consequently if finite times are to be considered, it
cannot be expected that a pure “in’’ state which is
relatively normalizable with regard to the free field
vacuum will be normalizable with regard to E,
for finite times f. Hence for a fixed state F the
transition probability p(E,, F) will not be a con-
tinuous function of time. We claim further that
transition probabilities between states do not play
any operational role and could be omitted from the
theory entirely. We conclude the present section
with a brief discussion of this claim.

For systems of finitely many degrees of freedom
where irreducible quantization is unique up to
unitary equivalence a certain amount of semantic
confusion between “state” and “observable” is
permissable. Let A be a non-negative self-adjoint
operator of trace class and trace 1, then A4 represents
both an observable and the state E :E(X) =
Tr (XA). Then if F is any other state, p(F, E) =
F(A). For a system with infinitely many degrees of
freedom let A, as above, act on the space of an
irreducible quantization. Then E is still a state, but
A is not a field observable; for it may be seen that 4
has no representation in any quantization arising

? D. Shale, Trans. Amer. Math. Soc. 103, 149 (1962), Re-
mark 6.1.
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from a pure regular state, not relatively normalizable
with respect to those arising from vectors in the
Hilbert space on which 4 acts. Thus for fields,
“states’’ and ‘‘observables” must be sharply dis-
tinguished.

Now it may be argued that what is measured in a
sequence of identical scattering experiments is the
expected values, or rather the distribution of values,
of certain observables in the “in’’ and “out” states,
ie., given a self-adjoint field observable A and a
state £ what is actually determined experimentally
is a certain borel measure u, z on the real line and
concentrated on the spectrum of 4.°7*° If the system
has finitely many degrees of freedom and 4 has
pure point spectrum {X;} of multiplicity 1, with
z; the eigenvector corresponding to ;, then
pa, 5N = p(E, F,) where F, is the state determined
by .. This accounts for the historieal importance of
transition probabilities. The method cannot be
applied in the cases usual in field theory where 4
has continuous spectrum or parts of infinite multi-
plicity. For a self-adjoint observable A it is simpler
to compute ¢, » the characteristic function (Fourier
transform) corresponding to the measure u, 5. This
is given by ¥4, 2(\) = Efexp [{AN]).

Now let E, be a one-parameter family of regular
states continuous in the sense of definition 1. For
fixed A denote the characteristic functions by
¥{f, N\). By definition 1, for each fixed N, ¢(f, A} is
continuous in ¢, i.e., definition 1 implies continuity
of the measures p, », in a sense common in prob-
ability theory.

4. CONVERGENCE THEOREM FOR STATES

The characteristic function p(-) of a regular state
E is defined by p(2) = E(V(2)) for all z in the space
of wave functions H."''"

It is proved™ that p(-) is a characteristic function
if and only if p(z) is continuous on every finite-di-
mensional subspace M of H, p(0) = 1 and

> .t exp [(/2)BG, 2ol —2) 2 0 -+, (@)

for complex a,, -+ , a, and #,, --- , 2, in H. The
property (2) will be referred to as quasi-positive
definiteness.

The following analog of a well-known theorem of

# G. W. Mackey, “Lecture Notes on the Mathematical
Foundations of Quantum Mechanics,” Harvard, 1960
(unpublished).

9 See reference 3.

* J. von Neumsann, Mathematical Foundations of Quantum
Mechanics, (Princeton University Press, Princeton, New
Jersey, 1955). :

i1 See reference 5,

12 H. Araki, J. Math. Phys. 1, 492 (1960).
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Levy'® provides a tool for checking whether states
converge operationally.

Theorem 1. Let E, be a one-parameter family of
regular states with characteristic functions p.(-).
Then there exists a regular state £ such that
lim (¢ — ¢)E, = E (operational convergence), if
and only if p,(2) converges pointwise to a funetion
p(z2) which is continuous at the origin on every
finite-dimensional subspace M of the space of wave
functions H and then p(2) is the characteristic
function of E.

Proof. If E, — E then the conclusion is trivial.
We prove the converse first in the case when dim H
is finite. Suppose that the p.(2) converge pointwise
to p(z) continuous at the origin.

A function 7(z) on K is integrally quasi-positive
definite (q.p.d.) if

[ exp 11iBee, 201t — IR dz e’ 2 0

where f(2) is any Lebesgue integral function on K
and the integral is over K X K with regard to
Lebesgue measure.

Now the functions p,(2) being q.p.d. are integrally
q.p.d. Hence, p(2) is measurable, continuous at the
origin and, by the Lebesgue dominated convergence
theorem, integrally q.p.d. Hence," there exists a
continuous g.p.d. function »(2) with »(0) = 1 such
that »(z2) = p(2) a.e. Let E be the regular state
determined by »(z).

Now let V(z) be the irreducible quantization.
Let C, be the complex vector space generated by

{ro = [ veroame L))

Then C, is an algebra whose uniform closure is C
the algebra of completely continuous operators.™*
E,(V(f)) may be evaluated as [ p.(2)f(z) dz. It
follows that for every X in C,, (and hence every
X in(0), E,(X) — E(X).

Let A,(respectively A) be the non-negative
self-adjoint operator of trace class such that
E,(X) = Tr (4,X) [respectively, E(X) = Tr (4X)].
We wish to show that E,(X) — E(X) for all bounded
operators X. It is sufficient to establish this when
X is self-adjoint. Given X there exists a completely
continuous operator Y such that X + Y is self-
adjoint with pure point spectrum.'” Consequently
"1 M. Loeve, Probability Theory (D. Van Nostrand Com.
pany, Princeton, New Jersey, 1960), 2nd ed., p. 191.

4 Qee reference 5, proof of Theorem 2.

1 J. von Neumann, ‘“Charackterisierung des Spectruns

eines Integral-operatoren,” Actualités Scientifiques et indus-
trielles (Hermann & Cie., Paris, 1935) p. 229.
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we can suppose that X has pure point spectrum.
Let {e,} be'an orthonormal basis so that Xe, = A.e,,
for all n. Let P, be the projection with range e,.
Then for all »,

(4w, €) = TH(AP,) = E(P) — E(P,) = (den,e.).
Also (A, e,) 2 0, (de,, e,) = 0and
}; (Ae,,e) = ; (Ae,, e) = 1.
It follows readily that
E(X) = ; (4 e, e,) — ; A (4e,, e) = E(X).

We have established that E, — E. It follows that
v(2) = p(2) everywhere.

In the general case, dim H infinite, the above
shows that p(z) is the characteristic functional of a
regular state F and that E,(X) — E(X) for all tame
field observables X (ie., X € @, for some finite
subspace M of H). The theorem follows since tame
observables are uniformly dense in @.

5. FORMULATION OF THE
SCATTERING AUTOMORPHISM

We now attempt to give some minimal require-
ments under which a system may be said to undergo
convergent scattering. Our treatment is partly
adapted from the work of Segal.'®

From the present point of view, given a fixed
frame of reference, it is the states which evolve with
time. The evolution will be given by a one-parameter
group () mapping the regular states into them-
selves and such that:

(a) For every pair of regular states E, Fand a > 0,
b > 0and ¢ + b = 1, OW)(aF + bF) =
aOME 4+ bOWF.

(b) O(2) is continuous in the sense that for every
regular state E, O()E is operationally continuous.

Any *-automorphism ¢ of the algebra @ of field
observables determines a contragredient map o*
of the regular states given by: o*(E)(X) = E((¢ ' X))
for all X in @. A one-parameter family o(t) of
*_automorphisms is continuous if ¢*(f) is continuous
in the above sense.

We now assume that the total (respectively free)
field dynamies arise from a continuous one-param-
eter group of *-automorphisms ¢(t) [respectively,
o). Let w() = e¢()p(—1t). The dynamics
of the total field is asymptotic to that of the
free field if the Mgller wave automorphisms
w. = lim ({ > = o)w() exist. The scattering
automorphism is then s = wl'-w_.

16 See references 4-6.
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Now a free field posesses a vacuum state £, and
hence has a quantization associated with it. Con-
siderations of positivity of the free field energy'’
have made the Fock quantization'® the most likely
candidate to describe the free field. We shall assume
this if the final condition on s is that s*(E&,) = E,.
It follows that there then exists a unitary operator
S, the ““s matrix,” such that s(X) = S.X.87%.

6. ADMISSABLE WAVE FUNCTIONS

We now consider H the pre-Hilbert space of
normalizable wave functions introduced in Sec. 2.
To emphasize its dependence on H we write Q@(H)
for the algebra of field observables. For a given
differential equation specifying the free field let H
be the corresponding Hilbert space of normalizable
wave functions. Usually H is taken to be H. If
instead H is a proper dense submanifold, then @(H)
is a proper subalgebra of G(H) (see Sec. 7). How-
ever the space of symmetric tensors S(H)' on
which the free field quantization acts, is identical
with, S(H). Consequently, if the dynamics is given
as an automorphism of &(H) instead of @(H), the
s matrix S is unchanged.

Associated with the free field quantization there
are certain observables (e.g., free field energy,
total number of particles), which are not field
observables and need not have any meaning at
finite times, but which can presumably be measured
in the “in”" and “out” states. Now H is the sub-
space of one particle states in S(H). However, only
states which assign finite expectation values to
observables like the “free field energy” can possibly
be attained in practice. Accordingly it seems ap-
propriate to discard the others from the space of
admissable wave functions, and hence, restrict the
observables for which the dynamics need be speci-
fied, should it be convenient to do so. We extend
this idea in the following:

Definition 2. Let G denote the proper inhomogen-
eous Lorentz group and ¢ its lie algebra. Let U(:)
[respectively, dU(-)] be the canonical representation
of G (respectively, ) on H. A linear submanifold
H will be called admissable if there is a submanifold
H, with H, € H, H, dense in H, invariant under
U(-) and dU(-), and such that dU(X) is essentially
skew adjoint on H, for all X in 4.

The existence of H, has been established by
Nelson.*

17 See reference 6.

18 J, M. Cook, Trans. Amer. Math. Soc., 74, (1953).
19 See reference 18.

20 , Nelson, Ann. Math. 70, 591 (1959).
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7. AUGMENTED SYMPLECTIC GROUP

In order to construct examples we give an ex-
tension of the symplectic group over the single
particle structure Z(H) introduced by Segal.”’ We
begin by noting that the commutation relations
[Eq. (1)], can be regarded as arising from a unitary
representation V() of the group K~ = {2~ = (a, 2):
a is real and z € K} with multiplication law:

(a,2)(a;,2) = (@ +a, + 3B, 2),2+2) - 3)
(cf. reference 5), where
VE™) =e V@) --- . 4)

For any finite dimensional subspace M of K let M~
be the subgroup {2~ :2 & M}. M~ is to be given the
Euclidean space topology.

The proper augmented symplectic group given in
the following definition describes the group of dy-
namical transformations arising from Hamiltonians
which are at most quadratic.

Definition 3. The augmented symplectic group
Sp(K)~ is the group of automorphisms 7~ of K~
such that T~ : M~ — T~(M™) is continuous for
each finite dimensional subspace M. C = {(a, 0)}
is the center of K. The proper augmented sym-
plectic group A Sp(K) is the subgroup which leaves
C pointwise fixed.

Since each T~ & Sp(K)~ leaves C Invariant, the
continuity condition implies 7™(a, 0) = (aa, 0) with
a fixed. Let o(TTHV™(E™) = V™(I"2"). By con-
sidering elements of @(H) of the form ¢/, ¢ complex,
it becomes clear that o(7~) determines an auto-
morphism of @(H) if and only if 7 leaves C point-
wise fixed, t.e., T~ € ASp(K).

Theorem 2. For T~ & ASp(K) there exists a
linear functional A on K and a linear transforma-
tion T on K which preserves B(- , -), such that
(") = (a + A#), Tz). Conversely, every pair
(A, T) determines a unique 7~ € ASp(K).

Proof. Writing T(0, 2) = (\(2), T(2)) the identity:
T ((a, &(a2r)) = T(a, 2)-T™(a,, 2,)

gives
Te+2) =Tk + T@) --- (5a)
iB(TR), T(2))) — 3B, 2)
=Mz+2)— A2 —A@z) --- . (5b)

Since the right side of (5b) (left side) is symmetric
(antisymmetric) in 2, 2, both must equal zero. It

2 See reference 4.
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follows from Egs. (5) that T(az) = oT(2) and
Maz) = aA(2) for all rational o and hence all real «
by continuity. This establishes the direct part. The
converse is trivial.

Yor T~ : T™(a, 2) = (a + A2), T2) we write
T~ = (A, T). If E is a regular state with characteristic
functional p(z) then *(T™)E has characteristic
functional

p'(@) = exp (—NT7"2)p(T2) --- . (6)
For
P = *(TE[V(E)] = Ele(T~) V0, 2)]
= E{V[~-NMT""%), T 2]}
= exp [—INT 7 '1p(T2).

Let V,o(-) be the free field quantization and E,
the free field vacuum state. We take H (and hence K)
to be a Hilbert space.

Corollary. For T~ in ASp(K) there is a unitary
operator Y such that o(T™)X = Y.X.Y™', or
equivalently E,and o*(T™) E, are relatively normaliz~
able if and only if 77 = (A, T) with A continuous
on K in the Hilbert space topology and (T*T)"* — I
is Hilbert-Schmidt. Further if 77 = (A, I), Y can
be taken to be V(z,) where z, is the unique vector
in K such that A\(2) = —B(g, 2,).”

Proof. T~ = (A, 1) = (0, T)(A\, I). Since the part
concerning (0, 7) has been proved elsewhere™ we
consider only (A, I). By Eq. (6) the characteristic
funetional of E;. = *(ITE, is p'(z) =
exp [—N(2)]p(z). If E;. and E, are relatively
normalizable then FE,. arises from a vector = in
the Hilbert space of the free field quantization and
p'(2) = (V(2)x, z). Since V() here is continuous
from the Hilbert-space topology on K to the weak
operator topology it follows that A(+) is continuous.
It is straightforward to show that A(z) is continuous
on K if and only if A(2) = — B(z, 2,) for a unique 2, in
K. Tinally the commutation relations [Eq. (1)} give

V@) V@) - V(—2)
= exp [—iBG, 2)]V(E) = o(T) V().

To see, as remarked in Sec. 6, that @(H,) is not
equal to G(H) for H, a proper linear submanifold
of H, it is only necessary to note that there exists
a nonzero linear functional A on H (not necessarily
continuous) which is zero on H,. Putting I~ = (A, I)
we have o(T~) = I on G(H,) but not on G(H).

22 Cf. 1. E. Segal, Trans. Amer. Math. Soc. 88, 12 (1958),

example 2, p. 33.
23 See reference 7.
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8. SCATTERING OF A FREE BOSON FIELD
BY A TIME INDEPENDENT LINEAR
UNQUANTIZED SOURCE.

As an example we reformulate the treatment of
scattering with a given source due to Cook,” and
extend it to give a convergent treatment of cases
usually labeled as “‘infrared” and ‘‘ultraviolet”
catastrophes.

Let © denote the space on which the free field
quantization V,(z) acts, and H be the space of
normalizable wave functions. For z € H let iR,(2)
be the infinitesimal generator of V,y(fz) — o <t <
The canonical action I'(-) of unitary group U(H)
on O will be given explicitly in Sec. 9. If 4 is a
self-adjoint operator on H then dT'(4) is the infini-
tesimal generator of T'(exp (ZAf)), — = <t < .
If A is the one-particle Hamiltonian, dT'(4) is the
free field Hamiltonian. Recall that A is the real
form of ¢I. The basic result due to Cook® is:

Theorem 3. If A is a self-adjoint but not necessarily
bounded on A and z € D(4) then

[AT(A4) + Ro(Ad2) + 3(4z,2)]”
= V@) dT(A) Vo(@ .

We give a new proof in Sec. 9.

Consideration will be limited to a Klein-Gordon
field of mass m > 0. The free particle Hamiltonian
4 is multiplication by k, on the space of normaliz-
able wave functions on (k, k) + m* = 0 in mo-
mentum space. The following lemma is a simple
consequence of the Fubini Theorem and the Rie-
mann-Lebesgue Lemma.

Lemma A. If (k) is an integrable complex-valued
function on (k, k) + m®> = 0, m > 0 with regard
to the measure dm = d’k/|k,/, then F(t) =
[ exp (ko) -f(k) dm — 0ast— .

Now let ¢(x) be a time independent source func-
tion. Let ¢(k) = @(k,, k) be the Fourier transform
[ o(x) exp (—(k, x) d’z, regarded as a function on
(k, k) + m* = 0.

Case I (Cook). $(k) is normalizable and in D(47).
The total Hamiltonian is.

[@dT(4) + R(A9) + 3(47'¢, &)1~
= Vo(A7¢)dT(4)- Vo(A7® ---, (D

using Theorem 3.

Reformulating in the present language we take the
space of admissible wave functions to be H. The
field dynamics is given by the automorphism ¢,(f) =

2 See reference 2, Theorem 1.



920 DAVID
o(T(1)) with T(f) the symplectic transformation
exp (141%). Exponentiating Eq. (7) and applying
the corollary to Theorem 2 we get the interacting
dynamics given by the automorphism () =
o\, Deot)e(n, I)™" where (A, I) is augmented
symplectic transformation determined by the linear
function A(z) = — B(z, A7'¢). Now the Mgller wave
automorphism w(t) = ¢()e.(—8) = o(T,(f)) where
To(®) = A() = MT(=)(-)), I). Applying Eq. (6),
if p(2) is the characteristic functional of the regular
state & and p’(2) that of w*()E, we have

p'@) = p(@) exp [—iA@) + NT(=02)].  (8)
It follows that
w. = o\, I), 9)
provided N(T'(—#)z) — 0 as t — = = and then the
scattering automorphism s = w>'w_ = .

Now

MT(—1)2) = —B(exp (—iAt)z, A7'9)
= —Im f exp (—ikol) ()G ko] dm.  (10)

By Lemma A this » 0ast— = o,

Case II. Suppose the Fourier transform ¢(k)
of the source is normalizable but ¢ & D(4™"). This
can happen if m = 0 when A™" is unbounded. The
difficulty with the above formulation is that
Mz) = —Im [ [2(k)p(k)*/ko] dm will not be defined
for all normalizable wave functions z(k). Accord-
ingly, we apply the doctrine enunciated in Sec. 6
and take H to be the subspace of H consisting of
infinitely differentiable functions with compact
support on (k, k) + m” = 0 which does not contain
0. Then H may be seen to satisfy the general re-
quirements of definition 2. In addition, z(k)/k, is
normalizable for all 2 € H and the remainder of the
reformulated discussion is unchanged. We remark
that in this case it follows from the corollary to
Theorem 2 that the clothed vacuum w*FE, is not
relatively normalizable with regard to the free field
vacuum state.

Case III. The Fourier transform ¢(k) is not a
normalizable wave function. For example let o(z)
be the & function at z, corresponding to a point
source. This is the so-called ““ultraviolet” catas-
trophe. Then 8(k) = exp [—i(kiz, + kozo -+ kazs)]
We take the space of admissible wave functions to
be as in case I1. Since x{k)@(k)*/k, is then integrable
for z € H the reformulated treatment is unchanged.

Our aim in treating the above examples has been
to establish the viability of the mathematical frame-
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work given for scattering. It may be observed that
the maneuver used to treat the “divergences”
amounts to requiring that when the source is highly
concentrated the wave funections used (on space time)
must be spread out. There is no difficulty in ex-
tending the treatment to a wide class of interactions
for which the interaction Hamiltonian is at most
quadratic. In particular the infrared, catastrophe
which arises for the Maxwell field with a given time
dependent unquantized source can be treated by
adapting the maneuver given by Cook.*
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APPENDIX. THE HOLOMORPHIC QUANTIZATION
AND A NEW PROOF OF COOK'S THEOREM

The holomorphic quantization of Segal® has
appeared since the work of Cook.”® It has the
advantage that field quantities may be computed
very simply. We use it to give a new proof of Cook's
theorem (Theorem 3 above).

We begin by reproducing the basic definitions.
Let H be a complex Hilbert space and Z(H) =
{K, B(-, -)} the single particle structure over H.
Let L,(K) be the Hilbert space of square integrable
functions over K with regard to the normal distri-
bution with variance 1. Let f{¢,, - - -, £,) be a complex
polynomial in » variables and 2, , -+ , 2, € H.
The antiholomorphic polynomial (a.h.p.) determined
byfandz --- z,is

f(Z) = f(tly ) tn); with (11)

where (-, -) is now the inner product in H. Let
be the subspace (closed) of L,(K) determined by
the a.h.p. The quantization on § is determined by

Voe)@) = exp [ (&, 2)/4 — 3, Iz +21) (12)

where f ranges over the a.h.p.

Let € = {g(t; -+ 1) = f(ts, - -+ , tacs) €xp (—ati)},
where ¢ is a complex polynomial, ¢, = (z, 2),
2=1+--n (arbitraryn > 0),and z,, -+ ,2, € H
are arbitrary. It may be seen that € is a dense
subspace of 9.

The canonical action T'(-) of the group U(H) of
unitary operators on H is given by I'(w)f(z) =

b= (2:,2),

% See reference 6.
26 See reference 2,
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f(u™'2) where f ranges over the a.h.p. If U(H) is
given the weak operator topology, I'(:) is weakly
continuous. For ¢ & G, T'(u)g(z) = g, --- , L,
with ¢, = (uz,, 2). Finally recall that if 4 is self
adjoint on H, 7dI'(4) is the infinitesimal generator
of T'lexp (ZA¢)).

Lemma 1. (a) On G, V,(2’) is given by
Vo@)g) = g(h, -+ , &)
X exp (=@, 2)/4 — (,2/2)
with ¢, = (z,,2) + (2, 2),i=1---n.
(b) If 4R,(2") is the infinitesimal generator of
Vo(t2), on €, Ry(2’) is given by

Ry = 3 — il b) (o

; 2

+ (Z/z)(zly Z)g(il? o

with ¢, = (z;,2)i=1--- n.

(¢) Let A be self adjoint on H. Let D be the set of
functionals in € for which the z,’s lie in D(A4) the
domain of 4. Then D lies in the domain of dT'(4) and

» 4)

b o b) (g,

ar)ge) = X b

with {; = (24, 2).

Proof. Part (a) follows readily from the definition.
Proof is omitted.
(b) For g in € consider

he = (1/)[Vt2)g — g] — iRs(&)g.

Ast — 0 h, — 0 pointwise. Now suppose ¢ depends
on 2 --- 2, Let H' be the subspace generated by
2,2, -+, 2, with ¢;, +-- ¢, an orthonormal basis
for H'. Then for ¢ s 0, h, is an antiholomorphic
function based on H’. It may be seen that for suitable
M > 0, |h| < M exp (82_:l(z, e,)!*) for all 8 > 0.
If K’ is the real subspace determined by H’, it
follows by the Lebesgue dominated theorem that
h: — 0,ast— 0, in L,(K') (integral with regard to
Gaussian measure with variance 1). Therefore
h, — 01in L,(K).

(c) It is convenient, though inessential, to estab-
lish part (¢) using the duality transform D™ be-
tween S(H) a space of symmetric tensors over H
and 9. We define D~ by

D@ @® - @z, = @) [z, 2).

If 17(.) is the canonical action of U(H) on S(H)
then clearly D™ transforms I and dI' into T and
dT, respectively. For 2, --- , 2z, in D(4) it is a
straightforward matter to check that
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dr(A)e @ -+ ®z.),
= (4z ®zz® ®z»)a
+(z1®Az2®z3® RIS F-A T SRR

It follows that for monomials (and hence for poly-
nomials) based on D(4), dT'(A) has the form stated.
To treat the general case suppose ¢ € D, with
glt, «-+ , t) = fti, - -+ tu-y) exp ({). Pub

In = f(g t;/r!>-

Now using the Lebesgue dominated convergence
theorem and arguing as in the proof of (b) we obtain
Gnm(2) — g(2) and d1(4)gn(z) — dT(A)g(z) asm — 0,
with convergence in IL,(K). The result follows.

The following lemma,*” which is probably not new,
proves to be a convenient tool for establishing that
certain operators are essentially self-adjoint.

Lemma 2. Let A be a self-adjoint unbounded
operator on a complex Hilbert space H and
U@) = exp (14%). Let D be a dense submanifold of
H such that (1) © € D(A4) (the domain of 4),
(2) D is invariant under U({f) for — o < § < =;
then the restriction of A to ®© is essentially self-
adjoint.

Proof. Let D = {Az + iz :x & D}. Itis sufficient
to show that the closure DT of D. is H. We es-
tablish this for ©,. Suppose D7 # H. Then D7 is
invariant under U(f), —» < { < o, and hence
reduces A. Hence (A + 4I)™ maps D, into D.
Therefore, ® = (4 + )7'D, € D7. It follows
that © is not dense in H. Contradiction.

Proof of Theorem 3. In order to establish the
theorem in the form stated it is enough to find a
dense domain D on which

dr(4) + Ro(A47) + 3(42',2)
= V@) dr(4)Vi(=2),

and such that the right side is essentially self-ad-
joint. Now take © as in Lemma 1, part (¢). Then
D satisfies the requirements of Lemma 2 (with
instead of H and dT'{4) instead of 4). Then dT'(4)
is essentially self-adjoint on ®. Since V(2/) and
V(—2') leave © invariant, V(2’) maps D onto D.
It follows that V(2') dT{(A)V(—2’) is essentially
self-adjoint on ©. The stated equality on © now
follows by computation using Lemma 1.

27 Note added in proof. Lemma 2 is equivalent to a result of
J. L. B. Cooper, Proc. London Math. Soc. 50, 11 (1948).
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The S matrix associated with a central potential is shown to be meromorphic in the energy and
angular momentum variables under very broad conditions. The domain of meromorphy contains the
product of a domain in the energy variable by a domain in the angular variable. The former (latter)
domain has a very simple connection with the domain of meromorphy of the Laplace (Mellin) trans-

form of the potential with respect to the radius.

I. INTRODUCTION

HIS paper is devoted to an extension of the

results obtained by Bottino, Longoni, and
Regge,’ concerning the analyticity properties of the
scattering matrix associated with the Schrodinger
cquation with a central potential. The S matrix
is first expressed in Sec. 2 in terms of the Jost
functions, which are formally expanded in powers
of the potential. This expansion is studied in detail
in Sec. 3, and a partial summation of terms cor-
responding to the Green’s function is shown to be
possible under very weak conditions upon the po-
tential. This proves the desired properties in a
small region. To enlarge this region, it is con-
venient to study in more detail (Sec. 4) the analytic
continuation of the Laplace and Mellin transforms
of the Green’s function.

This analytic continuation then makes it possible
to derive in Sec. 5 the desired properties, by separat-
ing out the divergent parts of the Jost functions
and expressing them as Laplace and/or Mellin
transforms of the Green’s function. In the conclusion
we gather together all conditions on the potential
and the corresponding analyticity properties.

II. FORMAL EXPANSION OF THE S MATRIX

Let the Schrodinger equation read

AN —1/4

8° 2 .
[55 + k- 7”2 - V(T)](ZS(]’J, )‘17') — O)

where the solution ¢ is the “‘regular” solution at the
origin, or, more precisely, the solution of the inte-
gral equation

* On leave of absence from C. E. N. Saclay, France.

t Supported in part by the Air Force Office of Scientific
Research, Air Research and Development Command.

1 Bottino, Longoni, Regge, Potential Scattering for Complex
Energy and Angular Momentum, (Istituto Di Fisica dell’
Universitd Torino, Torino, Italy, to be published).

ok, N, 1) = ja(kr)

+ % f "Gl ) VEOS6, kN dr. (1)

As usual,

wkr) = Grkn)' 2 N(ED); k) = Gakr)*Na(kr)
V) = j(kr) + inEkr); AP (kr) = y(kr) — in(k)
Glkr, kr') = m\(kn)p(r’) — p(kr)na(kr’).

The Jost funetion f(A, k) is defined by the asymptotic
behavior for large r of ¢(k, A, 7):

ok, \, ) & 1/2R)FN, k) "2 MR (er)
- :f(k, _If) e—(ir/2)()‘+l/2)h)(‘2)(kr)]

and the S-matrix element:

N o 208 ir(A-1/2) f(kyk) —- WZ()‘ik)
S0 B =et=e o, =B Wk 9
where W, stands for:
Wi, k) = lim W[k"(kr), ¢(k, X, n)]; 3

rom

W is the Wronskian, and
WA, k) = —[W,(\*, E¥)]*.

The solution of Eq. (1) is formally given by

ok, X, 1) = ja(kr)

+Zk"[

0<r 1 <ra<

H (G v, k)

<rp<rat1=7 m=1

X Vir,) dr,] plkr)

and likewise formally, the expression (3) for W,
becomes:

W, = —ik + ZU f B (kr,)
O<r;<***Lrp<®

n=1

X H Gk psr, K H [V(r,) dr.)ikr:)

m=1

(4)
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by virtue of the following relation for the Wronskian:
Wiajlkr) + Bra(kr), vir(kr) + & ma(kr)]

= k(ad — By).

The fact that Eq. (3) contains the symbol lim, ..
is reflected in the fact that the integral of Eq. (4)
extends to infinity.

III. STUDY OF THE CONVERGENCE OF THE FORMAL
SERIES

A convenient way to study the series (4) is to
carry out all integrations, except those going to
zero or to infinity (over r, and r,), which give rise
to divergence, then to sum the series, and finally
to study the last two integrations. Accordingly,
define for n > 2

n—1

(n—2)
L, 7) = s f I Gu(frs, )
Lry m=

n—1
X H V(Tm) drz ot drn—l- (5)
m=2

An upper bound on this quantity may be put in
the following way:

I,,(Tl, 7',,)
(2n-3)
-/;,<“<r,<---

n—1
x II V) ds, ---
m=2

n—1
11 Gitks.,, kr.)

<rp—1<sp—31<tn m=1

ds,, dry - dr,_, (6)

where G{(z, y) (8/02)Gh(z, y) satisfies

|Gi(ks, kr)| < M(k, N) Fya(8) for s> r

Fy )
and:
Fiy) = s'™NM 7 <1 |[Rer| >1/2 (7a)
Fials) =1 s<1 |Rex]<1/2 (7b)
Fi ) = exp |Im ks] s> 1. (7¢)

(See Appendix for the derivation of this bound.)
F. »(s) is monotonic, therefore:

F,, X(Sm) Fk )\(rm+1)
Fk )\v‘m) Ic )\(Tm)

Furthermore, let U(r) = max,., |[V(s)|. U{) is a
monotonically decreasing funetion, so that |V (r,)| <
U (r,)U"*(8m-1). By substitution of these dif-
ferent upper bounds into the expression for 7,,(r,, 7..):

IN POTENTIAL SCATTERING 923
o Fualr)
I Mn 1 E A\ 'n
| ,,(7'1,7',,)| < ko Fk,)\(T])
n—1
X II (U7 U *(s0-0)]
r1<a1<ra< " <rpn—1<8n=1<ry m=2
X dry « e dr,_,ds, -+ ds,_,.

This last integral is equal to:

(@n = 4! f {f v d’"}

< @1_1:_4—)—! (r. — Tx){ﬁm UY*(r) df} : ,

if [ U**(r) dr < «, which shall be considered to
hold throughout the rest of this paper.
Thus, it is possible to sum the series:

> L6, r)

n=2

dsn-l

I(r,r) =

and it converges uniformly in r, r, k, A on every
compact set. In particular, it is an entire function
of k and A as every term I,. It may be useful to
remark that the function I(r, »’) is a Green’s func-
tion of the total Hamiltonian. The preceding com-
putation gives an upper bound for I(r, r') of the
form:

1o, < N 5286 =0, (9)
This allows to determine a region where the integral
(4) converges uniformly in %k and A, and therefore
to establish analyticity in & and M in some domain
for W,.,. However this domain is fairly small,
as compared with the domain obtained by Regge
et al. Therefore it is necessary to devise some
analytic continuation procedure, which is developed

in the next section.

IV. ANALYTIC PROPERTIES OF THE MELLIN AND
LAPLACE TRANSFORMS OF THE GREEN’S FUNCTION

The divergence of the integral (4) is due to the
wrong power behavior for small values of , and to
the wrong exponential behavior for big values of r,.
It is therefore natural to try and isolate the singu-
larities in A, k associated with these divergences
by studying the analytic properties of Mellin or
Laplace transforms of I(r, r'). Three cases are to
be considered:

a) r<r <1 A(,s)

= ff P T v dr dr?
0<r<r’<1



924

b) r< 1< B, p)
= ff ) e drdr
0<r<1<r’ <@
e) 1<r<r Clp,p)

= ff Ifr,r) ™™ 7" drdr'.
1<r<r’ <0

The limiting value 1 is taken arbitrarily here, and
it does not even need to be the same for all three
functions, as for any finite range of values of 7, ¢/
the integrals converge. As they stand, these func-
tions, according to (8), are analytic in the following
regions:

A) Res > max[[ReX| — 1/2,0]

Res”>1 —Res
B) Res > max[|Re)| — 1/2,0]

Rep’ > |Im k| 9
C) Re@+p)>0 Rep > |Imk|.

A possible way to continue these functions in their
arguments is to use the fact that I(r, r') satisfies
two differential equations, and therefore, A, B, C
satisfy the transformed equations, which may allow
to analytically continue them outside of (9).

The differential equations satisfied by I(r, r’)
are the same with respect to r and with respect to r’:

[—6—2 + K - Eirz—l/é - V(r):ll(r, ) = 8r — ).

ar
The transformed equations read, with the Mellin
transform:

[ — D6 —2) — O — 1/4)]

’ .2 AN i
X A(s — 2,8) + k*A(s, ) ot
X _“::" Als — o, 8" ulo) do = S_-FTI’—:-—P (102)
[ — D@ ~2) — (\° — 1/4)]
X A(s, s — 2) + KA(s,s") — él—
)
X fﬁm A(s, 8’ — o)ulo) do
1
= ry—1 + afs, ¢'), (10b)
[ — D —2) — (- 1/4)]
X Bs = 2,p) + KB, ) — 5
X [ Al = o, pu(e) do = G, ), (100

—{o
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where
als, s) = — f r“'ll:% ¢, 1)

+ (1 — $)HI(r, 1)] dr
86,00 = = [ e[aﬁ 11, 7)

+ (1 — s)I(l,r’)] dr’

u(o) = fol V' dr,

and the integral over o is as yet taken according to
the general theory of Mellin transforms, which is
possible by virtue of (8) and [; U'*(r) dr < .
Similarly, the Laplace transforms B and C satisfy:

(@%/0p™) (@ + KB, p)] — O\ — 1/4)B(s, ')
- 2_71n f_: B(s,p’ — Qu’(g) dg = +(s,p) (11a)

@/0p")[@* + K)C(p, )] — (' — 1/9C(p, p))

_l_ e —_ Nt
ol Clp — q,p)#'(q) dg
e—(p+p’)
= op,p) + —/—— (11b)

p+p
(8°/ap™(p"” + E)C(p,p")] — \* — 1/4)C(p,p")

+i®

C,,— 1 d=e 5
(p,p" — Qi (g dg >+

—(p+p”)

2my

(11c)

—iw

where again:

f

—p' ! s~1 a
6,00 = [ 7| 2100 4wt 0 | i

s, p) = [ [%I(l,r’)+pl(1,r’):|e_""' ar

ii(g) = flw e V() dr.

The integral over ¢ is to be taken along a path
satisfying, say, Re ¢ > 0.

It is possible to do the same transformations and
to prove that « and v (8 and &) satisfy equations of
type Eq. (10) [Eq. (11)] with an inhomogeneous
term that is now an entire function.

The analytic continuation procedure developed
here cannot proceed unless some additional con-
ditions on the potential are assumed. The condition
[5 UY?(r) dr < o implies that 7’V (r) goes to zero
with r. It is therefore possible to take Re o greater
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than 2 and arbitrarily close to it in Eq. (10). The
present method requires a little more; that is, that
there exists a small positive number % such that
P7"V(r) goes to zero with . It is then possible
to take the path of the ¢ integration in Eq. (10)
along a line 2 ~ 5 < Re ¢ < 2. This allows to
express the first term of Eq. (10) as a function of
the others, and therefore allows one to extend
domain (9) by a strip of width 5 in the s or s’ plane.
This procedure may then be repeated any number
of times unless one of the following circumstances
occurs fthe language adopted is that suitable for
Eq. (10a), but it is clearly irrelevant]:

i) The inhomogeneous term is infinite: this generates
a pole in A(s, 8') at s = —¢’ — 1.

i) (s — (s — 2) = A — 1: this generates a
polein A(s, s') at s = £Xx — 3.

iii) The second term may have a singularity: this
tells us that every singularity in A (s, s') is associated
to an infinite chain of singularities of similar type
at regular intervals of 2.

iv) The integral over ¢ may be pinched between a
singularity of u(¢) and a singularity of A(s — o, §').
This shows that if s, is a singularity of A(s, s'),
then s, + ¢ — 2 is a singularity of A(s, ') when-
ever ¢ is a singularity of u. This particular set of
points we shall denote by s, + 8§ — 2, where §
denotes the set of singular points of u(s). It is
important to note that in the case where the pinching
is between two poles, the resulting singularity is
again a pole, as may be seen by decomposing the
contour into a loop around one pole and a contour
which is not pinched. ,

v) The last possibility for the analytic continuation
procedure to fail is that the integral over ¢ starts
diverging. This however only occurs for fairly
pathological potentials, where the asymptotic be-
havior of u(s) for ¢ — xie depends upon Re o.
This may be treated together with the preceding
case by saying that there is a singularity of u(s)
at Re ¢ 4 1«. An example of such a potential is:

V) = e™* cos (In'r)

All these possibilities are then taken together and
the singularities of A(s, s’) in s are given by the
formulas:

= - — g — — ¢
or s 1—s 2n 4+ m(8 — 2) (12)
s= A —1/2 — 2n 4+ m(§ — 2)
take all possible non-negative integer

symbol m($ — 2) denoting the set:
+ o. — 2m}, where o, --+ , o, are

where m, n
values, the
o, + -+
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singular points for u(s); it is understood that
(60 + i) + (0, + i) is any number whose real
part is the same as that of (¢p + o,).

The set of essential singularities of A(s, ') is
given by:

s=—1—s"~-2n+m(8—2)+ (& —2)
or (13)
s=a4A—1/2—-2n+m(8 —2)+ (& — 2

where & is the set § minus the set of all poles of u;
in fact, it has been noticed that the only mechanism
to produce an essential singularity in A(s, s) is
to have an essential singularity in u.

The very same procedure may be used to find
the singularities in s’ of A(s, s'). It is however
impossible that there be poles with a fixed location
in s, because their residue would then obey an equa-
tion of type (10) without right-hand side, and there-
fore they would appear in the region (9). Therefore,
the only singularities in A(s, s’) are exactly those
already found in (12).

For B, «, and v the reasoning is similar, but the
inhomogeneous term is entire in s. Therefore, the
only singularities are those independent of s’ in (12).

A completely analogous study may be made to
continue in p and p’, with the proviso that V(r)
decays exponentially, or equivalently, that the
integral on ¢ in (11) might be taken inside —u <
Reg < 0.

In this case, the singularities are created either
by the Fuchsian type singularity p° -+ k> = 0 in
Eq. (11), or by the inhomogeneous term, or by the
integral on the potential. The reasoning is made
along the same lines with the only difference that
all singularities appearing are cuts instead of poles.
The result is: C(p, p’) is analytic except for cuts
starting at

(14)

where @ is the set of singularities of wu(g); and
B(s, p') is analytic in p’ except for cuts starting at
p' = ik + me.

A final step in the reasoning is to prove that in
the domains determined by Xgs. (12) and (14),
the functions A, B, C are analytic in all four vari-
ables, as they were in the domains (9). This is done
by a straightforward repeated application of a
generalized form of Hartog's lemma (See Bochner
and Martin,” p. 141). It is worth noticing that this
theorem is in fact very deep, and that it is perhaps

p' = Xtk +m® or p+p = me,

2 S, Bochner and W. T. Martin, Several Complex Variables
(Princeton University Press, Princeton, New Jersey, 1948).
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the most powerful tool used in this proof, although
it looks almost trivial.

V. SEPARATION OF THE DIVERGENT TERMS

The summation of the series in (4) leads to the
formula:

Wi, B = —ik + [ " RO V) juir) dr

+ f f W) VO V)T, i) dr di.

These integrals diverge outside (9), but it is possible
to separate explicitly the divergent part in the
following way.

Forr < 1 use:

. k \/_ N (_l)n (kr)2n+X+l/2 B k 1
]A(T)_ 7rn=20n|n+)\! E— +])\(T),(6)
where 7,(kr) is of the order of »*"****/* for small r.
For r > 1, use the following integral representation
for A" (kr), which can be proved by solving an
equation analogous to (11):

h)(”(kr) — e—i()\+1/2) n/2

ikr _1_ o V%o Y4 (p__) :I
X [e + - f Pl B ) dp

where P’ is the derivative of the Legendre function
of the first kind. Hence,

hx(l)(kr) — e—i()\+l/2)r/2
ikr 1 4 X Y4 A
X [8 4 7 f_k e Px—1/2<%) dp] + &(kry (A7)

where hy(kr) is of the order of ¢ *" for large r.
A separation of the first integral in (15) into two
parts r 2 1, followed by the use of (16) and (17)
through a suitable expression of jy(kr) in terms of
k" (kr) and AV (—Fkr) for r > 1 or of k" (kr) in
terms of j(kr) and j_,(kr) for » < 1, leads to the
evaluation of the following divergent integrals:

1

/ PP dr = w(@N + 2n -+ 2)
0

I

[ e ve) dr = w(—p ),
1

with p and p’ varving between —A and 7k. There-
fore, the singularities due to the divergences of the
simple integrals are:

A= 3(8 —2) —m,
—2ik = @.

(18)
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Both terms involving the remainders of formulas
(16) or (17) are convergent for A and N large enough,
therefore the singularities in (18) are the only ones
due to the divergence of the simple integral in (4).
Of course there is also the branch point for £k = 0
due to the nonanalyticity of the integrand at that
point. The double integral is evaluated along the
same lines, dividing it into three parts, according
to whether » and " are € 1. The separation (16)
and/or (17) introduces explicitly the following types
of diverging integrals:

(l) ff r2n+)\+1/2r’2n'¢)‘+1/2 V(T’) V(T’)I(T‘, r,) d?' dr,
0<r<r’<1

_1 +1co
_ Z?ff_.-m A@n + X+ 3/2 — o, 20/

+ A 4+ 3/2 — Nulo)u(e’) do do’.

This integral may be analytically continued as long
as [Eq. (12)]:

M +N+3/2—8#= EX—1/2-2n4+ m(§ — 2)
and:
2n + A+ 3/2—8+2n 1+ 3/2 -8

# —1 — 2n + m(8 — 2).
It therefore has singularities at

A= —n+im+ 1D -2

(if) f f PN Ve I, 1) dr dr
0<r<l<r’ <o

m,n=0,1,2---

___1 +ic0
= f | Ben 4 +3/2

— 0,0’ — Qu(9)ilg) do dy.
The singularities of this integral are given by:
Mm+A+3/2—8=A—1/2—-2n4+ m(8s —2)
p — @ = £k + me,

p’ describes a path going from A to —dk. Therefore
this integral has the singularities:

A= —nF+im+ DS —2); 2k=—(m+ e

(i) f f VO V), 1) dr dr
1<r<r’ <®
1 +i N . , ,
=~ [[ o= 00 - uaae) dgdg
which has singularities at:

p — ® =Ltk 4+ m® and p’' 4+ p — 20 = m@
2k = —(m + 1)@.
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It is easy to see that, by taking N and A large
enough, the remainders of formulas (16) and (17)
do not contribute more singularities. The singu-
larities of W, are obtained from those of W, by
compiex conjugation. The preceding reasoning also
allows us to keep track of the nature of the singu-
larity around & = 0 by writing down at each step
the circuit relations around ¥ = 0. It is easily seen
that these circuit relations are exactly those of the
formal series (4) and therefore, the formula obtained
by Bottino, Longoni, and Regge' is proved by this
method:

—2i7A
€

SO\ B — 2 cosmae' ™

S\ ke'™) = (19)

CONCLUSION

We have reached the conclusion that, subjeet to
the conditions r*7%¢*"V(r) bounded from zero to
infinity, 1 and u arbitrary, positive, defining u(s) =
[t r"*V(r) dr and (g) = [5 e “V(r) dr then,
the S-matrix element is meromorphic in the (A, k)
plane except for the following points:

AN=~—n+im(s -2 +3E~2
k= %[(m + 1)/21]®
k= 0. [SeeEq.(19)]

where § is the set of singularities of u(s), &, the set
of essential singularities of u(s) [see before Eq. (12)
for the pathological case of singularities at =] and
@ is the set of singularities of #(g).

Of course this is independent of the reality of the
potential V(r), except for the symmetry of the
domain. Furthermore, it shows clearly that, as long
as the potential stays bounded, it has no need to be
analytic except near zero and infinity. This of course
will correspond to essential singularities at infinity
in the (A, k) space, but our reasoning applies as well
to the square-well potential, for example, for which

(20)
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the S-matrix element is meromorphic throughout
the (A, k) space, according to formula (20).

As a last remark it should be noted that the
domain defined by (20) has not been shown to be
the largest possible, and in particular it may happen
that some of the singularities of (20) disappear, by
some peculiar cancellation.

APPENDIX

The upper bound upon the derivative of the free
Green's function [ef. Eq. (7)] may be obtained very
easily by the following identities:

ni(ks)ja(kr) — j(ks)na(kr)
= (—1/sin e\ [jLa(ks)ja(kr) — F(k)j-akr)]
= (1/20[" (k)hZ (kr) — B2 (k)R (k)]
Let A be noninteger and k nonzero. Then

Ik | < Cyr™ ™2 |3 (k)| < CgrRer 2 r< 1.

This immediately justifies the upper bound (7) for
r < ¢ < 1, and the form (7a) of F. It is possible to
use {7a) for {Re A| < %, but then F is no longer
monotonic, a property which was used later. Hence
the introduction of (7b). Also

lhil)(kf)l < Caewl‘mkr !h)(\l),(kr)l < C4e—rmkr

This justifies (7) with the definition (7¢), for 1 <
r < 8. Then for r < 1 < ¢, (7) is trivial whatever
representation of the Green’s function one chooses.
The case X integer or k zero does not satisfy (7)
rigorously, but may be treated by using the theorem
on the maximum of an analytic function, as the
Green's function involved in (7) is analytic in &
and A. In fact, it is enough to study the questions
of convergence on the boundary of a domain to
know the result inside the domain, as we only study
absolute convergence, and it is always possible to
keep this boundary off the points X integer, & = 0.

r> 1.
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Exact Eigenfunctions of Angular Momentum by Rotational Projection®

J. K. PErcus AND A. ROTENBERG

Courant Institute of Mathemalical Sciences, New York University, New York, New York
(Received April 2, 1962)

By an appropriate rotational procedure, a projection operator can be constructed to give exact
eigenfunctions of angular momentum. Applications to cases involving spin and orbital angular
momentum are given and, in particular, all spin multiplets of the alternant molecular structure
are obtained. The connection with the group theoretical approach is discussed.

1. INTRODUCTION

HERE are at least two commonly used tech-

niques for extracting exact eigenfunctions of
spin and orbital angular momentum, and their
z components, from an arbitrary coupling of n
particles in a quantum mechanical system. The
first method is described in essence in Condon and
Shortley’ and involves the repeated use of the
vector coupling (Clebsch-Gordan) coefficients. The
second method uses a projection operator® to obtain
a pure state function by projecting out all unwanted
components from a mixed or impure wavefunction.
In this paper a third approach is deseribed. It is
also a projection method but the projection is
accomplished indirectly rather than directly. By
averaging the rotations of an impure state, with a
suitable weight factor, in the space of rotations, the
unwanted components are reduced to zero, leaving
the desired exact eigenfunction. A similar procedure
has been used in recent years in nuclear physics®
where the impure state corresponds to an intrinsic
state of the nucleus and its components are the
eigenfunctions associated with collective excitations
of the nucleons.

The derivation of the basic formula is presented
in the next section in a straightforward way, without
explicit use of group representation theory. In Sec. 3,
it will be used to solve, almost trivially, two spin
projection problems which have heretofore required
quite extended and cumbersome procedures. Finally,
in Sec. 4, interpretation will be made from the
viewpoint of group theory and the unification thus
achieved will permit the description of a simple
algorithm for the general angular momentum
projection.

2. PROJECTION BY ROTATION

Let us, in full generality, include both space and
spin coordinates and denote them by x; and u,,
respectively. Then if R,,, denotes a space rotation
with Euler angles ¢, 6, x, and S, the corresponding
spin rotation, we define

xX; = Ry X (1)

ul = S,,u,,

where

cos ¢ cos 0 cos x — sin ¢ sin y sin¢ cos # cosx + cos¢psiny —sin 6 cosx
Ry, = |—cos¢ cos fsinx — sin¢ cosx —sin ¢ cos sin x + cos ¢ cos x sin @ sin x (2)
cos ¢ sin 6 sin ¢ sin 6 cos 6
and We must determine a weight function F(g, 6, x)

o~ (/1 (B4 x) coSs (0/2)

e(v‘/Z)(¢—x) sin (0/2)

_e—-(i/2) (¢=x) sin (0/2)

e(i/z) fp+x) cos (0/2)

3)

S¢9x =

* Work performed at the AEC Computing and Applied
Mathematics Center under auspices of the U. S. Atomic
Energy Commission.

1 k. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra, (Cambridge University Press, New York, 1959).

2 P, 0. Léwdin, Phys Rev. 97, 1507 (1955).
3 D. L Hill and J. A . Wheeler, Phys Rev. 89, 1102 (1953).

which, on averaging over both space and spin
rotation, will project the impure state function
v = (- %, u; ---) onto a wavefunction

Youl(- o+ X, u; ---) of definite angular momentum
J and its z component M. That is, we require
\bJM(' S Xy, Uy e )
=ff F(¢; 0}X)¢’("'xi)ui"')
X sin 6 d6 d¢ dx, 4
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where

‘b, = R¢0xS¢0x‘p(' te
It is readily verified that

) =

X,—,u; A

xi,ul ).

J, = —1 Z [CIZ,- 8/8?/: - Y 6/6.’1}, + iazi/2]’
operating on y¥(-- - x/, u/ - - ), is identical with
J. =13/3¢, (5)

where the ¢’s are the usual Pauli spin matrices and
units have been chosen so that A = 1. Corre-
spondingly, we have

J. = —i[—(cos ¢/sin 6) cos 6 9/9¢

— sin ¢ 9/96 -+ (cos ¢/sin 6) 3/dx] (6)
J, = —i[(sin ¢/sin 6) cos 6 9/9¢

— cos ¢ 8/96 — (sin ¢/sin ) 9/0x] (7
and
J? = (—1/sin’ 6)[9°/9¢°

+ sin 0 (9/96) sin 6 3/30 + 9°/9x°

— 2 cos 9 (3/9¢) 8/ax]- (8

Hence, in order that J.¢,» = My, we need,
from Eq. (4),

JAsuw = ff Fo, 0,)T.9'(- x4, - -)

X sin 0 d d¢ dx. (9)

Inserting the expression (5) for J, in Eq. (9) and
performing a partial integration with respect to ¢,
we find

T = i [[[ @/29) o, 6,

X (- X;,u; -+ ) sin 0 d0 de dx. (10)
But this must coincide with My, and thus,
J.F(g, 0,%) = i(3/3¢) F(¢, 6, %)
= —MF($, 0, %). (11)

In a similar way we determine the condition on F
that ¥, be an eigenfunction of J? with eigenvalue
J(J + 1). The calculation is the same as the one
just given except, of course, that the partial inte-
grations are performed over all the Euler angles
and we use the property that J* is self-adjoint with
respect to the volume element in rotational space.
The result is

JF(, 6,%) = J(J + DF(@, 6,%). (12
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Since Eqgs. (11) and (12) are precisely the equa-
tions for & rigor rotator, we can write down the
solution® immediately,

FJM(¢)) 8, X) = ; aJMKFJMK(¢; 8, X); (13)

where the a; % are arbitrary and

FJMK(d’; g, X)

iMé iKx

= "M% "% cos'*M! (9/2) sin'*M! (6/2)
X FG—J,1+ G+ J;
X 1+ |K — M|;sin® (9/2)) (14)

where @ = } |K+M| + 3 |K — M| and F(a, b; c; 2)
is the hypergeometric function.

The expressions (4) and (13) constitute a gener-
ating function: given a state ¥, a sequence ¥, of
eigenstates of J* and J, may be constructed. The
construction consists literally of a z-axis rotation to
extract an internal J, of value K, an z-axis rotation
to obtain a J* of J(J + 1) and a final z-axis rotation
to produce an external J, of M. If we demand in
addition a real decomposition of ¢, a state originally
diagonal in J, can give rise only to states of the
same J,. This requires K = M and, of course,
appropriate normalization of the a,, . We write

Yo = Osarp(-- - x4, -- 1)
= Orum ff FJMM(d); 0, X)ll/’( S XU e )

X sin 6 d6 d¢ dx (15)

as the defining equation for the projection 0,,, and
by direct caleculation

Aruy = (<FJMM I F'JMM»—I = (2J + 1)/8”'2- (16)

Let us verify that the y;, constitute a complete
decomposition of the mixed state ¢. Since the F ;g
are a complete set of symmetric top eigenfunctions,
then

Z aJMKFJAIK(¢} 8, X)FjMK(qS,: e, x")

=0 —9¢,0—0,x—x)
where the & function is defined with respect to the
volume element sind d# d¢ dx. Choosing ¢’ = ¢ =
x" = 0, then since F;yx(0, 0, 0) = 68yx, we have
Z aJMMFJMM(d): 07 X) = 8(¢7 0; X); prOduCing no
rotation in (15), and hence Y 0,, = 1 as desired.

Further, with K = M, the reciprocal rotation
(~x, —0, —¢) is seen to convert Fyuy t0 %y
¢+ L. Pauling and E. B. Wilson, Quantum Mechanics,

(McGraw-Hill Book Company, Inc.,, New York, 1935),
p. 278.
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and it readily follows that O,, is Hermitian.
Finally since J.0;4 = Oy, = MO, and
J2®JM = OJMJZ = J(J + I)GJM, the Oy are
obviously orthogonal, e.g.,

M,OJ'M’OJM = OJ’M’JzoJM = 0, 2052 M

80 Oy 20 0sa = O unless M = M'.
We conclude that

2J + 1 fff iM(o+x) 2M (0/2)

XFM —J, 1+ M+ J;1;sin’ (8/2)

Osuy¥ =

X R¢gxs¢gxl‘b sin 6 d@ d¢ dx. (17)

3. SPIN PROJECTION OPERATOR

Consider the problem of obtaining an eigen-
function of total spin S with eigenvalue S* equal to
S(8 + 1) and of 8, equal to M, in the case of n
spin 1/2 particles. Let u be the number of particles
with spin z component up and » = n — p the number
with spin z component down. Then we denote the
mixed state by

Y = [a" | V7], (18)
as an abbreviation for a Slater determinant built up
from the u orbitals @, a;, <+ , a, in order and
the » orbitals b, b, -+ , b, in order. The spin part
of each term in the determinant is the product
II:: () II:-. »(). Operating with the spin
rotation operator given in Eq. (3), we have

Seox H u(j) H () = H {S1u(g) + Sav()}

X II} {Smu(l) + S221)(l)},

where 8;; is the ¢jth element of the spin rotation
operator. After carrying out the indicated multi-
plications we obtain

S fa* | b = ZS TiSh[e* T | a']

X 2o SuSu' | 0] (19)
where now the notation [|] includes the sum of
all possible permutations of the individual orbitals
between spin types but maintaining the order
within each type.

From an examination of Eqgs. (3) and (14), it is
seen that the ¢ and x integrations in Eq. (17) are
trivial. The x integration gives

K. PERCUS AND A. ROTENBERG

+ +

= 2r 6(M

where & denotes the Kronecker & function. But
= (1/2)(u — ») so the integral is 2=. For ¢, we
have

+

)

Koy Y
_2+2) @0

2 6<M —

R
O I~s-
b I~
O | o~
IR
PO e

= 27 8(1 — 7) 2n

and a nonzero contribution is obtained only for
I = j. Thus Eq. (19) yields

Ssox¥ = Z( 1) 8177858185
[au—:‘bi |a:‘bv—i]’

where [a*~b" | @'’ "] is the sum of (¥) X (}) deter-
minants obtained from [¢* | b’] by interchanging j
orbitals from the a group, in order, in all possible
ways with j orbitals of the b group, in order. The
factor (—1) arises because, in each determinant,
j columns of a orbitals are interchanged with j
columns of b orbitals in writing Eq. (19) in the
above form

Next we substitute Eq. (22) with the values of
the spin matrix elements inserted into the expression
for the projection, Eq. (17), obtaining

(22)

(5~

, 2 1
GSM[a"[b]= S;_

2
X F(M — 8,1+ M + 8;1;sin’ §/2).

X ;} (—l)i(—l)i(COS 0/2)n—i+v—i

X (sin 6/2)*[a*"'b’ | a’b"™"] sin 6 d6. 23

The integral is easily evaluated for two special
values of M. In the first case M = S, and then the
hypergeometric function F(0, 1428; 1;sin” 6/2) = 1.
On interchanging the summation and integration
and substituttng cos § = 2y — 1, we get

28+ 1 ¢ (M)_l weipi | ipwei
P ,Z_;, ) [a*7'b @b ). (24)

Oss[a” I b7] = i

This result has been obtained by Léwdin® by a
rather lengthy derivation.

The second case is M = 0 and this implies u = ».

5 R. Pauncz (private communication).
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Then the hypergeometric function reduces to a
Legendre function,®

F(—8, 8 + 1;1;sin® /2) = Ps(cos 6) (25)

and the Legendre function can be expanded® to
give (on setting cos 8 = z),

Ps(x)
_ (=D
=00 (E) 10 - a0 + 2
_ (=D ST+ /(1 = 2%
o o0 T @

The second part of Eq. (26) is obtained by carrying
out the differentiation explicitly. We set this
expression into Eq. (23) and substitute the values
of elements of the spin rotation matrix from Eq. (3).
Making the substitution z = 2y — 1, the integral
is readily evaluated, and after some reduction, we
find

Osile” | V] = (=1 g2 a5 |

8)2( p+ S
X (z S+ij—

This expression has application to alternant
molecular systems which possess closed shell
structure. Such systems have been studied by

Pauncz, de Heer, and Lowdin’ who obtained the
projected spin eigenfunctions for some special cases.

i Z( 1)5+l

l)_l[a“"'b" a7, (@7)

4. CONNECTION WITH GROUP
REPRESENTATION THEORY

The basic expression (17) is easily obtained by
an application of the theory of group representations.
Suppose the D'(R) = (D.,(R)) to be a complete
set of irreducible representations, of dimension n;,
of the transformation group G = {R} of order h.
From the general orthogonality theorem®

Z S)f’nn(R) :D:;:m'a%_l) = (h/nz) 5MM’ 5##’ aii’ (28)
R

and the fact that D is a unitary matrix representa-
tion, it readily follows that

<Z mm(R)R)(E Dj."m(R)R")

(h/ni) Sonm 511 Z 5D (R>R (29)

6 W. Magnus and F. Oberhettinger, Functions of Mathe-
matical Physics (Chelsea Publishing Company, New York,
1954), p. 50.

7 R. Pauncz, J. de Heer, and P. O. Léwdin, J. Chem.
Phys. 36, 2247 (1962).
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In other words, the
Oim = mh™" 20 DL(R)R (30)
R

are a set of orthogonal projections. Not only does
0;.¥ transform according to the jth representation,
but, as a consequence of

R 3 D RIR = ) Di.(R) DiL(RHR, (31
R’ u, R’

it is seen.that 0;.¥ 1s an eigenfunction of any R on

which ©' is diagonal. Finally the 0,,, are complete,

a result of the second orthogonality theorem®

El: X' (C)*x'(Co) = (h/ha) das,

where x'(R) = Tr ©'(R) and C, is any element of
the @ class; this, coupled with © .(I) = 1, shows
that > 0,,, = I.

The representations of the rotation group in
three dimensions may be generated by choosing the
complete set {V,,} of eigenfunctions of L* and L,
as a basis (including integer and half-integer [):

RY,, = > 9LRY,,.

(32)

(33)

The representations generated this way are, in the
notation of (13) and (14), given explicitly by

D@, 6, %)
= ¢ ™% cog!™**! (0/2) sin'™*' 9/2
XFlg—1,14g—1;14 [m—pul;sin®6/2) (34)

withg = % |m — u| + % |m + u|, where R is specified
by its Euler angles. Since the dimension of ®' is
2] 4+ 1 and the volume in the space of rotations is
87°, Eq. (30) indeed reproduces Eq. (17).

Let us, as an example, consider the case of three
electrons coupled to give a resultant orbital angular
momentum L with z component M. In the usual
way the wave funections will be taken as products of
single-particle wave functions and for the mixed
state we write

V(mymams) = @1,m,(D®1,0,(2)B1,.(3). (35)

It is assumed that the angular part of the single-
particle function is Y',,, so that the effect of operating
with the space rotation operator is given by (33).
Since the rotation operator operates on all coordi-
nates we get a product of three such terms. The
rotation matrices can be combined using the
Clebsch-Gordan® series, namely,

8 V. Heine, Group Theory in Quantum Mechanics (Perga-
mon Press, New York, 1960), Sec. 14.

* M. E. Rose, Elementary Theory of Angular Momentum
(John Wiley & Sons, Inc., New York, 1957), Chap. IV.
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$1ln11ﬁ41 Srlr»:m = Z C(ll; l2: ]1 ml: mZ)
i

X C(llr l2) ]; Hi, /‘2) ﬁ)fnxﬂnz.uﬁun; (36)

where the coefficients are the Clebsch-Gordan
coefficients and the limits on j are [I; — I,| and
(I, + L). Using Eq. (36) again, D;’,, can be com-
bined with D), ... ..+, t0o give a sum of terms
involving ©I,, where m = m, + m, + ms, p =
w1+ ue + us, and j' is the new summation index.
From the orthogonality of the rotation matrices we
find that 7/ = Land m = p = M. Thus two of the
summations are eliminated and we have

@LM‘//(mly My, My) = Z E Z C(lly ls, 7; m, My)

B Ha

X Cl, Ly J5 1, o)

X Clly, j, L; M — my — my, my + my)

X Csy g, Ly M — gy — pas pa + poo)

X s pay M — 0 — o). (37)

Wigner'® has written the formula in the case of
two particles. The extension of Eq. (37) to more
particles simply involves repeated use of Eqs. (33)
and (36), there being a u and j summation added
for each extra particle. If two or more particles are
in the same shell, there are further limitations on
the u summation arising from the Pauli principle, but
these need not be introduced explicitly as the
superfluous terms are eliminated upon antisym-

1 E, P. Wigner, Group Theory (Academic Press Inc.,
New York, 1959), p. 192.

J. K. PERCUS AND A. ROTENBERG

metrization. By using Eq. (37) to construct eigen-
functions of L and M the concept of fractional
parentage is by-passed; this is a feature of projection
operator techniques'' in general. Other methods of
constructing eigenfunctions usually solve for the
principal case (M = L) and find the eigenfunctions
for other values of M by repeated use of the step-
down operation. Equation (37) gives the functions
for all values of M directly.

Since the rotation matrices for half-integral order
obey all the relations given here, with Eq. (33)
generalized to the form

RMXSMX(PJM = Z ZD;U@S) 07 X)QJIU (33I)
&

the result given in Eq. (37) is valid, with appro-

priate changes in notation, for j-f coupling.

We have added this discussion of orbital angular
momentum because there are advantages of using
projection operators in the form given here that
are not as widely recognized as they might be.
Equation (37) is probably the simplest way to
compute the eigenfunctions and is certainly the
easiest method for doing hand calculations, as-
suming, of course, the availability of a table of
Clebsch-Gordan coefficients. More important is the
fact that for many problems it is not necessary to
carry out all the summations indicated in Eq. (37);
indeed the very form of this equation makes the
application of selection rules very easy.

11 J.I. Calais, Preprint No. 7, Quantum Theory Project,
1I_hllliv((lersity of Florida, Gainesville, Florida, 1960 (unpub-
ished ).
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The phase shift formulas for the wave and scattering operators in the potential scattering of a
single nonrelativistic particle are proved under weaker assumptions on the potential than the one

used previously by Green and Lanford.

ONCERNING the potential scattering of a

single nonrelativistic particle by a spherically
symmetric potential V(r), Green and Lanford,’
proved, among other things, that, if the function
V(r), 0 < r < o, satisfies

R ©
f r|V@)ldr < «» and f V() dr < o,
0 R

for 0 <R < o, (1

and either

f V(s) ds belongsto LR, =)
" @

or for some ¢ > 0,
Vi) = 0679,

then the wave and scattering operators exist and
the phase shift formulas for them hold true. The
purpose of the present paper is to supplement their
results by showing that the assumption (2) can be
made redundant. This will be done by a limiting
procedure starting from a case of the potential
vanishing outside of a certain sphere, to which the
result of I can be applied, and using a kind of
continuity theorem for wave and scattering operators
proved in a previous work of the writer.?

By the separation of the angular and radial
variables, our three-dimensional problem is essen-
tially reduced to the one-dimensional problem of
radial equations. Therefore, in order to avoid the
complication of the notations, we shall state our
result in the one-dimensional form as in the theorem
given below. Then, the proof of the three-dimen-
sional version of the theorem will be sketched in
the remark after the theorem. Hence, except in
that remark, we shall fix a partial wave space with

r—)oo,

* Work on this paper was partly supported by National
Science Foundation Grant G-19136.

1 On leave of absence from the University of Tokyo.

1T. A. Green and O. E. Lanford, III, J. Math. Phys. 1,
139 (1960). Hereafter, we shall refer to this paper as 1.

28. T. Kuroda, J. Math. Soc. Japan 12, 243 (1960),
hereafter referred to as I1.

arbitrarily specified quantum numbers [ and m, and
treat the problem in the Hilbert space X = L*(0, =)
of all radial wave functions of that partial wave
space. In X we consider the following two ordinary
differential operators as the free and total Hamil-
tonians:

H,
H=

—d*/dr* + W1 + D/r°,
—d&/dr + 10+ D/ + V),

where 0 < r < «, and ! is a non-negative integer.
The exact definition of H, and H as self-adjoint
operators in the Hilbert space X = L*(0, «) is
given in I under the assumption (1), using the
theory of eigenfunction expansion associated with
the ordinary differential operators (3). We follow
this definition and denote the generalized Fourier
transforms associated with H, and H by F, and F,
respectively.® As is well known, F, is the isometric
integral operator from X onto* X = L*(0, ) given
by the kernel

Yolr, k) = o(kr), o(r) = Tl/szn/z("), 4

where J denotes the Bessel function. The restriction
F. of F on the continuum subspace X, of H (i.e., the
subspace of X consisting of all functions orthogonal
to all the bound states of H) is the isometric integral
operator from X, on® X whose kernel y(r, k) is a
solution of the differential equation

~d’y/d" + (I + )/ + VO = kY,
satisfying the boundary and asymptotic conditions

lim ¢(r, k) = 0,
r—0 (5)
Yr, k) ~ 2/m)?sin [kr — /2 + k)], r— o,

3 The transforms F, and F are the restrictions on the
partial wave space under consideration of the transforms
Foand F givenAin 1.

¢ Although X may be regarded as identjcal with X, we make
a distinction mainly because X and X correspond to the
configuration and momentum spaces, respectively.

5 We regard the momentum spaces of the free and actual
particles as identical. This is for the convenience in handlin
the phase shift formula without introducing the canonical
mapping between two momentum spaces.

i

3
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where we assume 0 < 6(k) < 2x. By these require-
ments, ¥(r, k) and §(k) are determined uniquely.

In what follows we shall prove the following
theorem.

Theorem. Let Hy, and H be as above with V(r)
satisfying (1). Then the wave operators

Q. = strong-lim exp (itH) exp (—1tH,)
toxx

and the scaitering operator S = Q*Q. exists, and the
latter 1is unitary. Furthermore, we have the phase
shift formulas

Q.
S

F7'exp {1 8(k)}F,, (6)
F3' exp {26 6(k)}F,. @)

Remark. The similar phase shift formulas for the
three-dimensional Hamiltonian as given in I are
readily obtained from this theorem. [See (4.32) and
(4.34) of I. We note that, in I, F, and F stand for
the three-dimensional version of the generalized
Fourier transforms.] Since the three-dimensional
Hamiltonians are considered as the direct sums of
Hamiltonians in each partial wave spaces,® the
proof is readily obtained as follows:

Let a Hilbert space X be a direct sum of Hilbert
spaces Xp, bk = 1,2, -+ : X = 2.0, @D X,, and
let self-adjoint operators H, and H in X be direct
sums of self-adjoini operators H, , and H, in X,
respectively. Then, the wave operator

Q. = strong-lim exp (itH) exp (—7tH,)

tox o

exists if and only if

Q. = strong-lim exp (¢tH,) exp (—4tH, )
exists for each k. Furthermore, Q. s the direct sum
Of Qup: Qe = Dory @D Qs

Proof. Put Q@) = exp (¢tH) exp (—itH,) and
define Q,(¢) similarly with H, and H, ;. Eachu € X
is expressible asu = Y_ @ u; € X, and the following
formula holds true:

H(Q(t) - Q(t/))qu = kz; “(Qlc(t) - Qk(tl))ukH?'

The necessity of the condition follows from this at
once. For the proof of the sufficiency, take an
arbitrary e > 0. Since the series D [lul|® = [Ju|[® is
convergent, there exists N such that J_p_y ||ul]® < e
Hence, by the above formula, we have

() — )|l
< Z (208 — LEwll? + 2e.

§ See Secs. II and III of reference 1.

S. T. KURODA

By taking ¢ and ¢ sufficiently large, the first term
on the right-hand side can also be made less than .
This proves the sufficiency of the condition. The
formula Q. = D=, @ Q.., is proved in a similar
way.

Proof of the theorem. In virtue of the theory of
eigenfunction expansions, we have formally

[(Ho + 1)7V%]()
- fo " oD+ 1) d f " oUes)uls) ds.

The operator (H, 4+ 1)™'* is therefore an integral
operator with the kernel

xr,9) = [ ool + 17 a.

Rigorously speaking, these integrals may not be
convergent and appropriate definitions are required.
In particular, x(r, s) is actually defined as the trans-
form F;' of the function (kr)(k* + 1)7*/%, namely,

L

x(r,s) = strong-lim | o(kn)(K* + 1)7"*o(ks) dk. (8)
Lo 0

The verification of this fact is straightforward. Then,
Parseval’s formula for F;' applied to (8) gives, for
any fixed r,

[ e oras = [ letor 6 + 1 an

[P @+ ®

Since ¢(z) is bounded and ¢(x) ~ z'*', x — 0, by
(4), we see from (9) that there exists a positive
constant K such that

f Ix(r, s)[° ds < min (Kr, K).
0

By virtue of our assumption (1) this estimate
readily yields

fom f: V@) [xr, o[ dr ds

SKfoRr |V(r)|dr+Kf: V@) dr < . (10)

In other words, the operator |V|**(H, + 1)™*isan
integral operator of Hilbert-Schmidt type. According
to the corollary to Theorem 1 of II, this in turn

establishes the existence of Q. and the unitarity of
S. (In II, H is defined in terms of the theory of
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closed forms. However, that definition is easily
shown to be equivalent to the present one.”)

In order to prove (6) and (7) we approximate
V(r) by a sequence of functions V,(r),n = 1,2, -- -,
defined to be V,(r) = V(r), if r < n, and 0, other-
wise. Let Q” denote the wave operators corre-
sponding to the scattering potential V,.(r). Then we
have the following four statements®:

Equation (6) holds for Q¥

(with & replaced by é,); (11
strong-lim Q% = Q.; (12)
lim 6.(K) = 8(k); (13)
strong-lim F¥ ™' = F.'; (14)

n—»co

where 8,(k) and F!” are the phase shift and the
generalized Fourier transform determined by H,
with V replaced by V.. The statement (11) is due
to Green and Lanford, for V,(r) clearly satisfies
the condition (2).

The formula (12) is a consequence of Theorem 2
of II, for it follows from (10) that

limf f V) — V.0 |x(r, $)I” drds = 0.
n—o ¢ 0 0
The proof of (13) and (14) will be sketched later.
By (13), the sequence of the multiplicative
operators given by exp {26,(k)} converges strongly
to the one given by exp {¢6(k)}. Therefore, starting
from the formula (6) for @ and taking limit as
n — o with the aid of (12), (13), and (14), we
finally obtain the formula (6) for Q.. The formula (7)
follows immediately from (6).
Sketch of the proof of (13) and (14). Let us consider

7 Incidentally, we remark that, in II, Q. is dencted by

w...

8 Although (12) is established here only for the one-
dimensional case, the same argument as in the above remark
shows that (12) holds also for three-dimensional wave op-
erators.
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the two solutions ¥,(r, k) and ¢.(r, k) of the dif-
ferential equation

—d*y/dr* + {ll+ D/ + V.0Oly = Ky,
where ¥,(r, k) satisfies the requirement (5) with
8(k) replaced by 8,(k), and ¥,(r, k) = ¢(r, k), if

0 <r <mnSinceV,(r) =Vrif0o<r<mn, we
readily obtain

Jn(r) k) = cn.k‘)[/n(r! k)y (15)
B — O, ) = —k™ f sin k(r — o)
X (V, — V)(s)y(s, k) ds, r>n, (16)

where ¢, , is a constant. Since ¢(s, k) is known to

be bounded in {(s, k) | 0 < s < o, 7 <k < =}

for each 9 > 0, it follows from (16) that
lim (. — Yk, ) =0,

n—®

(17)

uniformly for all » and k¥ &€ (0, «).° Hence, by
virtue of the asymptotic forms of ¢, and ¢, and the
periodic property of the sine function, we get
lim {sin (kr — &(k)) — ¢, sin (kr — 8,(k))} = 0,
uniformly for all » and k¥ & (0, «). This readily
implies
lim §,(k) = o&(k),

n—rw

lim Cok = 1,

n—©

(18)

both uniformly for & & (0, «). To prove (14), we
note that (15), (17), and (18) give that

lim ¢,(r, k) = ¢(@, k)
uniformly for all » and k¥ & (0, «). From this we
get (14) by a standard argument, using the fact
that ¢, and ¢ are kernels of the isometric integral
operators F{™~! and F;', respectively.

9 “Uniformly for k& €(0, )’ means that the convergence
isf lléniform with respect to % in any closed interval of (0, =)
o
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Generalized “pinch” techniques are developed for analyzing singularity configurations of any
Feynman integral in the product space of the loop momenta. The Landau equations follow immedi-
ately, and the dual diagrams arise naturally as geometric singularity criteria. Cutkosky’s formula far
the discontinuity is derived by an elementary method, and its structure is clearly exhibited by this
approach. The basic differences between Landau and non-Landau singularities for single loop diagrams
are discussed, and it is shown why the presence of non-Landau singularities, in contrast to those in the
Landau scheme, depends on the dimensionality of space.

1. INTRODUCTION

HE aim of this paper is to establish a new

approach to the study of singularities in per-
turbation theory, based on direct examination of
the mass shell singularities in %k space, the product
space of the loop momenta. Previous work in per-
turbation theory has been based on a study of
singularity configurations either after effecting a
transformation to invariants formed from the loop
momenta or by introducing Feynman parameters
and eliminating the loop momenta by symmetric
integration.'*

The present method has not been used before
because it seems at first more difficult conceptually,
and singularity criteria are more subtle than those
derived previously. These difficulties are in fact
only initial, and the method turns out to be no
harder than alternative techniques, and for some
problems it is more helpful towards a deeper under-
standing of the structure of Feynman integrals.

In Sec. 2 a simple generalization of the pinch
criteria for singularities is derived,’ and it is shown
that this is equivalent to the Landau conditions.
The dual diagrams appear as an integral part of
the geometric structure, and the method gives a
vivid picture of why the Landau conditions are
equivalent to mechanical tautening in the dual
diagram. In Sec. 3, a new but fairly simple tech-
nique is introduced by which the cuts beginning
at singular points can be examined. This is applied

! The possibility of deriving the dual diagrams by k-space

methods is suggested by the work of J. C. Taylor, Phys. Rev.
117, 261 (1960).

z A list of references to most recent work in perturbation
theory is given by R. J. Eden, Maryland lecture notes, (1961),
(unpublished). R. J. Eden and J. C. Polkinghorne, Brandeis
University, Summer School of Theoretical Physics, 1961 (W.
A. Benjamin Publishing Company, New York, 1962).

3 This generalization has been derived independently by
P. V. Landshoff and J. C. Polkinghorne (unpublished). See J.
«C. Polkinghorne, Nuovo cimento 23, 360 (1962).

to give an elementary derivation of Cutkosky's
formula for the discontinuity. In Sec. 4 the non-
Landau singularities*'® for single loop graphs are
discussed. The structural connection between Cut-
kosky's formula and the general pinch criterion is
exhibited and used to define an equivalence relation-
ship among the sets of singularities. Under this
relationship the non-Landau singularities form a
group on their own, and this explaing their di-
mensional dependence.

It appears that k-space techniques provide a
powerful tool for examining the structure of per-
turbation theory. They are being used at the
moment in an investigation of ‘‘mixed” singularities,’
and it is hoped that they may be useful in solving
other outstanding problems in perturbation theory,
such as the appearance of isolated real points on
Landau curves.®”

2. DERIVATION OF THE LANDAU EQUATIONS

2.1. Notation

Spin and isotopic spin are consistently ignored.
The standard notation for Feynman diagrams is
adopted, p denoting external, ¢ internal, and %
loop momenta with masses m. The Feynman integral
has the form

IT d'k.
/ T —m

4+ R. E. Cutkosky, J. Math. Phys. 1, 429 (1960).

5 D. B. Fairlie, P. V. Landshoff, J. Nuttall, and J. C.
Polkinghorne, J. Math. Phys. 3, 594 (1962). In this paper
non-Landau singularities are referred to as “second type.”

¢ R. J. Eden, P. V. Landshoff, J. C. Polkinghorne, and J. C.
Taylor, J. Math. Phys. 2, 656 (1961).

7 8. Mandelstam, Phys. Rev. 112, 1344 (1958); 115, 1741,
1752 (1959).
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MOMENTUM SPACE INTEGRATION

where 7 goes over the loop momenta, j over all
internal lines.

2.2, Generalized Pinch Criteria

The singularity criteria used by previous authors®
are valid only when there is one surface of singularity.
They correspond essentially to this surface having
a locally conelike degeneracy. An example of more
general pinch conditions arises in considering the
Feynman integral for the self-energy part with two-
dimensional momenta.

f dk, dk, .
(kx + &5 — m; — i9[(k, — p)* + k; — mz — ]

In the real (k,, k.) plane there are two circles of
pole with attached complex singular surfaces.

A vplane contour is trapped at a point if, and
only if, every line lying in the plane and passing
through the point is pinched at the point. For if
one is not, by continuity lines through the point
lying in some segment including this line are not
pinched, so the plane can be distorted away from
the singularity, into the four-dimensional space. It
follows from this that a single circle of finite radius
does not cause singular behavior although all lines
tangential to it are pinched (see Fig. 1). ‘‘Line”
is used sometimes to mean the real line and some-
times to include the complex surface attached to
the real line. A line is pinched if the complex points
where it meets singular surfaces pinch the real
subsection. If a contour has to be distorted away
from the real subsection to avoid oncoming singu-
larities, a pinch can occur by singularities coming
together at a complex point.

If the radius of a circle shrinks to zero, a pinch
develops on every line through the center, som, = 0
gives rise to a singularity (Fig. 2). Note that the
attached surface is conelike. To derive conditions
for the two circles acting together to produce a
pinch, we examine lines through the common point.
It is clear that if both circles have the same sign
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Fia. 1. Intersec-
tions Of k12 + k22 =
m? -+ 1e with lines.

for 7¢, a is pinched and b is not pinched at X (see
Fig. 3). Generally, any line through X in the sector p
between the tangents to the circles is pinched.

To identify the sectors p, n we attach a direction
to every line through X, then denote p by (0, )
meaning that at X every [ in p is going, e.g., out of
C, and into C,. The condition for a singularity is
that every line through X is pinched, so that the
region 7, or (¢, ¢) goes to zero. This means that the
two circles touch externally. Touching occurs also
if (0, 7) shrinks to zero, but in this case one circle
lies inside the other and no line except the common
tangent is pinched. However, if the ¢¢ on one of the
circles is reversed (0, ) going to zero gives a singular
situation, so it corresponds essentially to a singu-
larity on another sheet. (The i¢'s having the same
sign corresponds to the physical sheet.)

£
_/

Hence for two circles in a plane, singularities
arise when (i) the radius of either circle goes to
zero or (ii) the circles touch exiernally. This last
condition is of course analogous to the eriterion
that both Feynman parameters be positive for the
physical sheet singularity.

F1e. 2. Pinch aris-
ing as m — 0.

X
—x

2.3. Three- and Four-Dimensional Analogs

For the vertex part in three dimensions (Fig. 4),
the Feynman integral is

a’k

f (k" — m; — ig[(k + p')*

The denominator corresponds to three spheres of
pole in k space. We consider the analytic behavior
near a point X where the three spheres intersect.
The solid angle about X can be divided into sets
(4, 1, %), (4, 2, 0), (4,0, %), (0, ¢, ©) for the two circles,
making the obvious generalization. A pinch occurs
at X if (4, ¢, ¢) goes to zero. The condition for this
is that the three tangent planes at 0 to the sphere

N

— m; — i[(k — p)* — ms — e

% x
b % — *

b

XX
X a
>34
n
\) P
Ca
F1a. 3. The self-energy part in two dimensions. Singularity
configurations on lines through X,

G
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Fi6. 4. The vertex
part.

have a common line, that is the two points X, X’
of intersection of the spheres coincide. This means
that X lies in the plane of centers, immediately giving
the well-known dual diagram condition for singu-
larity (Fig. 5).

F1a. 5. Dual diagram for the
vertex part.

If X lies in the plane of centers, but outside the
triangle of centers, one of the regions (7, £, 0), ete.,
has gone to zero (7, ¢, %) still being nonzero, so there
is no singularity. This is because our criterion con-
veniently includes the implicit condition that the
singularity be on the physical sheet. As before,

F1a. 6. The wigwam diagram.

MICHAEL FOWLER

changing one ¢¢ would swap the corresponding ¢, 0
and hence change sheet.

If the points of intersection of the spheres move
off to « (as the centers become collinear) the tangent
planes become parallel, and all the regions except
(¢, 1, 7) collapse. This is best seen in the (Re k,
Re k,, Im k) section, where the ‘‘spheres” are
hyperboloids. These non-Landau configurations will
be discussed in detail in Sec. 4.°

It is clear that another possible singularity in the
three-dimensional case is given by two spheres
touching. The third sphere is of course irrelevant for
this singularity. Taking coordinates in a plane
through the line of centers of S,, S; with an angle
variable ¢ to position the plane, the (¢, 7) region in
the plane is zero, and independent of ¢, so the solid
(%, %) region must also be zero.

By the same argument, three spheres in four
dimensions have the same singularity configurations
as three spheres in three dimensions because co-
ordinates can be taken in a solid through the plane
of centers, with a ¢ variable to position the solid,
and the configurations are independent of ¢.

2.4. N-Space Criteria and the Landau Conditions

The above conditions for singularity can be ex-
pressed more succinetly as follows: There exists a
point X in the space such that m of the surfaces
of singularity pass through X and the m tangent
primes to these surfaces form a linearly dependent
set. The arguments used above are not really
dimensionality dependent, and the generalization
to this criterion is fairly trivial. It is given in
Appendix 1.

We now give a proof that the above condition is
equivalent to the Landau equations for a singularity.
This is done most easily by taking a specific example,
for instance the wigwam diagram in Fig. 6 for which
the Feynman integral is

d'k d'r’

f & — m)[(k + p)* — m3)(k"”* — m3)[(@’

TasLe I. Direction ratios of normals to singularity surfaces
for wigwam diagram.

Ek 4
1 k 0
2 k+p 0
3 0 4
4 0 =k
5 kK4+p+k k'+p+k’

— Y — mlk +p+ B — mi]

The direction ratios for the normals at points
on a surface have eight components (working in
k, k' space). The components are listed for the
five surfaces of singularity in the integrand. The
important point is that the normal to 5 does not
lie in one of the subspaces, as the surface is sym-
metric in k, &’.

8In (5) it is shown that non-Landau singularities are
associated with infinite internal momenta.
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It is clear from Table I that when the normals
are linearly dependent at some common point of
the five surfaces we have the complete set of Landau
equations, the o’s being just the coefficients in the
dependency equation. Any other diagram has the
same formal solution.

For the single loops, the dual diagrams appear
immediately as part of the structure. For higher
diagrams, the situation is a little more subtle. The
dual diagrams do not appear complete because for
the n-loop case the piece of diagram corresponding
to each loop appears in a four-dimensional subspace
of the 4n-dimensional space. However, the full
diagram can be constructed in a single four-space
from these bits without difficulty, because where
the same line occurs in two or more subspaces, it
occurs in “parallel” sets (see Table I above). Of
course, it may be impossible to put the bits together
to form a dual diagram. This corresponds to the
‘“improper”® case and for this the best that can
be done is to duplicate lines (bearing in mind that
such lines must be parallel).

2.5, Tautening

As the procedure for constructing dual diagrams
outlined above defines directions as well as lengths,
the tautening conditions are automatically satisfied
(as indeed they must be since the procedure is
equivalent to the Landau equations). A more vivid
way of seeing how the tautening conditions arise
is given by the following example.

For the wigwam diagram in three dimensions,
the five surfaces of singularity meet in a one-
dimensional curve, corresponding to the one degree
of freedom in the dual diagram. If the external
variables are such that the dual diagram is nearly
in a plane, the curve approximates to an ellipse
in the (h, h') variables (see Fig. 7) with only second-
order variations in the other four variables [the
six-dimensional space is the (k, k') space]. As the
ellipse shrinks to a point, all five surfaces of sin-
gularity have the (h, ') plane as a common tangent
plane, so that their five tangent primes at the point
are linearly dependent (they always have a line in
common). Also, when the ellipse shrinks to a point
there is of course no freedom of movement left in
the dual diagram, that is, it is mechanically taut.
This perhaps illuminates the close connection be-
tween tautening and effective pinches in n di-
mensions.

A less trivial tautening condition, that for the
Mercedes diagram, (Fig. &) is given by exactly the

9 P. V. Landshoff, Nuclear Phys. 20, 129 (1960).
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Fia. 7. Dual of wigwam
diagram.

w"
h X

same argument. Six surfaces in 9-space meet in a
3-curve, and at the point of tautening this lies in
a 4-plane tangential to all six surfaces.

3. DERIVATION OF CUTKOSKY'S FORMULA
3.1. Preliminaries

Cutskosky* has shown that the discontinuity of
the Feynman integral across a branch cut starting
from a singularity defined by Landau’s conditions
for which ¢ = m’fori < mis

rd'k [ (5 — md)
(2n0)" f

I1 (¢} — m)
The method of proof is to transform to the ¢%'s
with extra angle variables and use a pinch analysis

AN

F1a, 8. The Mercedes diagram.

on the ¢ contours. The formula is derived below
by k-space methods. All the essential features are
exhibited in the following example.

3.2, Self-Energy Part in Two Dimensions
The normal threshold singularity is given by

h
¥

o

REnY
NP

Fie. 9. The self-energy part in two dimensions.
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F1c. 10. Movement of singularities in the complex planes

a and b (see Fig. 9) on moving around the normal threshold
in the complex p-plane.

&

%
b
x Cz
Cy

p = m; + m, (see Fig. 12). Keeping m,, m, fixed,
the center 0, of C, is moved in the complex plane
ks = 0 in a path such that p goes around m, + m,
and returns to its original position.

To see what is happening in %k space, we take
various sections k, = const. In the section &k, = 0
there are four poles as shown in Fig. 10. If the
contour is distorted upwards, leaving a bubble
contour about C,, (Fig. 10), it is easy to see that
moving 0, in a circle about the point m, + m,
gives no change in the integral over k, for this k..
Similarly for the section b (Figs. 9, 10) there is no
change in the integral over k, on varying 0,.

GO

% X

E @ b

(& —
E

There is, however, an important difference. For
a, C, describes a path about C,,, but for b, Cy,
lies outside the path of C,,. This means, by con-
tinuity, that at some intermediate stage C.;, C
actually collide, and as C,; will be surrounded by
a contour this gives rise to a singular situation.
[The bubble about C in 7 (which could equally
well have been put about C,,) is necessary simply
because C,; goes around C,,.] Distorting the path
traced by C,, merely changes the point at which
the collision occurs. So does distorting the [ dk,

Fia. 11. The essential difference
between a and b.

Fic. 12. The k; integration is
equivalent to allowing the pole
to trace out a cut.

Fig. 13. Limiting procedure for
defining & functions.

MICHAEL FOWLER

contour away from the real axis. This collision,
unlike the normal pinch situation, cannot be avoided
by making suitable changes in parameters. This is
essentially because performing the circuit about the
singular point m, + m,, at some stage the cut from
this singularity must be encountered, and the
equivalent of this in the above picture is the pole
collision situation, as is shown in the next section.

3.3. Equivalence of “Colliding Poles” and a Cut

Performing the integral over k, is equivalent to
summing over a continuous series of situations be-
tween @ and b and so on to « (see Fig. 11). The
position is not altered if the path P is fixed and the
integral represented by allowing the other pole to
trace out a cut, the discontinuity or strength cor-
responding essentially to the relative velocities of
the two poles k, is increased.

It now becomes apparent why the collision cannot
be avoided—P is a path about an end point E of
an infinite cut. (It is clear that the “line of pole”
must be a cut, because moving the k, integration
contour moves it about, giving an analytic continua-
tion which would not apply if, for instance, the
line of pole corresponded to a series of cuts having
different end points along its length.) Hence the
discontinuity in the original integral, measured by
the small contour round P, is equal to the product
of the discontinuity across the cut and the strength
of P (TFig. 12).

It is easy to see that if the k, contour is un-
distorted, for the two circles the collision ocecurs
at the point of intersection X (Fig. 9) and the
discontinuity will be greater if the circles cut at a
smaller angle, depending on the “relative velocity”
of the two poles, as k, is increased at a uniform rate.
A more detailed discussion of this point of view
is given in Appendix 2.

3.4, Integrating Over § Functions

Perhaps the easiest method at this stage is to
anticipate the answer, and consider evaluating the
integral

7= f S — md) o[k — p)° — m] d, dk,.

The standard method is to change to variables &°,
(k ~ p)” in which case the value of the integral is
just that of the Jacobian at the point of intersection
of the circles, « A™' where A is the area of the
triangle 0,0.X (Fig. 9). It is clearer that this is the
answer if the delta functions are defined by a
limiting process,
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é = lim 4§,
-0
where 8§, = 0 outside (—£/2, t/2) 6, = ¢ inside
this interval. Replacing the two 6§ functions in J
by 8. functions the circles become ring-like and I
gives their common area, (see Fig. 13) that is,
tit,/sin 6, (¢, = t/m,, t» = t/m,) multipled by the
weighting factor £ %, hence

I=14""
3.5. Limiting Processes for Colliding Pole Situations

It has been shown in the last section that in
evaluating integrals over products of 6 functions
it is sometimes helpful to define the § function by a
limiting method, because this elucidates the structure
of the integral at the vital points where the curves
defined by the & functions overlap, §(C,) 8§(C,),
in the obvious notation.

It is plausible that the amount of overlap
8(C}) 8(C,) is a measure of the intensity of singularity
caused by the colliding poles when one circle crashes
through the other one as its center executes a path
in the complex plane.

A more acceptable picture of this is given by
replacing one of the circles, which corresponds to
a distribution of pole with measure &(C,), by a
distribution with measure §,(C,) and take the limit
as t — 0. This means the circle is replaced by an
annular cut, and the pole collision (which occurred
for a discrete value of k,) is replaced by a pole
passing through a cut of strength ~ 1/t over a
range ~ ¢ of values of k..

On a contour C in this range the singularity
configuration is as shown in Fig. 14 (ii), and the
discontinuity caused by the collision is measured
by the bubble contour enclosing §(C;) on opposite
sides of the cut 6,(C,). It is clear that the total
discontinuity on integrating over k, is given by the
total amount of overlap of the pole §(C;) and the
cut 8,(C,), that is,

(2ri)* lim f 5(Cy) 8,(C) dk

= (i) f 8(C,) 8(Cy) dk.

This is, of course, exactly Cutkosky’'s formula for
the discontinuity.

3.6, Summary

At this point we review what has been established
thus far. The k integral is over a two-dimensional
(Re ki, Re k,) contour in a four-dimensional space.
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Fi16. 14. Discontinuity across normal threshold for self-energy
part.

We consider the singularity configuration in the
three-dimensional subspace (Re k,, Re k., Im k,)
that is, the space formed by the stack of complex
planes with %k, a real constant. On moving the
external variable P in its complex plane in a path
around the normal threshold singularity, at some
stage the k contour, viewed in the three-dimensional
subspace, is trapped in a collision. This corresponds
to encountering the cut in complex p space. Varying
the three-dimensional space by replacing Re k,
with a path off the k, real axis in the complex k,
plane merely moves the cut around and alters the
point at which the collision occurs. The discontinuity
across the cut in p space, corresponding to the
“strength” of the collision, can be found by re-
placing the k-space singularities by small cuts, and
taking the limit as the length of the cut goes to
zero, keeping its total strength constant. This leads
immediately to Cutkosky’s formula.

3.7. Vertex Part in Three Dimensions

The method used is essentially the same as that
for the two circles in a plane, but is a little more
difficult to visualize. The singularity configurations
are considered in the four-dimensional space (Re %,
Re k., Re ks, Im k,) by fixing k,, k; at real values
and examining the situation in the k, complex plane,
then integrating over ks, k,.

We replace two of the three spheres of pole by
shells of finite thickness, giving a total pole dis-
tribution 8(S,), 8,(Sz), 6.(Ss). Nothing is gained
by taking different ¢'s for S,, S;.

For a line (k,, ks) through the area 4(S,) 6,(S,)
3.(8;) the singularity configuration in the complex
k, plane is as shown in Fig. 15. and on varying the
external parameters about the anomalous threshold
singularity, the pole §(S;) will trace a path P to
a point on the other side of both the cuts, hence the
difference in the integral round the bubble contour
will be proportional to the product of the strengths
of the two cuts.

$(s)
— %.(Sy) Fia. 15. Discontinuity across
— e(52 leading singularity for vertex part.
5.(S3)
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To find the total discontinuity on going round
the anomalous threshold, the integral is taken as
before over all values of k., k, giving a contribution,
that is, the values in the region 8(S;) 8,(S,) 8.(Ss),
giving

2ri)* lim [ 8(S,) 8.(82) 8.(Ss) dk

= (i)’ f 5(8,) 8(Sy) 6(Ss) dk.

It should perhaps be emphasized that there is
no need to vary the external parameters in such a
way that only S, moves with S, and S; remaining
stationary. The only configurations of importance
are the initial and final ones, corresponding to
moving from one side to the other of a cut in an
external variable.

For completeness, we must take into account the
fact that a colliding-poles situation occurs also on
any line corresponding to the intersection of two
of the spheres, 4(S;) 8(S.). This corresponds to the
normal threshold, and on going around the anoma-
lous threshold in the above example, if the &, and k&,
integration paths are left undistorted along the real
axes, the ‘“‘normal threshold” collision occurs twice,
corresponding to going through the normal thresh-
old cut and coming back. Suitable distortion of the
k,, ks contours would move the normal threshold
cut away from the anomalous threshold (as indeed
it is in the usual representation adopted, with both
going in a positive direction).

3.8. Generalization to any Diagram

Tor definiteness the example of the wigwam dia-
gram (Fig. 7) in three dimensions is taken. There
are five surfaces of singularity in a six-dimensional
space, so in general, they meet in a one-dimensional
curve. This corresponds to the fact that the dual
diagram has one degree of freedom. By analogy
with the simpler case, four of the five surfaces are
replaced by 8. surfaces, then sections are taken
corresponding to fixing five of the six complex
variables at real values, these five then being inte-
grated over. The leading singularity arises from the
pole going from one side to the other of all four
small cuts. It is clear that the discontinuity given
is the integral over the product of the five delta

Fi1a. 16. Non-Landau term for self-
energy part.

S
\/

MICHAEL FOWLER

functions, and that the method generalizes im-
mediately to any diagram.

4. NON-LANDAUIAN SINGULARITIES FOR SINGLE
LOOP DIAGRAMS

4.1. Introduction

The presence of singularities apparently not in-
cluded in the Landauian scheme was first noticed
by Cutkosky* in some elementary applications of
his formula. For instance, the discontinuity across
the normal threshold for the self-energy part in
four dimensions is 1/s (see Sec. 3) so the function
itself must have a pole at s = 0 on some sheet
reached through the normal threshold. In general,
the forward scattering curve is singular on some
sheet, if the dimensionality of the space is greater
than the number of sides of the loop. A general
discussion is given in reference 5.

In this section a discussion of how non-Landau
singularities arise in the k-space approach is given.
The single loop self-energy part is considered in
some detail. The dimensional dependence of the
singularity and its relation to touching of surfaces
at infinity are examined. The techniques developed
in See. 3 are applied to give the discontinuity, and
it is shown that in p space the function has a cut
along the whole length of the imaginary axis.
Essentially, this corresponds to the function de-
pending only on S = p°. This cut is closely related
to the non-Landau singularity in S. It is shown that
these singularities do not occur on the physical sheet.

Finally, the structural connection between Cut-
kosky's formula and the general pinch criterion is
used to define an equivalence relationship which
separates out the non-Landau singularities and ex-
plains why their existence (unlike that of Landau
singularities) depends on the dimensionality of the
space.

4.2. Single Loop Self-Energy Part

We have seen that the non-Landauian ‘“‘forward
scattering”’ term appearing in the discontinuity
~ 1/A in the two-dimensional case, where A4 is
the area of the shaded triangle (Fig. 16). As p — 0,
rp ~ const, so A does not go to zero at p = 0.
Hence for the two-dimensional case there is, in
fact, no non-Landauian singularity. For the n-
dimensional case, n > 2, there is a weighting factor
corresponding to the area of the hypersphere of
radius », that is, « 7"~ Since rp ~ const as p
goes to zero, if p° = S the form of the non-Landauian
singularity in S is 8*™* at the origin.
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Hence, in general, a singularity arises when the
two spheres of singularity become concentric (or
have their centers separated by a zero length vector).
It is a well-known result in projective geometry
that under these conditions the surfaces touch at
infinity, so in this sense the singularities are a
natural extension of the Landauian scheme. Of
course, the same remarks apply equally to the two-
dimensional case, for which there is no singularity,
and the cases are topologically equivalent, but
since the critical situation occurs at infinity the "
weighting factor is all important in determining
whether, or not there is a singularity, and of what
type. This is discussed further in Sec. 4.5. The
touching arises at infinity as the circles become
concentric and is not equivalent to a common
tangent situation at some point X where X goes
to infinity. Hence the surface of singularity cannot
be merely part of the Landau surface. The con-
figuration is best seen in Re k,, Im k,) space where
there are two rectangular hyperbolas becoming
concentric at p = 0.

4.3. Discontinuity Across the Singularity

Examining the singularity as it appears in the
discontinuity across the normal threshold, its dis-
tinuity is 2/p in three dimensions, zero in two and
four dimensions. It is interesting to study the
singularity more directly by applying the collision
techniques developed in Sec. 3, as this gives a clearer
picture of why it arises. If 0,, the center of the
circle C,, follows a circular path P in the complex
plane about 0, (to avoid unnecessary complications,
sufficiently small for the circles never fo cut at real
points, see Fig. 17), then the intersect of C, with
the complex plane y = y, (Re) goes around the
intersect of C, if ¥, is sufficiently large. This gives
rise to the familiar situation that P(y, = 0) does
not go round C,(y, = 0) but P (y, sufficiently
large) includes C,. Thus at some intermediate point
there is a collision, and it must correspond to p
being pure imaginary. A similar phenomenon occurs
in the lower half-plane, so the entire imaginary axis
is cut, as is best seen in the (Re, Im) plane where
two rectangular hyperbolas crash through each other
at the point where p is pure imaginary. Applying
Cutkosky’s formula the “common area” of the two
rectangular hyperbolas is identical to that of two
circles with the same centers and radii, so this
provides a check with the other method.

The cut along the imaginary axis corresponds to
the function depending only on S = p°. Transform-
ing to S and mapping the Re p > 0 half-plane
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Lol

F1c. 17. Path around non-Landau singularity.

into the entire plane, the imaginary axis cut runs
twice along the negative real axis in S. It is easy
to prove that in this mapping the cut alternately
disappears and has two sheets as the number of
dimensions is increased. In Fig. 18, 2f(4) = f(4) —
f(B) is 27" /A and so (r pure imaginary) is alter-
nately pure real and pure imaginary. As the function
is real, f{(B) = (&£)"f(—B), so there is alternation
between single and two-sheeted behavior. Noneof the
single-loop forward-scattering singularities is on the

x|x
A | 1
‘,nm-Lamo\qu cub
F1e. 18. Singularities

ih p-complex plane for
self-energy part.

physical sheet. For the self-energy part, continuing
towards S = 0 on the physical sheet gives the con-
figuration in Fig. 19, for y = 0. Integrating over
all real y, the contour is never distorted as the
singularities remain in their own half planes. At
infinity, €y, Cu coincide and this gives rise io
possible singularity only on those sheets where the
contour is caught between them. Similar con-
siderations hold for higher single loop graphs.

4.4. Connection Between Cutkosky’s Formula and
General Pinch Criteria

Theorem. Higher-order singularities appear in the
discontinuity across Landau cuts.

Proof. If an integration is over a surface § in a
space D, with surfaces of singularity S, a singularity
occurs when S; M\ & meet at a point where the
normals (in 8) are linearly dependent. As the normal
to each S, at the point can be written in components

xCu FIG 19. Singu-
larities on a (Fig.

Cn 17) forp = 0.

% Gy

*
C|1 X
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C
Fra. 20. Singularity configuration
in the discontinuity across the normal
Re G threshold for the vertex part.

- Gingg

on 6 and perpendicular to 8, in D the normals to the
set (S;, &) are linearly dependent, so there is singu-
larity in the integral over D with surfaces (S;, 9)
singular.

This theorem can be used to define an equivalence
relationship among singular configurations. For
instance, if three spheres have two coincident com-
mon points, and hence pinch the real three-space,
the two circles S; M 8, and S, M 83 pinch the
real two-space S,. Further, if two circles touch and
thus pinch the real two-space, the two points C; M C,
pinch the real subspace of the surface C,. (see Fig.
20). This configuration corresponds to two-sheeted
inverse square root behavior, so we have established
an induction procedure for reducing complicated
configurations to very simple ones whose behavior
is well known. This is equivalent to examining the
singularity as it appears across successively lower-
order thresholds.

4.5. Differences between Landauian and
non-Landauian Singularities

Using this procedure it is easy to see that all
Landauian singularities are equivalent to two poles
pinching a line or an n sphere pinching real n space
when its radius goes to zero. The order of magnitude
of such a singularity is given by

. dx; -+ dx . Pt dr -
llm f 3 t n 3 = llm Pl 3 a" z
om0 4 T1 T —a

.
If the order is a°® the singularity is logarithmic—
it never disappears. For a given singularity, the
order depends on the dimensionality of space.

The vital point is that the non-Landauian sin-
gularities are not equivalent to the singularities
listed above, and it is because of this that their
existence is dimensional dependent, as we now
demonstrate.

For example, consider the vertex part in three
dimensions, taking the integral around the real
circle ¢ = S, M S; with two singularities S,
S'(S; M S; M 8;) on the complex surface of C.
This configuration is as in Fig. 20, and corresponds
to the discontinuity across the normal threshold.

MICHAEL FOWLER

If on varying the external parameters, S’, S ex-
change places the contour C has two extra parts,
bubbles around S and 8’. If now S,, S., S;, are
moved so that their centers become collinear; 8§,
S8’ move to infinity on C. This does not give rise to
a singularity, because the residues at S, S’ remain
finite throughout. In four-dimensional space, 8, S’
are replaced by a circle on the complex part of a
sphere. This can be adequately represented by
multiplying the residues at S, S’ by a weighting
factor r corresponding to the radius of the circle.
In this case, as S, S’ go to infinity their residues
become infinite and there is a singularity.

This can be regarded as a pole of constant residue
approaching a singularity "~ at infinity, and in
this way gives an easy derivation of the alternate
one- and two-sheeted behavior as the dimensionality
of the space is increased. Also, for n = 3 the pole
of “‘constant residue’” approaches a place where the
function is analytic, so no singularity can arise.

From this viewpoint it is easy to see why the
leading curve (corresponding to S, S’ pinching ()
switches the non-Landau singularity on and off,
because on going around it S, S’ pick up or lose the
bubble contours measuring their residues. No sin-
gularity can be generated by a pinch between 8
and S’ at «, as this would require only one of them
to have a bubble contour.

Thus the non-Landau singularity arises through
a pinch at infinity between a pole and a singularity
r"® which actually disappears for n = 3. (For
n < 3 there is no singularity for various obvious
reasons.) This is quite unlike the Landau situation
where varying the dimensionality only varies the
type of pinch, as explained above.
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APPENDIX 1. N-SPACE SINGULARITY CRITERIA

We give here a generalization of the results of
2.3. If m surfaces of singularity in n-dimensional
space meet at a point X, the lines in n-space through
X can be divided into sets labeled (7, 7, --- , %),
0, 7, ---), etc., generalizing the previous notation.
The normals to the surfaces at X span an m-dimen-
sional subspace. It is clear that when one of these
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sets collapses the normals lie in a space of dimension
m — 1, and if the surfaces are quadratic with the
same sign 7¢ on each, the collapse of (z, ¢, --- , 7)
gives rise to a singularity. Thus if the surfaces are
all spherical, the condition for singularity [on the
(+7e, - , +i¢) sheet] is that X lies inside the
simplex of centers.

APPENDIX 2. AN ALTERNATIVE DERIVATION OF
CUTKOSKY’S FORMULA FOR THE S.E. PART

It is possible to derive Cutkosky’s formula with-
out resorting to limiting processes by the following
rather graphic method, which is admittedly not very
rigorous in its present form. Consider the singularity
configuration in the k, complex plane as k, is varied
at constant speed along the real axis. We are only
interested in behavior near the critical point, where
the singularities can be taken as lines of strength
t;, t, at angles 6, 6, (see Fig. 21). Then in the
complex k, plane given by k, = const there are
two poles, of strengths #/sin 6,, &,/sin 6, with
velocity of approach ». One of these can be regarded
as stationary, and varying k, is equivalent to letting
the other one paint out a cut of strength (pole
strength/velocity of approach), so the Cutkosky
discontinuity, measured by a bubble contour around
the stationary pole, is given by the product of the
pole strengths divided by the velocity. In terms of
# this is

t t2<1 _ 1>=t,12
sin 6§, 8in 6, \tan 4, tan 6, sin 6 ’

0=0,— 0

It is clear from the usual limiting arguments
that this is the integral over the product of delta
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Fra. 21. Singularities
near point of intersection
for self-energy part.

functions, but it is interesting to show how this ap-
proach ties more directly with the delta integral.

[ a0 + 8 — md)
X 87k, — p)® + ky — m3] dk, dk,
f 5(+)(kf _ fz)

X 67 lky — p)° — ¢°1dk, dk., say,

I

7o [ 8t = 0 o = p = g) d a,

= %Mf—y—p)
1
=m, where f— g —p = 0.

It is easy to show that the poles have strengths
1/f, 1/g in the k, complex plane, and the velocity
of approach is manifestly f/ — ¢’. Doubtless this
method can also be generalized, but becomes rather
more difficult conceptually than the alternative ap-
proach developed in the text.
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The asymptotic properties of a Schrodinger wave function
which represents the bound ground state of a system of
three interacting particles are examined. It is assumed that
the interaction can be described by a static potential which
is the sum of three two-body potentials and one three-body
potential, where the potentials have the property that if any
one of the particles is separated from the other two by a
distance which tends to infinity, then the part of the potential
energy which depends on the position of that particle tends
to zero. The problem is treated nonrelativistically. Decreasing
exponential bounds on the ground-state three-body wave func-
tion are established in configuration space. It is shown that
these bounds depend only on the masses of the three particles,
on the ground-state energy of the three-body system, and
on the lower bounds on the spectra of the Hamiltonians for
the three two-body systems arising when one of the three
particles is removed and the remaining two interact through

the corresponding two-body potential.

It is furthermore shown that the three-body wave function
in momentum space admits of analytic continuation into a
tube-region in complex momentum space, which tube-region
is the product of real momentum space and a convex bounded
region in imaginary momentum space. The tube-region is
explicitly determined.

The implications of the results for the theory of the vertex
funetion in quantum field theory are discussed. The relevancy
of the results obtained in this paper to the variational com-
putation of energy levels and wave functions of three-body
systems is also briefly discussed.

In the course of the derivation some generalizations are
pointed out; in particular, the final results remain valid for a
class of more general interactions, which cannot be described
by static potentials. Likewise, the results remain valid for a
class of spin-dependent interactions.

I. INTRODUCTION

E consider three spinless particles, numbered

1, 2, and 3. Let, for v = 1, 2, or 3, m, be the
mass of particle u, and let g, be the position vector
of particle » with respect to some origin. The
vector g.,, defined by

Oue =™ Ou — 0y, (1)

is the vector joining particles u and v, and pointing
towards particle u.

We consider the motion of these three particles,
within the framework of the nonrelativistic Schro-
dinger equation, under the assumption that the
interparticle interaction is described by the potential

U= Ulz(@m) + U23(923)
+ Ual(eax) + U123(912; 923)- (2)

Since the Hamiltonian is translationally invariant
the motion of the center of mass is independent of
the motion relative to the center of mass. We are
only interested in the relative motion and shall,
therefore, introduce the constraint that the center
of mass is at rest at the origin in three-space. This

* Research supported in part by the National Science
Foundation and by the U. 8. Atomic Energy Commission.

t Present address: Department of Physics, University of
California, Santa Barbara, California.

1 Alfred P. Sloan Foundation Fellow.

constraint is expressed by
m;m + M202 + mszps = 0. (3)

In the following we shall let the letters r, s, ¢,
u, v stand for the indices which label the particles,
with the convention that w = 1,2,or3andv = 1, 2,
or 3, whereas the triplet (r, s, t) always stands for
some cyclic permutation of the triplet (1, 2, 3).

We shall assume that the potentials satisfy the
bounds

lUra(Qrs)l < Q(]Qre|)y fOI‘ Ors # 0’ (43‘)
!U123(912; 923)' < Q([lel + |923|):
for lew| + les| >0,  (4b)

where the function Q(g), defined for all ¢ > 0,
is a continuous positive function such that

lim @(¢g) = 0, steadily,

g—®

lim ¢Q(g) < o,
a0

(5a)
(5b)

It is not our purpose here to investigate under
what conditions on the potentials the Schrédinger
equations have meaningful solutions, nor to investi-
gate under what conditions a three-body bound
ground state does exist. We shall, therefore, assume
that the potentials are sufficiently well behaved
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such that the various Schrédinger equations and
corresponding integral equations which we shall
consider in the following have physically meaningful
solutions. In particular, we assume the potentials
to be integrable over any finite region.

About the three-body system, we shall assume
that it has a bound ground state of negative energy
—B,. We furthermore assume that the greatest
lower bound of the spectrum of the Hamiltonian
operator for the residual system obtained when
particle 7 is removed and particles s and ¢ interact
through the potential U,, is given by the non-
positive number —B,, where, for r = 1, 2, or 3,

B, > B, = 0. (6)

The reader will thus note that we do not assume
that a bound ground state exists for the residual
system obtained with the removal of particle r.
If a bound ground state does not exist we have
B, = 0. If, on the other hand, a bound ground state
does exist the assumption expressed by the in-
equality (6) states that the binding energy of any
one of the two-body systems is less than the binding
energy of the ground state of the three-body system.

The three-body ground-state wave function satis-
fies a Schrodinger equation on a six-dimensional
configuration space. We may guess that when a
point in this space tends towards infinity along
some direction then the wavefunction at the point
tends to zero exponentially. It is the principal
problem of this paper to show that this is indeed
the case, and to determine exponential bounds on
the wave function in each direction in configuration
space.

II. DIFFERENTIAL AND INTEGRAL EQUATIONS
SATISFIED BY THE THREE-BODY WAVE FUNCTION

We first consider the question of selection of
coordinates. For r = 1, 2, or 3 we get three different
choices of two tndependent vectors which completely

specify the configuration of the system; namely, the
vectors p,, and &,, where

£ = o(m + my + ma)(m, + m). (D

The vector £, thus joins particle r with the center
of mass of the f-s system. The corresponding reduced
masses are given by

M, = m(m, + m)(m + m, + mg)",

By = m,m,(mz + m’)—l.

(82)
(8b)

Because of their simple geometric interpretation
the coordinates p,, and &, are useful for visualizing
the configuration of the system. However, for our
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purposes the following three alternative sets of
coordinates will be even more convenient: Let

Xr = (2MrB0)l/2Er

= [2Bym,(m;, + m, + ma)(m, + m)™1"%e,, (92)
Yr = (2ﬂrBO)l/2Qat
= [2B0mlms(mt + mA)_l]”2(93 - Qt)) <9b)

where (r, s, t) is any cyclic permutation of (1, 2, 3).

Equations (3) and (9) can be used to express
01, 02, and g; in terms of any one of the systems of
coordinates (x,, y.), 4 = 1, 2, or 3. Substituting the
resulting expressions into the relations (9) which
define (x,, ¥.), v = 1, 2, or 3, we may thus explicitly
determine the transformation from the (x,, y.)
system to the (x,, y,) system. This transformation
is orthogonal and can be expressed as follows:

X, = X, cos ,, 4 y, sin 4,,,

(10a)
y. = —X,sin 8, 4+ vy, cos 6,,,
where
O = — 0,4,
cos 6,, = —[m,m,(m, + m,)"(m,+m,)"'1"?, (10b)
sin 8,, = —[m,(m;, + m, + m,)

X (m, + m) 7 (m, + m)™']"%.
Thus, for (r, s) = (1, 2}, (2, 3), or (3, 1), we have

v >0, > . (10¢)

We regard the six Cartesian components of the
vectors x, and y, as the Cartesian components of
vector z in a six-dimensional Euclidean space &.
To express the fact that 2 can be specified by either
one of the three pairs (x,, y,) of three vectors, we
write

(11)

when the vectors (x,, y.) satisfy Eqgs. (10a). The
subscripts after the parenthesis in Eq. (11) are

2= (X, ¥ = (X2, ¥2): = (x5, Va)a

‘meant to indicate particular decompositions of &

into a sum of two mutually perpendicular three-
dimensional Euclidean subspaces. The vectors x,
and y, are, thus, the projections of z into the three-
dimensional subspaces &,, and §,,, respectively. The
consistency of this interpretation follows from the
fact that if the three pairs of vectors (x,,y,),7r = 1, 2,
or 3, satisfy the relations (10a), then

[2

2z = |x1|2 + n

= |x|* + [Y2|2 = [x;]* + lysl*. (12)
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In terms of the coordinates which we have intro-
duced the wave equation which the three-body
ground-state wave function ¥(z) satisfies assumes the
form

[—Ve+ V¥R = —¢@). (13)
The potential V(z) is a sum of four terms:
V(e) = sz(z) + Vasle + Vax(z) + V123(Z), (143)
where
Vrs(z) = Vra(Yt) = Urs(@ra)/BO) (14b)

Vi2s(®) = Uizs(012, 023)/Bo.

We emphasize that the two-body potential V,,(2)
depends only on the projection y, of z into §,,
and we, therefore, sometimes write V,,(y,) inter-
changeably with V,,(z) to bring out this fact ex-
plicitly.

The symbol V3 stands for the Laplacian operator
in the six-dimensional space & It may be expressed
in terms of the Laplacians V2, and VI, in the
three-dimensional subspaces &,, and §&,,, respectively,
as follows:

V§ = Vi1 + vil = Viz + viz = vis + v1213’ (15)

which relations hold when the various coordinates
satisfy the relations (10a).
Let us restate the assumptions which we made in
the introduction regarding the potentials as follows:
There exists a positive continuous function @(g),
defined for all positive values of its argument g¢,
and satisfying the conditions (5), such that:

V.@] = V.00 < Qy.]), for y. 50,
[V123(z)l < Q(lz[), for z0,

(16)

where
2] = (z-2)"".

Let us likewise restate the conditions (6) as well
as the assumptions contained in the paragraph
preceding the inequalities (6):

The greatest lower bound on the spectrum of the
operator

Hl.,= =V, + V.3) (17)
is the nonpositive number —b,, where
b, = B,/B,, 1>6, =20. (18)

We conclude this section by stating four integral
equations which the three-body ground-state wave
function ¢(z) satisfies. Let

Ho = _vg, H:; = _VZ“ (193)
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Hrs = H:s + H:.: = —vg + Vrs(z)‘ (19b)

The regions associated with these operators are
taken to be the six- and three-dimensional Euclidean
spaces, respectively. Then the spectrum of H,
consists of all non-negative real numbers; the same
being true for each one of the operators H’.. Since
the operators H!, and H!!, where (r, s) is any one
of the pairs (1, 2), (2, 8), or (3, 1), act on different
Hilbert spaces, it follows that the operator H,, =
H!, 4+ H!!, defined in Eq. (19), has as its spectrum
the set of all real numbers = —b,. (The operator
H,, acts, of course, on the direct product of the two
Hilbert spaces on which H!,, H!!, respectively, act.)

We define the resolvent operators (Green's func-
tions)

Goln) = (Ho — m)7,
G.(n) = H,, — 97,

where the complex variable 7 is outside the respective
spectra.

In the configuration space representation the
Green’s functions are, thus, solutions to the differ-
ential equations

(— Ve — mGoz, 25 m) = 8z — 2), (21a)
[—Vs+ V.(e) — 1lG..(2,2"; 1) = 8z —2), (21b)

with the appropriate boundary conditions. In the
Eqgs. (21) the differentiations are with respect to z,
and 85(z) is the Dirac delta function in 8.

Since the point » = —1 is outside the spectra of
the operators H, and H,, we may reformulate the
differential equation (13) into four alternative inte-
gral equations, namely,

(20a)
(20b)

Yi) = — d°@2)Go(z, 2 ; =DV ()Y, (22a)
W) = — f @G 1)
X [Val@) + Vole) + Vin@)]9E),  (22b)

where (r, s, t) is any cyclic permutation of (1, 2, 3).

III. EXPONENTIAL BOUNDS FOR
THE WAVE FUNCTION FOR A SINGLE
PARTICLE BOUND IN A POTENTIAL

Before we attack the problem of determining the
exponential bounds on the three-body wave funection
it will be useful to consider the analogous problem
for the very simple case of a single particle bound
by a static potential V(x). By so doing, we can
illustrate simply the main idea employed in this
paper, and at the same time we will reach an under-
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standing of the important difference between the
three-body problem and the problem of the single
particle.

We thus consider the Schrodinger equation for a
single particle bound in the potential V(x). With a
suitable choice of variables the equation takes the
form

[—VI+ V@& = —¢®, (23)

where ¢(x) is the bound ground-state wave function.
About the potential we make the assumption that

V(x| < Q(xl), for x =0, (24)

where Q(q) is a continuous function, defined for all
g > 0, which satisfies the conditions (5).

We denote by G(n) the resolvent (Green's func-
tion) of the Laplacian in three-space:

Gn) = (—=V:—~n7, (25a)
where % is any complex number not on the non-
negative part of the real axis. Explicitly, the Green’s
function is given by
G(x,x’; 1) = exp (in'" [x — x'|) /4w x — x’[, (25h)

where, in the complex n-plane cut along the positive
real axis,

Im (%) > 0.

The wave function ¢(x) then satisfies the integral
equation

o9 = = [ ) “EEEZED v, o

We assert that for every 6 such that 1 > 6 > 0
there exists a constant K(6) such that

lo(x)| < K(6) exp (—6 |x]) @7

for all x.
Proof. We select any 6 such that 1 > 6 > 0,
and define a function m(x) of x (and of 6) by

m(x) = lub. {lo@x)] exp (=0 [x — x'D}.  (28)

Here, and in the following, we employ the notation
lub. {{&}
zER

for the least upper bound of the real function f(z)
as the variable z varies over the region R. To avoid
misunderstandings we always exhibit the vari-
able and its domain as above, except that if the
region R is not mentioned the variable varies over
all real values. We employ a similar notation for
the greatest lower bound, which we abbreviate by
g.lb.
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We use Eq. (26) and inequality (24), to derive the
inequality

lp(x)| < f( L@ ——-—~exi1f_lx!x__x,’f )

X Q'] le(x)].
From the definition (28) it follows that
l6x)| = m(x) exp (6 |x — x').

When this estimate is inserted into the inequality
(29) we obtain

(29)

x| < hE)m(x), (30)
where
h(x) = &’(x’)
— — Ix — x’
X eXp [ (1 0.\’ lX X H Q(‘X,l) (31)

ar x — x|

Let R be any Iegion such that A(x) < 1 through-
out B, and let R be the complement of R. By the
definition (28) we may write

m(x) = max {Lub. [l6(x)] exp (=0 [x — x']),
x'ER (32)
Lub. [lp(x)] exp (—0 [x — x)]}.

x’'ER

By the inequality (30), and by the definition of R,
we have

lxl'lell: ”d’(x/)l €xXp (_'9 ‘X —x D}

<lub. {m&x) e (=6 [x =¥} oy

< 1.u;b. {mx’) exp (—0 [x — x'])}.

Since

l.u:b. {exp (=0 |x — x| — 8 x' — x'"])}

= exp (-0 |[x — x’)),
we obtain, by the definition (28),
m(x) = I'E?b' {mx) exp(—0x — x')}, (34
which result, when substituted into (33), gives
Lub. {|¢(x)] exp (—0 [x — x')} < m(x).
This means that Eq. (32) may, in fact, be written
mx) = Lub. ()] exp (=0 [x — XD} (35)

Let us now consider the function h(x), defined by
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Eq. (31). We note that h(x) in fact depends only
on |x|. Furthermore, we easily see that since Q(g)
tends monotonically to zero as ¢ tends to infinity it
follows that h(x) tends to zero as [x| tends to infinity.
The region K may therefore be selected as the
surface and exterior of some sphere. The region 7
is consequently the interior of this sphere, and hence
a bounded region. It then follows immediately from
Eq. (35) that

m(x) < K(0) exp (—9 |x]) (36)

for some constant K(6). From the definition (28)
follows that

p(®)| = mx), 37)

which fact, combined with the inequality (36),
proves our assertion.’

We note that this procedure works for any bound
state, not only for the ground state. By considering
the case of a Coulomb potential for which explicit
solutions are known we can conclude that the
exponential bound expressed by the set of inequali-
ties (27) is the best possible in the sense that, in
general, an inequality like (27) cannot hold for 6 = 1.

We furthermore note that the restrictions on the
potential are unnecessarily severe; all that is needed
for the success of our method is that for every 6
such that 1 > 6 > 0 the function A(x), as defined in
Eq. (31), is less than one outside some bounded
region. (The region may, of course, depend on 4.)

Let us now try to generalize this method to the
case of the three-body wave function, basing our
discussion on the integral equation (22a) of the
preceding section. As is well known, the Green’s
function Go(z, 2’; —1) is a function of [z — 2’| only,
and has the property that it falls off faster, as
@ — 2| tends to infinity, than the function
exp (—0 |z — 2’|) whenever 1 > 6. Let us select
any 6 such that 1 > 6 > 0, and let us define a
function he(2) by

W@ = [ d'@) Gie, 5 )]

X [QUlyiD) + Q(lyil) + Qys)
+ Q(z’])] exp (8 |z — 2’)). (38)

Let R, be any region in & such that ho(z) < 1
throughout the region, and let £, be the complement
of R,. By a procedure very similar to the one by
which we have derived the equality (35), we may
derive the result that

1 For an alternative demonstration of this assertion, see
Appendix III.
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@] = l-,ue}}e)- {ly@)] exp (=0l —2')}. (39

If we now compare h(z), as defined by Eq. (38),
to h(x), as defined by Eq. (31), we notice an essential
difference; the function A(x) is less than one outside
some bounded region in three-space, whereas it
cannot be concluded that ho(z) is less than one
everywhere in & outside some bounded region. The
reason, is, of course, that V(z) does not tend to
zero as |z| tends to infinity, or differently stated,
Q(y.]), for r = 1, 2, or 3, does not necessarily tend
to zero as [z| tends to infinity.”

A moment’s reflection tells us that the above state
of affairs is entirely in accordance with expectations.
We may consider, for instance, the deuterium atom
as an example. In this case it is intuitively clear
that the probability density of the electron in space
at large distances from the center of mass depends
primarily on the binding energy of the three-body
system with respect to a breakup of the system into
an electron and a deuteron, and not on the binding
energy with respect to a breakup in which all three
particles are completely separated. In fact, it is a
good approximation for the purposes of atomic
physics to regard the deuteron as a single particle,
in which ecase its binding energy with respect to its
breakup into a proton and neutron plays no role.
However, the procedure leading to the inequality
(89) takes no account of any two-body binding
energies, and can, therefore, not give us the final
answer desired.

Intuitive physical arguments, thus, suggest that
the asymptotic behavior of the three-body wave
function must necessarily depend on the constants
B,, B, and B;, as well as on B,, and the masses
My, Ms, and ms. If we now examine the three integral
equations (22b) we note two facts: (a) The Green's
functions @,, “contain’’ the solutions to the three
two-body problems and we may expect that certain
exponential bounds on the functions @,, will depend
explicitly on the constants By, B,, and B (or rather
on by, bs, and by); (b) one of the two-body potentials
is absent in each one of the integrands. This latter
fact makes it plausible that one may employ the
integral equations (22b) to derive three inequalities
of a similar nature as the inequality (39), but with
E, replaced by larger regions. We shall show that
this is indeed the case, and that the four inequalities
which one obtains in this manner are sufficiently
stringent for the establishment of exponential
bounds on the ground-state wave function ¥(2) in
every direction in & The procedure which we shall

2 See also E. Gerjuoy, Ann. Phys. (New York) 5, 58 (1958)
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follow can be regarded as fairly straightforward:
First, we establish exponential bounds on the Green's
functions @,,(2, 2; —1) as functions of (z — 2/),
and then we employ the integral equations (22) to
establish exponential bounds on ¥(2).

Let us return to Eq. (38) in which h,(2) is defined.
By inspection of the integrand we note the following;:
For every 6 such that 1 > 6 > 0 there exists a Ay
such that when |y, > As for r = 1, 2, and 3, then
ho(z) < 1. This enables us to state:

Lemma I. let 6 be any number such that
1 > 6 > 0. Then there exists a number A4, such
that if R, is the region consisting of all points z such
that |y,| > N\ for r = 1, 2, and 3, and if E, is the
complement of K, then the three-body wave
function y(z) satisfies the inequality

W@ = Lub. {[¥)] exp (=0 2 = 2/))

(40)

for all z in &.

This result indicates the importance of the region
[%, which can be characterized physically as a region
such that if the three-body system “breaks up”
along a direction within &,, i.e., if z tends to infinity
within 7,, then the separation between two of the
particles remains bounded.

IV. EXPONENTIAL BOUNDS ON THE
GREEN’S FUNCTIONS Gz, z’; —1)

We begin by considering the problem of a single
particle in a field of force derivable from the po-
tential V(y), where V(y) satisfies the inequality

V| < QUyl), for y =0, (41

in three-dimensional y space, for some positive
continuous function Q(g), defined for all ¢ > 0,
which satisfies the conditions (5).

Let H! be the operator

H, = =V, + V(y), (42)

and let the number —b be the greatest lower bound
on the spectrum of H!. We thus have b > 0 if a
bound ground state exists; otherwise b = 0.

We shall furthermore assume that 1 > b. The
spectrum of H! is confined to the real axis, and
includes the positive half of the real axis.

Let 7 be a complex number not in the spectrum of
H{. Then the Green's function G'(y), defined sym-
bolically by

G'(n) = H, — o7, (432)

is the solution, with the appropriate boundary
conditions, of the differential equation
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(=Vi+ V@ — 0@,y ;50 = &y —y). (43b)

Concerning the Green's funection we make the
following assertion,
Lemma I1. Let

v, (44)
where 7'/? is that branch of the function "/* which
has a positive imaginary part on the complement
of the spectrum of H/. Then, for every r, > b, and
every 6 such that 1 > 6 > 0, there exists a constant
K(8, o) such that
K8, r
63,5 )] < LI e (~ 0 Iy — v
y -yl
and throughout the half-plane

p = Im (y

(45)

for all y, ¥y,
Re (1) £ —ro.

Since the detailed proof of this lemma is a bit
cumbersome, we shall defer it until Appendix I.
To give a plausibility argument, we point out that
for fixed y’, and for y = y’, the Green’s function
as a function of y satisfies a “Schriodinger equation
with energy 5,”" and it is therefore reasonable that
the method used in the preceding section to establish
an exponential bound on a one-particular wave
function can be modified to yield the exponential
bound stated in inequality (45), but with the
constant K replaced by a constant which depends
on @ and 7. It is perhaps not quite so obvious that
the dependence of this constant on % is as stated
in the lemma.

Let us next study the resolvent of the operator

H = H!" 4+ H], (46)
where
HY = =2,

The remarks following Egs. (19) apply, and the
spectrum of H thus consists of all real num-
bers = —b. Since we assumed that 1 > b, the
number —1 is not in the spectrum of H. This fact,
as well as the fact that H!’ and H! act on different
Hilbert spaces (and hence commute), permits us to
write symbolically

G—1)=H+ 1D

=5 [y + 1+ 70— D, @)
T J o

where C is any contour going from infinity in the

lower half of the  plane to infinity in the upper

half of the % plane, and in such a manner that the

spectrum of H! is entirely to the right of C, whereas

the spectrum of —(H’’ + 1) is entirely to the left
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of C. Integral representations like the one in Eg.
(47a) have been considered quite generally by
Friedman.? In Appendix II we shall comment
briefly on the validity of the representation. Let us
now select a straight line parallel to the imaginary
axis as the contour of integration C. We then have
explicitly

G'(y,y'; —r + it)
47 |x — X/|

G,z ; —1) = él{-f dt

X exp [ir — 1 — i) |x — x'|], (47b)

where z = (x, y); 2’ = (x/, ¥'), and where the point
—r, at which the contour intersects the real axis,
satisfies the condition

1>7r>b. (48)

Let us now select a number r; such that 1 > », > b,
and let us select a number 6’ such that 1 > ¢ > 0.
Let r be a fixed number such that 1 > r = 7.
Employing the estimate on G'(y, y; —r + 1)
given in Lemma II, we may trivially derive an
inequality from Eq. (47b), namely,

|Gz, 2'; —1)| < Ki(6', 1)[Ix — x|
Xly—yl(x—x|+ly—yDT"
X exp [~ 67" |y — y’|
— 01 — 1) x — x'|] (49)

for some constant K, which depends on 6 and 7,
only.

The number r, subject to the restriction 1 > r = r,,
is at our disposal, and we may select it such that
the most stringent bound on G(z, 2; —1) is ob-
tained. Hence,

G, 2, —1)] < K\(¢,7)[Ix — x'|
Xly—yl(x=x|+ ]y —-yDhIT"
X g.lb. {exp [— 07 |y — ¥'|

lzrzro

—-60Q —-n"|x —x'[1}. (50)
If we now select
8 = 0'[(1 — r)/(1 — B)]'7, (51)

we obtain from the inequality (50), the inequality

3 B. Friedman, “An Abstract Formulation of the Method
of Separation of Variables,”” Proceedings of the Conference
on Differential Equations held at the University of Mary-
land, March, 1955 (unpublished); See also B. Friedman
Principles and Techniques of Applied Mathematics (John
Wiley & Sons, Inc., New York, 1957), p. 273.
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IG(z,2’; —1)| £ K\(¢",70)[|x — ¥'|
Xy—y|(x=x¥|+ 1y —yh1"
X g.lb. {exp [— 6 |y — ¥|

1zrzb

— 01 — 'V Ix — x’|1}. (52)

We note that by selecting ¢’ sufficiently close to 1,
and by selecting r, sufficiently close to b, we may
obtain a 6, as defined by Eq. (51), which is as close
to 1 as we wish. This permits us to formulate the
following lemma.

Lemma III. For every 6 such that 1 > 6 > 0
there exists a constant K(6) such that

|Gz, 2; —1)| < K(O)[|x — x'|
Xly—yilx—x{+y—-yD)I"

X E(6(x — x'), 6y — ¥); b), (53)
where the function F is defined by
E(x,y;b) = glb {exp [~ lyl
zrz
- Q=" 64

This lemma thus gives the required exponential
bounds on the Green’s functions G,,(z, 2’; —1), a8
functions of (z — 2’). Before we state these bounds
in detail, let us first establish some properties of the
functions E(x, y; b) which we shall later make use
of. We thus formulate Lemma IV.

Lemma IV. Let, for 1 > b =z 0, the function
E(x, y; b) be defined by Eq. (54). Let the function
E,(z) be given by

EO(Z) = Eo(x7 Y)
= exp [—([x]" + ly[)"*] = exp (—e]).
Then,

(55)

Eyx,y), it lyf’
z b(x[" + yP),
exp (—b"* [yl — (1 — B Ix[l,
if lyl* < b(lx* + ly[),

(a) E(x,y;b) =

(56a)
(b) E(x,y;b) 2 Ey(x,y) = E(x,y;0) >0, (56b)
(e) E(x,y;b) = lub. {Ex’,y';0)
X Ex—-x,y—y;b}; (56¢)
@ E(x,y;b) = lub. {Ex — x',y;b)
X exp [—(1 — B [x’|]};  (56d)
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(e) E(x,y;b) = lub. {Ex—-x',y)

Xexp[=(1 = 0" x[l};  (56e)
() E(x,y;b) = lub. {E(x — %',y — ¥
X E@,y';b)}. (560

Proof. The proofs of the statements (a) and (b)
are trivial. To prove statement (¢) we first note
that since £(0, 0; b) = 1, we have

Lub. {E&,y"; DEx — x',y — y'; b}
x'.y’

z Ex,y;0).  (57)
On the other hand,
Ex',y'; DEx — x',y — y'; b)

=glb. {exp [ |y'| — Q1 — » |x/|

1zrzb
1zr'zh

— 2

ly =y — 1 =7k — x|}
<g b {exp [—r'*(ly'] + Iy — ¥']

2

— @ =" (x| + [x — x'D]}

which, together with the inequality (57), establishes
part (¢) of the lemma.
To prove statement (d) we note that

Ex,0;b) = exp [—(1 — »)'* |x]].
Therefore,

lub. {Ex — x',y — y'; DEX,y; b)}
x’,y’

< Ez,y;b),

= lub. {E(x — x',y; b)

X exp [—(1 — 0" [x'[l} = Ex,y;b),

which, together with the statement in (¢), proves
the assertion.

To prove part (e) we first note that it follows
from parts (b) and (d) that

Lub. {Eyx — x',y) exp [—(1 — )* [x’[]}

) < Exy;b). (69
Furthermore, we trivially have
Lub. {Eo(x — x',y) exp [—(1 — )" [x'[]}

’ z Bz, ).

This result, taken together with the inequality (58),
proves the assertion for the case where |y/° =
bilxl* + IyP). q

For the case where b(|x[* + [y|*) > ly|* (which
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can obtain only if & > 0, and x # 0), we simply
note that for

D)

b |x'|] = Ex, y; b),

we have
Eox — x',y) exp [—(1 —

which, together with the inequality (58), completes
the proof.

The proof of assertion (f) is trivial once assertions
(a) to (e) have been proved.

We conclude by stating in a theorem the principal
result of this section, namely, the exponential bounds
on the Green's function G,,.

Theorem I. Let G,,(z, z’; 7) be the Green's func-
tions defined by Eq. (20b) or (21b), subject to all
the assumptions made in Secs. I and II. Let the
three functions E,(z), r = 1, 2, or 3, be defined by

E.(z) = E(x,,y.; b)), (59)

where the function E(x, y; b) is defined by Eq. (54).

Let 6 be any number such that 1 > 6 > 0. Then
there exists a constant K(6) such that for (r, s, f)
any cyclic permutation of (1, 2, 3)

|G..(z,2; =D} < K(OE (8 — )[Ix, — xi|

X ly. — yil (|xe — x| + |y, — gD (60)

V. EXPONENTIAL BOUNDS ON THE THREE-BODY
GROUND-STATE WAVE FUNCTION

We shall now make use of the results contained
in Theorem I to derive from the integral equations
(22b) some inequalities satisfied by the wave function
¥(2). Let @ be a fixed constant such that 1 > 8 > 0,
and let (r, s, t) be a fixed cyclic permutation of
(1,2, 3). By inspection of the integral equations (22b)
we obtain the inequality

()| < f( TR, D6, e ), 619

where

Fi(z,2) = E{8(z — &) [¥@)|,  (61b)

Fie,2") = E[5(1 = ) — z')]{qu(Z’)l

A
1+ ly|
T A 2] }
+ IVN(Z, 1 1+ ‘y l + lV123(Z)| 1+ |zfl y (610)
Fi(z,2") = |Gz, 25 — D] 1E[3(1 + ) — )1}

><{1+1y|+1+,|ys|+1+|z|}
i i [l

(61d)
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It follows from Theorem I that the integral
f. &)z, 2) < K, (62)
(@)

for some constant K,, which depends on ¢ but
not on z. '

Let
Me) = Lupb. {KlEt[%(l — B — z)][%yl—'
QUyiD Iyt | QU’D I2’] }
A 1+1z’\] , (633)

where Q(g) is the function introduced in connection
with the inequalities (16). The function A(z) exists
for all 2z, and it follows from Eq. (61c) and the
inequalities (16) that

K.F,(z2,2") < h(z), forall 2. (63b)
Let
m@) = lLub. {E(6 — 27) [¢@&)[}.  (64)
We then have
Fiiz,2") = m(®); Y@ < m@). (65

Combining statements (61) to (65), we then obtain
Y@ < h@m(. (66)

It is worthwhile to compare the present study with
the investigation in Sec. III. We note that the
definition (64) is analogous to the definition (28);
Eq. (65) is analogous to Eq. (37), and the inequality
(66) is analogous to inequality (30). Equation (34)
played an important role in the proof given in
Sec. III; the corresponding relation for the present
study is

l.u:b. {E.[6(z — 2")m(z")} = m(z). (67)
This relation is an immediate consequence of the
definition (64) and Eq. (56¢) in Lemma IV.

Now let B be any region such that h(z) < 1
throughout R, and let £ be the complement of R.
By a procedure entirely analogous to the one followed
in Sec. III we obtain the analog of Eq. (35),
namely,

m() = lub. @) E.[6G — )]}, (68)

By inspection of the definition (63a) we see that we
may select as the region R the set of all z such that
ly.] > A, (69)

where A is a sufficiently large constant (which
depends on 6).

ly.l > A,
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We shall now formulate in the form of a lemma
the results obtained so far in this section, together
with the results expressed by Lemma I.

Lemma V. Let 8 be any number such that
1 > 6 > 0. Then there exists a number A such that
the three-body ground-state wave function ¥(z)
satisfies the four inequalities

W@ = EJ6@ — 2] |91},

z

(703)

lub. |
"ERWIER,URS

Y@ = lub. {E.[6 — )] [¥E)]}, (70b)
' €ER,UER,

where the functions E,(2), t = 1, 2, 3, are defined
in Eq. (59), and where the function E,(2) is defined
in Eq. (55), and where the region R, ¢ = 1, 2
and 3, is the set of all points z such that |y.| > A,
and where B, is the complement of R,.

We shall show that the four inequalities (70) are
inconsistent if [Y(2)| falls off too slowly as z tends
to infinity. For this purpose we state:

Lemma VI. Let k be any number such that
1=2k=0. Let

B(z) = max {E\(2), E,(2), E;(2)}. (71)

Then, with the notation of Lemma V,
(a) , lLub. {BE)E.(z — ')} = B(), (72a)
(b) ,l.p.b_. {E.(z — 2)B()} = B, (72b)
(¢) lub. {B(kz)E.(z — ')} < B(kz). (726)

2 €ER VR, UR,
Finally, for all zin B,,
(d) lub. {E.(z — 2)B(ke)}
z’€ER

< K B{[k + (1 — k)le}, (72d)

where K, and 1 = 8 = 0 are some fixed constants
which do not depend on k.

Proof. The statements (a) to (¢) follow trivially
from the definition (71) and the properties of the
functions E listed in Lemma IV, and we may omit
the detailed demonstration.

To prove the assertion (d), we define the linear
manifolds N, ¢ = 1, 2, or 3, such that N, is the
set of all z such that y, = 0. We note that X is the
upper bound on the distance from any point of
R, to N, Letz bein R, and let 2, be the projection
of z, into N,. We then have |z, — 2,] < \. From the
exponential nature of the functions F,(z) and B(z)
follows that

B([k + (1 — k) é8leo) < KiB([k + (1 — k) 8lz)),
and
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{E(z — #)B(k2)}

2’ ER,UR,

< K, lub.

2’ENUN,

{E.(zo — 2)B{kz")},

where K, and K, are constants independent of k
and 8, where & and & are such that 1 = k£ = 0,
1zé6=20.

To prove assertion (d) it suffices to show that
there exists a 8, 1 = 8 > 0, with the property that
for every z in N,, and for every k such that
1zk£=20,

Lub. {E/(z — 2)B{k2')}
< B{lk + &1 — bl}.  (73)
We show this as follows: For z in N, we have
lu.b. {E(z — 2)B(kz')}
£’ EN,UN,
£ [ Lub. {E[Q — B — 2)]}]
z'EN(UN,
X [ Lub. {E[k(z — 2)Bkz')}]. (74)
z'ENUN,
But we certainly have
lub. {E,[Q — kK — )]} = B[s(1 — kz] (75)

z ' ENFUN,
for some & which satisfies 1 = 6 > 0. Furthermore,
by part (e) of Lemma IV,

lub. {E.(z — 2)B{E)}

z'EN/UN,
= lub. {E,)(z"" — 2)B(YE,(z — 2'")}
z’ENUN,
e
< lub. {BE"NE,(z — 2"")} = B(). (76)
2’ 'EN

Inserting the results contained in inequalities (75)
and (76) into inequality (74), we obtain the in-
equality (73), which completes the proof of the
lemma.

We are now in a position to state the principal
result of this paper as follows:

Theorem II. (a) For every 6 such that 1 > ¢ > 0
there exists a constant C(6) such that the three-
body ground-state wave function ¥(z) satisfies the
inequality

()| < C(6)B(82), (77
where the function B(z) is defined by Eq. (71).

(b) If |¥(2)] is replaced by B(62) in the inequalities
(70) of Lemma V, then these inequalities are
satisfied.*

4+ The result contained in Theorem II, for the particular
case where all the potentials are bounded by decreasing
exponentials, had been obtained previously by a different
method by one of the present authors; E. Leo Slaggie, Ph.D.
thesis, University of California 1960 (unpublished).
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Proof. The proof of the theorem is very simple
with the aid of Lemma VI. To prove part (a) we
select a 6 such that 1 > 8 > 0, and a constant k
such that 1 = k = 0, and a constant C, such that

[¥@)] < C.B(k6z).

This is always possible since we may, in particular,
select £ = 0. It then follows from assertions (c)
and (d) of Lemma VI that

W(@)| < CiK.B([k + (1 — k)162),
or, repeating the procedure n times,
¥@)| < CKB([1 — (1 — 81 — k)]62).
Since & > 0, we, thus, obtain the estimate
@] < C:(6, 9)B(662),

where 6 and ¢’ can be selected as close to 1 as we
please. For every such selection C,(8, ¢') exists, and
the part (a) of the theorem thus follows.

Part (b) of the theorem follows by inspection from
assertions (a) and (b) of Lemma VI.

The reader will note that part (b) of Theorem II
states that the inequalities (70) in Lemma V cannot
yield a “better” bound on |¢(2)| than the one given
in inequality (77).

In Appendix IV we shall show that there exist
potentials which satisfy our assumptions and for
which the inequality (77) is the best possible in
the sense that for any 6 > 1 the inequality

l¥@] > B(62)

holds for sufficiently large |z|. We conjecture, but
have been unable to prove, that the same might be
true for all potentials which satisfy our assumptions.
As it stands, we have thus proved that without
further assumptions on the potentials the ex-
pontential bounds given cannot be ‘‘improved.”

Our proof perhaps appears to be quite complicated
at first sight. There exists, however, simple geo-
metrical interpretations for all the steps carried
out in this section in terms of which most of the
discussion becomes intuitively ‘“‘obvious.” For a
discussion of this interpretation we refer to Ap-
pendix V.

V1. ANALYTICITY PROPERTIES OF THE
THREE-BODY GROUND-STATE WAVE FUNCTION
IN MOMENTUM SPACE

Let f(k) be the Fourier transform of ¥(2),

) = @0~ [ @@¥E e (—ika), 78
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where % is a real vector in the six-dimensional
Euclidean space &.

We denote by p, and q, the projections of % into
the three-dimensional Euclidean spaces &.. and §,,
which we introduced in Sec. II. In analogy with
Eq. (11) we, thus, have

k= (p,q): = (P2, @2)2 = (3, Qa)s, (79)
and the pair (p., q.) is related to the pair (p., q.)
by the relations (10a). Furthermore,
k-z=pix; + Q¥ = X + Q2°Y2
(80)
Since the wave function ¢(2) is exponentially
bounded, we can extend f(k) by analytic continua-
tion into some region in the complex momentum

space &,. Let, therefore, & be complex, and let us
employ the notation

= Ps X + Q3°Ys.

k' = Re (k), k'’ = Im (k),
p{ = Re (P:): Pf' = Im (Pz); (81)
¢, =Re(q), ¢V =Im(q).

To determine the region of analyticity of f(k), we
investigate the convergence of the integral
[ d©B@ e @2, (82
(®)
where B(2) is the positive function defined in Eq.
(71).

From the definition of B(z), it follows that the
integral (82) converges if an only if each one of the
integrals

| ¢eRE ew @), (83)
(=)
where ¢ = 1, 2, or 3, converges. We examine the
integrand

1/2

E,(2) exp (k'-2) = g.Lb. {exp [—1"" |y,

lzrzbe
- A =9 x|+ px + ¢y}

The integrand is, thus, a decreasing exponential
function if and only if for some r, 1 = r = b,, we
have

Pl <@ =0 g <% (89

The condition (84) may be restated in the form
] < (=02 U+l <1 (8

From these results and from Theorem II follows
Theorem III.
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Theorem 1I1. The three-body ground-state wave
function f(k) in momentum space, defined in Eq.
(78) as the Fourier transform of ¥(z), can be ana-
Iytically continued into a region T, in complex
momentum space &, the region 7, being defined
by the four inequalities

K= pi'" + lag'f < 1,
bl < (1 —b)'*, t=1,2, or 3,

where k', p}’, and q)’ are the imaginary parts of
the vectors k, p., and q,, respectively. If we interpret
the inequalities (86) as confining &’ to a region
T in the real space &, then T, is the product of &
with 7, and is, thus, a tube region. The region T is
convex, and so is 7',.

The momentum space wave function is, thus,
analytic in the region defined by the inequalities
(86), which region has a very simple geometrical
and physical interpretation. It is quite conceivable
that the results contained in Theorem III could be
obtained much more easily. It must be noted,
however, that whereas Theorem II implies Theorem
I11, the converse is not in general true. We shall
consider this question, and some related topics,
in some detail in Appendix V.

It is easy to see that the region T, is the largest
tube of analyticity for f(k) which can be obtained
from the estimates in Theorem II, i.e., the largest
region of analyticity which is a product of real
momentum space and a region in imaginary mo-
mentum space. The largest tube of analyticity may,
of course, be smaller than the largest region of
analyticity of f(k), even if the estimates in Theorem
IT are the best possible.

(86)

VII. ON ELECTROMAGNETIC FORM FACTORS

Suppose that particle 1 carries a charge, whereas
particles 2 and 3 are neutral. Considering the ground
state of the three-body system as a particle, we
may inquire into the distribution of charge in this
particle, i.e., study the charge form factor of the
particle. We are, of course, not in a position to
discuss anything but the asymptotic distribution of
charge.

To cast the discussion into a form in which the
relationship to the theory of the vertex operator in
quantum field theory is apparent, we consider the
matrix element

M) = [ &) d@) @avin,

X exp (A1) ¢, 1, T3), 87
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where

r, =1+ g, u=1,2 and 3,

W, (1), T2, 13) = Y(X,, y1) exp (K, ;7).

The vector r is thus the position vector of the
center of mass, and the vectors K; and K, denote,
respectively, the initial and final total momenta
of the three-body system, regarded as an elementary
particle on the mass shell.

Taking the variables r, x,, and y, as variables of
integration instead of r,, r,, and r;, which variable
transformation may be carried out by aid of the
relations (9), we may carry out the integration over
r and obtain

M(A) = C &K, — K: — A)M(A) (88)
for some constant C, and with
M) = [ @) dve, yove, 1)
X exp (iy A-x,),  (89)
where the constant v is given by
v = (my + ma)*[2Bom,(my + my + my)] 7V (90)

Because the ground-state wave function ¥(x,, y,)
falls off exponentially, the “vertex operator” My(A)
can be analytically continued, as a function of the
momentum transfer 4, into a tube region in complex
three-dimensional space. This tube region may be
determined either from the estimates in Theorem IT,
or directly from the facts stated in Theorem III.
The result is:

The function M,(A), as a function of complex
momentum transfer A is analytic in the tube region

|| < 24y, o1
where A’ = Im (A), and where
g, = (my/M,) min {[2M,(B, — B)]'*,
[(m2 + ma)/ms][2M (B — B3)]'"?,
[(ms + mg)/m:)2Ma(By — B)I"*}. (92)

The function M,(A) is essentially the charge form
factor. The charge distribution for the particle at
rest is given by

Cle) = [ 5 Wyl (©9)
This function then satisfies the inequality
[Clen| < C"(8) exp (—28¢, [e.1) (94)
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for every 6 such that 1 > 6 > 0, where C”'(6) is
some constant which may depend on 6.

The formula (92), whereby ¢, is determined, has
a simple physical interpretation, and is, in the
opinion of the authors, entirely in accordance with
what one might expect on the basis of intuitive
physical considerations. We shall support this as-
sertion by considering some examples in Sec. VIII.

If we assume that the potentials are invariant
under rotations, the function C(p,) will be a function
of |p,| only since the ground state is nondegenerate.
If, furthermore, the bound expressed by inequality
(94) is indeed the best possible, in the sense that it
fails for any 6 > 1, then the tube, defined by in-
equality (91), in which M,(A) is analytic is the
largest possible. Actually M,(A) is a function of
A’ only, and as a function of this variable it must
exhibit a singularity at the point A* = —4g?. This
corresponds, in the theory of the vertex function in
quantum field theory, to what has become known
as an ‘“anomalous threshold.”® The authors wish
to express the opinion that this singularity is a
“nonrelativistic form” of a singularity which will
always be present in the vertex function of any
particle, in the framework of field theory; although
the vertex function may, of course, have other
singularities which occur for smaller values of —A°.
For the study of form factors we believe one is
permitted to regard any stable particle as the
“bound state” of any set of particles into which it
could decay, through interactions which exist in
nature, and in conformity with selection rules,
given the necessary extra energy. For further dis-
cussion of these and related questions we refer the
reader to the literature.”’

We wish to emphasize, however, that a knowledge
of the asymptotic form of the charge distribution of
a particle can be no substitute for the kind of de-
tailed knowledge which only a detailed dynamical
theory can provide. The methods of this paper can
at most tell us that a slowly falling-off exponential
“tail” may be present, but they fail to give any
information about the size of the coefficient which
multiplies this exponential function.

VIII. CONSIDERATION OF SOME EXAMPLES

In this section we shall consider some specific
examples of the function B(z) in physically interest-

8 This terminology is somewhat unfortunate since nothing
could be more “normal’”’ than a form factor computed from
a nonrelativistic wave function when a nonrelativistic model
seermns permissible.

¢ R. Karplus, C. Sommerfield, and E. H. Wichmann,
Phys. Rev. 111, 1187 (1058).

7 R. Oehme, Nuovo cimento, 13, 778 (1959).
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ing cases. Or rather, we study a function F(z) which
has the same asymptotic exponential behavior as
B(z), but which has the advantage that it can be
represented by a single and simple analytic ex-
pression.

Let us thus define the function F(x, y; b), where
1>b=0,by

F(x,y;b) = [exp (—(1 = b [x)
+ exp (— [x]*/[z])][exp (6" ly])
+ exp (ly}*/le)] ™. (95)

It is easily seen that the asymptotic behavior of
the function F(x, y; b) 1s similar to the asymptotic
behavior of the function E(x, y, b), defined in Eq.
(54) in Sec. I'V. We may therefore regard the function

F(z) = F(x;,¥:; b)) + F(x, ¥2; b2)
+ F(x;, ys; bs) (96)

as a function which characterizes the asymptotic
exponential behavior of the wave function, since
for every 8 such that 1 > 6 > 0 there exists a
constant K (8) such that

W@ < K(6)F(tz). (97)

It should be noted, however, that our discussion
is defective in the sense that we have not proved,
for the cases which we are going to consider, that
there does not exist a “better” estimate than the
one given in inequality (97).

Let us now consider the expression (96) quali-
tatively, employing a physical language which we
believe has a considerable intuitive appeal. We
first examine the function F(x,, y,; b,), and remind
the reader that x,, which we may call the “separation
coordinate,” is essentially the distance of particle
1 from the center of mass of the 2-3 system, whereas
y1, which we may call the “internal coordinate,” is
essentially the vector joining particles 2 and 3.
The quantity b, is the binding energy of the ground
state of the 2-3 system, measured in units of B,,
the binding energy of the ground state of the three-
body system. The quantity (1 — b;) is then the
separation energy, or the binding energy of particle
1 to the ground state of the 2-3 system. We may
therefore expect that when the separation coordinate
X, is large compared to the internal coordinate y,
the wavefunction should behave like the product

€xp (=t ly, !) exp [—(1 — bl)l/2 % H (98)

This is indeed the asymptotic behavior of the func-
tion F(x,, yi; b;) whenever |y,|* < b,(x,)° + [y.[%).
However, as the ratio |y,|/x;| grows larger the
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behavior of the wave function changes, and we have
F(xy, y1; 0) ~ exp [—=(|x[* + 7. )] (99)

whenever |y:|* = b.(jx,]” + [y.[).

It is clear that the behavior of the function F
must undergo a change of this nature, since for |y, |
large compared to |x,| one can hardly think about
the system as a bound state in which particle 1 is
bound to the “particle’” formed by the ground state
of the 2-3 system. This is particularly clear in the
case where b; = 0. We may say that the more
loosely bound is the 2-3 system the more easily
does it lose its individuality as a ‘“particle.”

Suppose now that we wish to study the distribu-
tion of particle 1 in space, disregarding the location
of particles 2 and 3. This means that we study the
asymptotic behavior of F(2) as a function of x,, but
with y, arbitrary; in particular y, could be a func-
tion of x,. At first sight it appears natural to think
that the required asymptotic distribution of particle
1 is given by the “product wave function” in ex-
pression (98), in which case the extension of the
distribution would be determined by the separation
energy (1 — b,) (and, of course, by the various
masses). It may, however, happen that one of the
other separation energies, say (1 — b;) is very
small, which means that the binding energy of the
1-3 system is large. In this case we expect the three-
body system to have an extended structure, and the
particle 1 may have an extended distribution in
space as a component of the bound 1-3 system. If
we now consider Eq. (92) in Sec. VIII we see that
the somewhat complicated expression for the con-
stant ¢g,, which describes the distribution of particle
1, has a very simple and natural physical inter-
pretation.

We may summarize this discussion by saying that
to determine the asymptotic exponential behavior
of the three-body system one must consider all
possible virtual disintegrations of the system into
two or three separated particles. The exponential
bounds may then be computed in a trivial fashion
from the binding energies and the masses.

Before we consider specific examples we may note
that the function F(z) is invariant under stmul-
taneous rotations of x, and y;, and is therefore, a
function only of the three invariants which can be
formed from these vectors. The ground-state wave
function for the case of spherically symmetric po-
tentials has the same property. As the three in-
variants we may select the quantities |y;|%, [y./,
and |ys[°. The three vectors y;, y., and y, are, of
course, not independent, but satisfy the identity
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/2

Y1I‘¢1~]/2 + Y2#2_1/2 + Y3M;1 = 0, (100)

and we may, therefore, express the scalar product
of any two of the vectors y. in terms of their squares.
We quote a number of relations which hold between
the various invariants, foilowing the notation in
Sec. II.

2 = (m1 + my 4+ ma) 7 [ly. *(me + my)
-+ iYQiz(m:s + m) + !ygtz(ml + my)]
= QBO(m] + m., + mS)_l[|91212m17’12

+ lows|” momy + lou|” mamil; (101)
x5 = (m, + m. + my) '[y.]" (m, + m)
+ ly* (m, + m) = ly.|* m.]
= 2Bym.(m, + m, + my)'[lo.[* m,

+ ool me — ol u.). (102)

The three invariants |g,,|°, which are simply the
squares of the sides of the triangle formed by
particles 1, 2, and 3, have the advantage of having
a very direct geometric meaning. It is worthwhile
to restate, in terms of these invariants, the conditions
which determine whether F(x,, y.; b,) has the form
given in expression (98) or the form given in ex-
pression (99).

We thus have two cases:

Case A:

: [A =~ b) + m.(m, + ms)il]

Ors
z blle. |’ (my/my) + le..|” (m/mJ)],  (103a)
in which case
F(x.,y:5 b)) ~ exp (—Ie]).
Case B:
e[ [(1 = b)) + m(m. + m,)"’]
< billew” (m/m) + lo..|” (m/m)],  (103b)

in which case
F(x,,y:; b)) ~ exp [_bm 1Yti — (1= b)) %, [].

Let us now consider the case of the neutral helium
atom. We label the two electrons by the indices 1
and 2, and the nucleus by the index 3. We thus
have m, = m, = m = the electronic mass; to
simplify the discussion we shall assume that the
nucleus is infinitely heavy. In this limit we have

[/ = |y.| = the distance of
electron 1 from the nucleus;
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[Xs| = |yil = the distance of
electron 2 from the nucleus;
The binding energies are: B, = B, = 54.3 eV,

which is the approximate ionization potential of
the singly ionized ion; B; = 0, and B, = B, + 24.8
eV, where the number 24.8 eV is the approximate
ionization potential of the atom. We thus have,
approximately, b; = b, = b = 0.69; b; = 0. Selecting
041 X a, as the unit of length, where a, is the
Bohr radius in hydrogen, we thus obtain the follow-
ing expression for the function F(z):®

exp (=1 — b)Y Ix]) + exp (=[x, |/ 2]

P& = =0 07 ) + exp (=7 l2]

4o (=1 — 5 Ix,]) + exp (—[x|°/l2])

exp (0" [x,}) + exp (|x["/]z))
exp (—Ixs]) + exp (— [x:]*/]2])
P L 04

T+ oo (kD (104
where
!z! = (!X1|2 + {XZEQ)I/Z, |X3|2 = (x, + x2)2/’27

!y3|2 = (x, — X2)2/2-

As a second example we consider the cases of the
H® and He’® nuclei.” We neglect the proton-neutron
mass difference and, thus, have m, = m, = m; = m.
Let the deuteron binding energy be B, = B, =
2.2 MeV. Two neutrons or two protons do not bind
and we thus have B, = 0. In the case of tritium
the proton is indexed by 3, whereas in the case of
He® the neutron is so indexed. The binding energies
are B,=8.5 MeV for H® (hence, b,=b,=b=0.26),
and B,="7.7 MeV for He®, (hence, b, =b,=b=0.29).

Letting ¢ = (2B,m/3)"® and employing the
notation

z = c(lon|" + Jowl” + loaa )",
2 = (o]’ + los " — 3 0",
= C(‘stlz + fonl* — % ]93112)1/2,
2 = c(jon [ + lowl” = § o))",
v =c(3/2)'” leas|, 12 = ¢(3/2" [gul,
ys = ¢(3/2)"° lowe],
g =",

&
I

P = (1 - b)1/2)

§ The last term in the expression for F(z) may be ignored
as it is easily seen that it does not affect the asymptotic
exponential behavior of F(z).

¢ Wave functions for H? have been studied in great detail
by G. H. Derrick, Nuclear Phys. 16, 405 (1959) and references
therein. In particular, he finds restrictions on the behavior
of the wave function near the in line and equilateral con-
figurations.
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we then have®
exp (—px,) + exp (—ai/2)
exp (qy,) + exp (4:/2)
exp (—px2) + exp (—a3/?)
exp (qy») + exp (y3/2)
exp (—a,) + exp (—xi/z)'
1 -+ exp (y3/2)

IX. SOME REMARKS ON
VARIATIONAL COMPUTATIONS

F(zy =

+

We wish to comment briefly on the relevancy of
our results for the computation of energy levels and
wave functions by variational methods.

As far as the authors know, no variational com-
putation involving a three-body system has ever
been carried out in such a way that each element
in the set of trial functions would satisfy the asymp-
totic conditions which we have derived. As an
example, we may cite the computations of the
energy and wave function for the ground state of
the helium atom. As we can see from Eq. (104) in
See. VIII, the asymptotic behavior of the ground-
state wave function will not be correctly described
by a single exponential like exp (—c|zl), nor by an
exponential function like exp (—clx,| — c[xa|),
where |x,| and [x,| are the distances between the
electrons and the nucleus. The latter form is as-
sumed, for instance, in the computation carried out
by Pekeris.’” We wish to emphasize strongly, how-
ever, that the fact that the trial functions have the
“wrong’’ asymptotic behavior by no means implies
that the variational computation of the energy
would be wrong in principle. All that is required
for the success of a variational computation of a
ground-state energy is that the expectation values
of the Hamiltonian operator evaluated over the
set of trial functions should have the true energy
as the greatest lower bound. The asymptotic be-
havior is of no great consequence. In fact it is
perfectly possible, for Schrodinger equations of the
kind we have considered, to construct a sequence of
wave functions, each one of which goes asymptotic-
ally like, say 1/z|°, but such that the expectation
value of the Hamiltonian converges to —B,, the
ground-state energy. We believe these facts to be
well known, and we will, therefore, not elaborate.

In spite of what has been said about the unim-
portance in principle of the asymptotic behavior of
the trial functions in a variational computation,
the possibility remains that an improvement, from a
practical computational standpoint, can be achieved

10 C. L. Pekeris, Phys. Rev. 112, 1649 (1959).
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by selecting trial functions which have a realistic
asymptotic behavior. For instance, in the case of
the helium atom referred to earlier the trial functions
are polynomials in the position vectors multiplied
by the exponential function quoted. It is tempting
to say, very loosely, that the polynomials may be
“partly wasted in correcting the asymptotic be-
havior,” the implication being that it might be in
the interest of computational economy to replace
the exponential function actually used by one which
better conforms to reality. This may in particular
be the case if one desires to compute the ground-
state wave function rather than the energy. On the
other hand, it is undeniable that a function like
the one exhibited in expression (104) in Sec. VIII
is more complicated than a simple exponential
function, and any advantage gained in the sense of
faster convergence may be nullified by the increased
difficulty in the evaluation of expectation values of
the Hamiltonian. It is clear that in selecting the
proper computational procedure it is essential to
take the behavior of the potentials into account,
since they determine the relative importance of
the various regions in configuration space. We
have not studied any concrete cases and we therefore
do not know whether the above suggestions have
any merit. We feel, however, that it is of interest
to consider these matters in connection with varia-
ational computations. In this connection we wish
to refer the reader to a variational computation on
the hyper-triton carried out by Downs and Dalitz."
These authors discuss the asymptotic behavior of
the wave function, and comment upon the relative
merits of various kinds of trial functions.

X. POSSIBLE GENERALIZATIONS

In this section we shall comment briefly upon a
number of possible generalizations of our investi-
gation.

(a) First of all, we note that in deriving Theorem
IT we have not really made use of the fact that
¥(2) is the ground-state wave function. Theorem II,
therefore, holds for any bound state of the three-
body system, of energy —B,, where B, > B, for
t =1,2and3.

(b) That the conditions which we have assumed
the potentials to satisfy are unnecessarily severe is
suggested by our discussion of the simple case of a
particle bound in a potential, in Sec. ITI.

Although our theory applies to most of the three-

1B, W. Downs and R. H. Dalitz, Phys. Rev. 114, 593
(1959).
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body problems defined in terms of potentials which
seem to be physically meaningful, nevertheless there
is a notable exception, namely, the case in which
the forces become infinitely repulsive at small
distances, ‘““too rapidly” for our conditions to hold.
It may, of course, be argued, and we are willing to
subscribe to this opinion, that force fields of this
kind derivable from a static potential do not occur
in nature and are therefore meaningless physically.
Since, however, potentials of this kind have often
been considered in models of interparticle inter-
actions, particularly in nuclear theory, it would
nevertheless be interesting to know whether our
results, as expressed in Theorem II, remain valid.
Our results certainly hold for jfintte repulsive cores,
no matter how strongly repulsive. The methods
which we have employed cannot, however, without
modifications be applied to the case of an infinitely
repulsive core described by a potential which be-
comes infinite at some finite interparticle separa-
tion. The authors believe, but have not proved, that
the necessary modifications can be made, and that
Theorem II continues to hold in the case of an
infinitely repulsive core also.

(¢) Our procedure may be readily generalized to
the case when the particles have spins, and where
the interaction is described by a Hermitian matrix
acting on spin space, the matrix elements of which
are funetions of the position vectors which satisfy
the conditions which we have imposed on the
potentials. In carrying out this generalization we
would study, in place of our wave function ¥(z),
that spinor component which is largest in absolute
value. The Green's functions G,,(z, z’; —1) would
be replaced by matrices. The modifications intro-
duced by the spins are not of an essential nature,
and they do not affect the validity of Theorem II.
The discussion in Appendices III and IV cannot,
however, be generalized in such a trivial fashion.

(d) If we consider the method whereby Theorem
IT was proved, we may also note that this method
applies to some problems in which the interactions
cannot be described by potentials at all. Let us,
for instance, consider the modification arising when
a potential V(y) [or rather, the operation of multi-
plying the wave function by V(y)], is replaced by
an integral transform on the wave function where
the kernel V(y, y’) satisfies the condition

[V, y) < Qy| + ly’'D) exp (—a |y — y'D),

where Q(g), as before, is a function which satisfies
the conditions (5) in Sec. I. We claim, but shall not
prove, that if @ > 1, then Theorem II holds and
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may be proved by a minor modification of the
method which we have used. We are not here
claiming that kernel functions of the above kind
are of physical interest, but we merely wish to point
out that it is not essential for the success of our
methods that the interaction can be deseribed by
a static potential.

(e) Concerning the generalization to a relativistic
theory, the situation is somewhat obscure. It does
not appear particularly meaningful to try to consider
relativistic wave equations describing a finite num-
ber of particles, since creation and destruction
phenomena play an essential role whenever the
particles have energies in the relativistic region.
Problems of this nature belong to the realm of
quantum field theory. One may, however, expect
that some of our results can be looked upon as
nonrelativistic limits of some features in field theory,
especially since our results can be regarded as being
essentially of a kinematical and geometrical nature.

(f) The question arises whether our methods can
be readily generalized to the case of more than three
particles. The nature of the results for the case of
three particles suggests that this can be done, and
that the asymptotic behavior of a many-body wave
function is always determined, insofar as the ex-
ponential falloff is concerned, by the masses and the
binding energies appropriate to the different modes
in which the particle can be broken up. For instance,
in the case of a bound state of four particles we
would have to consider the breaking up of the system
into two, three, and four fragments, where the
fragments themselves may be bound states of a
smaller number of particles.

Concerning the generalization of our methods,
it seems likely to us that the generalization can be
carried out step by step as follows: Suppose that
exponential bounds have been determined for n-
particle wave functions, where n £ N for some N.
Then it should also be possible to determine ex-
ponential bounds, like the ones we have found,
on the n-particle Green’s functions, when the com-
plex energy parameter is outside the spectrum of
the Hamiltonian for the n-particle system. 1f this
can be done, one may trivially determine exponential
bounds on the Green’s functions which describe a
system of particles consisting of two subsystems
between which there is no interaction, and such
that the number of particles in each subsystem
does not exceed N. These last-mentioned Green’s
functions occur as factors in the integrands of a
number of integral equations satisfied by the wave
function (or Green’s function) for a system of
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N -+ 1 interacting particles, and it seems reasonable
that these integral equations can be used to derive
exponential bounds on the (N + 1)-particle wave
functions or Green’s functions.

The path to an extension of the procedure to any
number of particles thus seems clear. We have not,
however, investigated the question in detail, and
we, therefore, do not wish to assert that an un-
foreseen complication cannot arise.
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APPENDIX I
In this Appendix we shall prove Lemma II,

exp (in'* |y — y'])
4r fy — ¥

Gy, y;m =

E. L. SLAGGIE AND E. H.

WICHMANN

stated in Sec. IV. We follow the notation of Sec. I'V.

The Green’s function G'(y), defined in Eqs. (43),
satisfies a well-known integral equation which we
may write symbolically as

(Hy—n)'
= (=V, =" = (=V, = V(=V; -~
+ (=V, = VH, =) V(=V, — )7,
(105a)

where 7 is a complex number not in the spectrum
of H!; n will then also be outside the spectrum of
— V.

More explicitly we may write the integral equation
in the form

V(ya) exp [in'*(ly — yo| + Iy’ — yal)]

- d( n)

(e @m)* |y ~ yol ly" — yol

+ d*(yo) d’(y?)

V(yo) VyH) G (¥o, ¥5; m) exp [in'

Uy =yl + Iy’ — ysD]

(e}

In the above equation we have selected that branch
of the function 5"/ for which

p = Im ("% > 0. (106)
We select, a fixed constant @ such that 1 > ¢ > 0,

and define two functions, m(y, ¥y’; 6, 7 and
h(y, ¥'; 6, p), by
., _ v =yl
m(Y; Yy, 0’ 77) 1youy}o:)’ {1 + {yo —_ y(’)l
X |G'(y0, ¥o; M|
X exp [—Op(ly — Yol + Iy’ — yél)]}; (107)

W,y 0,0 = [ 20 G0

ly =y 1+ ly— yol)Q(iyJ)Q(lyol)
X@ =yl Iy =0 A+ y =¥ ¥o - ¥4l

X exp [~ (1 — 0)p(ly — yol + [y — yiD], (108)

where p is given by Eq. (106). We shall take it for
granted that the function m(y, y'; 6, n) always
exists. It is easy to see, by inspection of the inte-
grand in Eq. (108), that the function Ay, ¥'; 6, p)
exists.

Making use of the above definitions, as well as of

(4n* vy — vol ¥’ — vl (105b)

the estimate on the potential given in inequality
(41) of Sec. IV. we may derive, from the integral
equation (105b) the inequality

| fG'(Y; ; 77)[

S Ry, y'; 0, omly,y’; 0, m)
+ A6, p) exp (—bp ly — ¥')),

1+!y

(109)

where

1 3
40,0 = £+ 1n {[ o

(@)

% Q(ﬁoluiy -y’ i
U ly =yl Iy — vl A+ ly —¥'D

X exp[—p(ly = yol + ¥ — yo) + 0o [y — y’l]}-
(110)

It is easy to see that the number A (6, p) exists
for all 6 and p, such that 1 > 6 > 0 and p > 0O,
and that it furthermore satisfies the condition

A6, p) < Ay + A5/(1 — O)p, (111)

where A, and A4, are constants independent of 8
and p.
We next derive an estimate on the function
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h(y, ¥'; 8, p), defined in Eq. (108). Let 6 be a fixed
constant such that

A—-—60p=26>0,
and let the function g(y; é) be defined by

(112)
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g(y; 9
- Lub. {Qf'ﬂi ’{Jyf—f[ exp (=3 |y — yob} )

and let J(8) be defined by

J(9) = lub. { o, G a8 exp [= 6y — yol + [y — ¥iD]

X Gny 50! lyal Iy ~Ylly =yl lyo—yol A+ Iy =¥
R,: Re(p) £ —r, In] > 7. (119b)

By inspection of the integral in this definition one
sees that the integral is a bounded function of y
and y/, and the quantity J(8), therefore, exists.

Using the definitions (113) and (114) we may
now derive, from the defining equation (108), the
following estimate:

My,y’; 8,0 < g(y; 8)g(y'; 6)J(8). (115)

It follows, however, from the conditions (5) on the
function Q(g), that the function g¢(y; 8), which
depends on y only through [y|, tends to zero as |y|
tends to infinity. Since g(y; &) is furthermore obvi-
ously bounded, we may conclude that for every
6 > 0 there exists a number r; such that
ry,y’; 8, p) < 1/2. (116)

whenever
lyl + 1yl =7,

Taking into account all the facts established so
far in this Appendix, we may now derive, by a
minor modification of the procedure employed in
Sec. III to derive Eq. (35), the following inequality:

m(Y) Y': 9; 77) < A(By P)
X exp (—0p ly —y'D) + 3m(y,y’; 6, n)

4+ lub. {——u-r- IG'(¥o, ¥6; |
wowonrers \1 4 Yo — ol

and (1 — 6)p = &

X exp [~0o(ly — yo| + Iy’ — yél)]} , (117)

where B; is so defined that (y,, y3) is in R; if and
only if |yo| + |yi| < 7s.

In the remainder of this Appendix we confine %
to the half-plane

Re(n) = (118)

where 7 is a fixed constant. This half-plane is the
union of two disjoint regions R; and R, which we
define by

R;: Re(n) = —r,

—r < —b,

l’]l =1 (119a)

Given any p, > 0, we may always select r, so large
that
1/2) —

Im (7 P> po (120)

for all 4 in R,.

Let us now consider the case when 7 is in R,.
From the inequality (111) follows that the quantity
A8, p) is bounded (for 6 fixed) when 75 is in R..
Furthermore, we may select a number & such that
the inequality (112) is satisfied for all  in R..

We shall take it for granted that

lub {_JY_O__X_I_ |G (y0, ¥4; 77)[}

(Fo.Yo')ER; + |y0

nER

exists, and we may then conclude that there exists
a constant K’ such that

m(y,y’; 0, n) < K’ exp (—0p ly — y’]) (121)

for all 9 in R,, and for all y and y’. The constant K’
depends, of course, on ¢ and on R, i.e., on r and r,.

It then follows, from the definition (107) of the
function m(y, ¥'; 6, »), that

Y, oo\ ’ 1+ Y - y,|
[G(Y)Y:n)[<K }y_y/‘

X exp(—bply —y'])
for all y and y’ and for all 9 in R,.

To complete the proof of Lemma II we must show
that an estimate like the one above also holds for
n in R,. To do this we exploit the fact that for a
sufficiently large r, the Liouville-Neumann ex-
pansion for G’(x), given symbolically by

@) = (=92 — 9 Z (= V(=¥ — o], (123)

(122)

will converge for all 9 in R,.
Let us write

Gi(n) = (=Y, = 7 [=V(=Vi, —n7]". (129
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It is obvious that for any finite N there exists a
Ky such that

N
; Gy, y';

Ky .
< —‘—Lyl_l exp (—6ply —y'l)  (125)

ly
for all 5 in R,. To examine the remainder we select
N = 2 and n > N. We then have the estimate

Giy, ¥ ;) £ LG,y ; (1 — 8)p)

x ¥ =¥D (196
ly — vl

where

Ly,y;1 — 0p) = ly —¥|
X d(y.) -+ &) @m Q) - -

X QUy.Dlly = vl s = yal -+

X ¥ues = ¥al Iy — ¥/117°

Xexp[—(1 = Oplly = Vil + ly1 = 32| + -

+ Y2 = ¥al + Iy = ¥'D1 (126b)
and where we have selected p, > 0 to be such that
for all 4 in R, we have p = p,. Now, by selecting r,

sufficiently large we may select p, so large (8 is, of
course, fixed) that

Zs Ly, y; (1 — 6)p) < Kpg (127)
for some K, for all y and y’.
It follows that
K K
6, y5 0] <t e (<00 ly —y) (129

for all 4 in R,. Combining the results expressed in
inequalities (122) and (128), we thus obtain, finally,
the result that for every 6 such that 1 > ¢ > 0,
and for every r > b, there exists a constant K (6, r)
such that

K6, n(1+ly—y'D
ly — ¥l
X exp (—ép |y — y']) (129)
for every 7 such that Re () < —r, and where
p = Im (7).
Lemma ITI follows trivially from the estimate in
inequality (129).

IG,(Y; y,; 77)‘ <

APPENDIX II

In this Appendix we shall discuss, in a partly
heuristic fashion, the validity of the integral repre-

E. L. SLAGGIE AND E. H. WICHMANN

sentation for the function G(z, 2/; —1), given in
Egs. (47) in Sec. IV. Let us regard Eq. (47b) as
defining a function G(z, 2’; —1) for the region

x — x'| >0, y —y'| > 0. (130)

Let us define, in the region defined by inequalities
(130), two additional functions, Gr(z, 2’; —1, s)
and Gr(z, 2; —1, ), by

1

GR.L(zaz/; '—‘1,8) = 2_7”

X dn(Hy — n7(H! + 1+ 27,

CRr.L(s)

(131)

where s > 0 is a constant, and where the contour
C.(s) goes from the point 4 = —1 — s — 7-0 to the
point = —1 — s + 2:0 in such a way that the
contour intersects the real axis only at some point
n = —r, where 1 > r > b. Similarly the contour
Cr(s) goes from g = s — -0 to n = s + ¢-0, inter-
secting the real axis only at the point n = -—r.

Then it is easy to see that for fixed z and 2’
satisfying the conditions in inequality (130) we have
lim Gglz,2’; —1,8)

g

= lim Gz, 2'; —1,8) = Gz, 2'; —1).

30

(132)

We may furthermore see that if we multiply the
members in Eq. (132) by the factors |x—x’|, ly—y’|
we may relax the conditions (130) on z and 2/,
and we then have

lim [x — x| G (z,2"; —1,9)

=[x — x| Gk, 2; —1), (133a)
forx — x| =0,y —y|>0;
lim [y — y'| Gale, 2’5 —1,9)

for jx — x| >0,y —y| =2 0.

We next note that the functions G and G,
satisfy inhomogeneous differential equations which
we may write in the form

(Hy + HY + DGz, 2’5 —1,9)

1 rre -1,
27['1. fcn(g) dn(Hl/ n) 2

= §{x — x') (134a)
(H! + H’ + D)G.(z,2"; —1,58)

- — v’ __1_ 123 -1 By
= 80— V) 55 f (Y 147 (134
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The two integrals define projection operators which
in the limit as s tends to infinity become the identity
operators on the Hilbert spaces on which H! and
H!’' act, respectively. We may thus write, sym-
bolically,

lim Gz, 2’; —1,s) = lim G, (z, #';

8~

_1:8)

=

= (H,+ H+ D7 (135)

The functions Gg(s) and G.(s) are, of course, to be
interpreted as representing transformation on suf-
ficiently well-behaved square integrable functions
of x and y, and the formula (135) thus says that
the transformations Gz(s) and G.(s) tend to the
transformation (H! 4+ H!’ 4+ 1)"' as s tends to
infinity. This latter transformation is again repre-
sentable by the Green'’s function associated with the
differential operator (H! + H!’). We may now
conclude that whenever Eqgs. (133) apply the func-
tion G(z, 2’; —1), as defined by Eq. (47b), is indeed
the Green’s function claimed. This concludes our
“demonstration” since we do not regard it as our
duty to discuss expansion theorems and related
delicate questions.

APPENDIX III

In this Appendix we shall present a very simple
alternative proof of the assertion contained in
inequality (27) of Sec. III, concerning exponential
bounds on the ground-state wave function for a
single particle bound in a potential field of force.
We follow the notation of Sec. III. The argument
goes as follows: The ground-state wave function
¢(x) is real and nodeless, and we may assume it to
be positive. Let 6 be any number such that
1>6>0.Let

Yu(x) = ¢(x) — (M/[x]) exp (—0 [x]),
and let

éx(x) = 3(¥u(® + [¥u®))),

where M is a positive constant. Let B, be the region
in which ¢,(x) is positive; hence, the region in
which ¢, (X) does not vanish. We shall show that
for a sufficiently large M the region R, must be
empty.

Let x be in R,. Then

[— V. + V®lpu® = —¢u(x)
- [1 — 6"+ V(x)I(M/|x]) exp (—6 [x]).

By selecting M sufficiently large, the distance of B,
to the origin can be made as large as we please,

(136)
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and since the potential tends to zero as x tends to
infinity, we may select M such that

1—6+Vx >0

throughout R, unless B, is empty.

Now, if Ry is not empty, we evaluate the ex-
pectation value of the “Hamiltonian’ for the trial
function ¢4 (x), selecting M so large that the con-
dition (137) holds. Since ¢ (X) is positive in Ry, it
follows from Eq. (136) that

(61 [(=V32 + V@) | ba) < —Uda | ds),  (138)

which contradicts the assumption that the lowest
eigenvalue of the operator in question equals —1.
Ry, therefore, must be empty. It follows that for
a sufficiently large M

lo()| < (M/x]) exp (=6 [x]). (139)

The constant M depends in general on 6. However,
if the potential is positive outside some bounded
region, we see that the condition (137) can be
satisfied for & = 1, and an inequality like (139)
then holds for ¢ = 1.

It seems to the authors that it should be possible
to treat the case of the three-body ground-state
wave function in an analogous fashion. One is,
however, then faced with the difficulty of construct-
ing a suitable analog to the function ¢,(x).

For the case where the potential is spherically
symmetric, we have, of course, available a number
of simple methods of determining the asymptotic
behavior of the wave function, since we may then
consider the radial equation which is an ordinary
differential equation. Our purpose in presenting
methods which are applicable also in the admittedly
somewhat academic general case was to illustrate
procedures which may be generalized to many-
body problems.

We shall finally show that for 6 > 1 no inequality
like (139) can hold. Let ¢ > 1. We consider

x(x) = (m/[x]) exp (— 0 [x]) — ¢(x).

This function is positive in some neighborhood con-
taining the origin. Let R, be the largest such open
region. Let E_ be the region in which x(x) is nega-~
tive. By selecting m sufficiently small, we can arrange
it so that R_ contains the surface of a sphere centered
at the origin such that R, is in the interior of this
sphere. Let R, be the complement of the union
of R, and R_. By selecting m sufficiently small, we
can make the distance of R, from the origin as Jarge
as we please. We may then select as a ““trial function”
a function which agrees with x(x) on R,, and is

(137)
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zero elsewhere. By a procedure analogous to the one
leading to inequality (138), we establish that for
sufficiently small m the region R, must be empty.
We thus have the result: For every ¢ > 1 there
exists a constant m > 0 such that

[6(x)! > m exp (— 8 |x]) (140)

for all x.
APPENDIX IV

In this Appendix we shall show that the ex-
ponential bound stated in Theorem II is the best
possible that can be obtained in generdl, i.e., with-
out further assumptions on the potentials.

To do this we consider the particular case when
all four potentials V,,(2) and V() are non-
positive. We may restrict our discussion to the
case where none of the two-body potentials V,,(2)
is identically zero.

Since we deal with the ground-state wave function
for spinless particles, we may assume that the
wave function ¢{2) is positive in &. If we now ex-
amine the integral equation (22a), we note that the
contribution to the right-hand side from the inte-
gration over any region in & is positive. It follows
that for every 8 > 1 there exists a constant m(4) > 0
such that

[¥@)] > m(6) exp (—6 l2)). (141)

In certain directions in & the function B(2) equals
exp (—|z|), whereas for certain other directions B(z)
is larger, i.e., falls off more slowly, than exp (—|z]).
Let us, therefore, consider a direction in & for which
B(z) is larger than exp (—|2|); B(z) is then equal to
the largest one of the functions E,(z) along the
direction in question. If we now reeall definition
(54) in Sec. IV of the function E(x, y; b), we note
that if, in a given direction, K (x, y; b) > exp (—|z]),
then we must have b > 0, and furthermore E(x, y; b)
for that direction must be of the form

Ex,y;b) = exp [0 |y — (1 — B)'* [x]]. (142)

Let us now consider our derivation in Sec. IV
of an exponential bound on the Green's function
G(z, 2; —1), and let us consider the estimate in
inequality (49) which holds for all r such that
1 > r > b. Our procedure consisted in selecting the
“most favorable” constant r, and we see that for
a fixed direction such that E(x, y; b) is given by
Eq. (142), we get the best bound by letting » tend
to b, and we would get a still better bound if we
could choose r smaller than b. We are, however,
prevented from doing this because that would mean
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our contour of integration € has been moved past
the pole of the function G'(y, y'; %) occurring at
n = —b, which is the ground-state eigenvalue of
the operator H!. Suppose, however, that we do
shift the contour C past the pole, and that we then
select the best possible new point 7 = —r at which
C intersects the real axis.”” The resulting integral
will then have a more rapid exponential falloff than
the function E(x, y; b).

The Green's function Gz, 2; —1) is equal to the
sum of the new contour integral and —2x7 times
the residue of the integrand in Eq. (47b) at the
point ¢ = —b. This latter term is, thus, of the form

172

exp [—(1 — B [x — x'[]
4r Ix — x|

R = ¢(y)o*™(y’) ,  (143)
since the ground state of the operator H/ is non-
degenerate. The function ¢(y) is the ground-state
wave function.

From our results in Appendix IIl we can now
conclude that the positive term R must dominate the
Green’s function G{(z, 2/; —1) in the direction which
we are considering in the (z — 2) space, if ¥’ is small.
The wave function ¢(y) satisfies, according to the
result expressed by inequality (140) in Appendix I1I,
the condition that for any 6 > 1 there exists an
m(8) such that

6| > m(6) exp (— 60" |y]).

We may summarize these results by saying that
for any direction in the (z — 2’) space for which
E.(z — 2) > exp (—lz — 2/l the Green’s function
G, (2, 2; —1) must, for 2/ in some bounded region
and for any 6 > 1, satisfy the condition

Gz, 2"; —D| > m(OE.[0 — 2],  (144)

as a function of z, where m,(f) is a constant which
may depend on 6.

It is then an easy matter to apply the estimate in
inequality (144} o derive from the integral equations
(22} the following result [taking inequality (141)
into account]:

Theorem IV. If the potentials V,,(z) are non-
positive and do not vanish identically, and if V,,,(2)
is nonpositive, then for every 4§ > 1 there exists a
constant ¢(8) > 0 such that for all 2

l¥(@]| > c(0)B(62),

where the notation is as in Theorem II.

(145)

12 Jf there is more than one bound state the new point of
intersection must be selected between n = —b and the pole
closest to —b.
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APPENDIX V

In this Appendix we shall consider the relation-
ship between the rate of exponential falloff of a
function and the tube of analyticity of its Fourier
transform. We shall omit all proofs; some of the
facts listed are quite trivial and, we believe, well
known.

Definitions.

(1) Let R, be the n-dimensional real Euclidean
space. A point in R, will be denoted by 2, where this
symbol stands for the position vector of the point
with respect to a fixed origin. The absolute magni-
tude of the vector z is denoted |z].

(2) Let M be the set of all continuous functions
p(2) satisfying

(a)  p(N2) = Np(2),
(b) (2 2 0,

for A = 0;
forall 2 in R,.

The functions in M are, thus, nonnegative and
homogeneous of degree one. A function in M is
determined on any ray in R, by its value at any
point on the ray.

(3) Let M be the set of all functions in M which
satisfy the further condition that

o) > 0, whenever z 0.

(4) For every p(z) in M, let &(—p(2)) be the
set of all functions f(z) such that for every 6 satis-
fying 1 > ¢ = 0 the function f(2) exp [8p(2)] is
bounded for all z in R,.

We have selected this notation for obvious mnemo-
technic reasons. Thus, the function exp [—p(2)]
in particular belongs to &(—p(2)), and so does
every function which decays at the same or at a
faster rate at infinity.

(5) For any function p(z) in M, let S(p(2)) be
the set of all points in R, for which p(2) < 1. This
set is clearly a bounded open region containing the
origin, and star-like with respect to the origin.

Every function p(2) in M thus defines a region
S(p(2)), and conversely every bounded open region
with a continuous boundary which is star-like with
respect to, and contains, the origin, defines a func-
tion p(z) in M.

(6) Let p,(2) and p(2) be two functions in M,
and let S, = S(p.(2)) and S; = S(p(2)) be the
corresponding regions in R,, defined as in definition
(5). Let S = S; & 8, be the set of all points 2z in
R, which can be written in the form

z2= 0z + (1 — 6z,
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where 1 = 6 = 0, and where 2, is in S; and 2, is in
S:. We may call S the joint envelope of S, and S,.
The region 8 is clearly bounded; it has a continuous
boundary, and it contains and is star like with re-
spect to the origin. Therefore, there is associated a
function p(z) with S, and for this function we may
employ the notation

p(2) = p.(2) @ p2(2).

We now make the following assertions.

Assertions.

(1) Let pi(2) and py(2) be any two functions in

M, and let, with the notation in definition (6),
p(2) = p1(2) & pa(2). Then

o(z) = g.l:b. {p(2") + plz — 2)).

(2) Let p(2) be a function in M. Let the region
T(p) in R, be defined by the condition that a point
E" is in T'(p) if and only if

oz — k'"2>0, forall 2z#0 in R,.

Let &k be a vector in complex n-dimensional space,
and let £* = Re (k) and k" = Im (k). The vectors
k" and k' are, thus, elements of R,. Let T.(p) be
the tube region in complex n-dimensional space such
that £ is in T'(p). Then

(a) The region T'(p) is convex and contains the
point k" = 0;

(b) For any function f(z) in &(—p(z)) which is
integrable over every bounded subregion of R, the
integral

o(k) = (2m)"" f TGIE exp (—ik-2)  (146)

()
exists and defines an analytic function of &k when-
ever k is in T.(p).

(¢) For any point k, on the boundary of 7.(p)
there exists a function f(z) in & —p(2)] such that
the corresponding function ¢(k), defined by Eq.
(146), fails to be analytic at k.

(3) Let p(2) be a function in M, and let the region
S(p) be defined as in definition (5), and let the region
T(p) be defined as in the preceding assertion. Then

(a) k' isin T(p) if and only if

/16| > lub. {k'2/p(2) |k"{}
lz|=1

(b) If S, is the convex envelope of the region 8§,
and if p.(2) is the function in M defined by S., and
hence S, = S(p.(2)), then

T(P) = T(Pr)r
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and the region T(p) is, thus, determined by the
convex envelope of S(p).

Let us now comment briefly on the relevancy of
these definitions and assertions to the discussion in
the main body of the paper.

A characteristic problem in our discussion is the
following: Given the positive functions f,(z) and
f2(z) which fall off exponentially at infinity. We
desire to place an exponential bound on the funetion
f(2) defined by

) = Lub. {1tz = )1

We may now reformulate this problem as follows:
The functions f;(2) and f.(¢2) belong to the “ex-
ponential classes” &(—p,(2)) and &(—p.(2)), re-
spectively, for some functions p, and p, in M. We
desire to find a function p(z) in M such that f(2)
is in the exponential class §(—p(z)). From asser-
tion (1) we get the answer very simply: p(z) =
01(2) & po(2), or, stated differently, the region S

E. L. SLAGGIE AND E. HL. WICHMANN

which defines p(z) is the joint envelope of the
regions S; and S; associated with the functions p.
and p,. With this geometrical interpretation the
proofs of Lemmas IV and VI are almost trivial,

The relevance of assertions (2) and (3) in this
Appendix to the discussion in Sec. VI is quite
obvious. Suppose that the ground-state wave func-
tion ¢(2) belongs to the exponential class &(—p(2))
for some p(2) in M. Then the Fourier transform of
Y(2) is analytic in the region 7.(p), which region
is the intersection of all regions of analyticity of the
Fourier transforms of all functions in the class
8(—p(2)). We have shown that the wave function
belongs to the exponential class &(ln [B(z)]). The
region S defined by —In [(B(2)] < 1 is, however, in
general not convex, and is, thus, smaller than the
convex envelope S, of S. The region 7,.(S) is,
however, the same as the region 7.(S,), and our
Theorem II is, therefore, in general, stronger than
our Theorem III.
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The partitioning technique for solving secular equations is briefly reviewed. It is then reformulated
in terms of an operator language in order to permit a discussion of the various methods of solving the
Schrédinger equation. The total space is divided into two parts by means of a self-adjoint projection
operator 0. Introducing the symbolic inverse T = (1—0)/(E —H), one can show that there exists an
operator @ = O 4+ THO, which is an idempotent eigenoperator to H and satisfies the relations HQ =
EQ and Q* = Q. This operator is not normal but has a form which directly corresponds to infinite-order
perturbation theory. Both the Brillouin- and Schrédinger-type formulas may be derived by power
series expansion of 7', even if other forms are perhaps more natural. The concept of the reaction
operator is discussed, and upper and lower bounds for the true eigenvalues are finally derived.

1, INTRODUCTION

FUNDAMENTALproblem in quantum chemis-
try and solid-state physics is the solution of
the Schrédinger equation

HY = EY 6

for the stationary states. One of the strongest tools
for treating this problem is the so-called partitioning
technique, since it contains many of the conven-
tional methods as special cases, particularly the
variation principle and the perturbation theory. In
pure mathematics, the partitioning technique seems
to be a well-known tool in determinant' and matrix
theory.? In wave mechanics, it was early used in
Dirac theory® for separating the two large com-
ponents from the two small components in the
spinor wave function. In radiation theory, it has
been used effectively by Gora,* and, during the
years 1948-51, several authors® became independ-
ently interested in the technique as a simple and

* The research reported in this paper has been sponsored
in part by the King Gustaf VI Adolf’s 70-Years Fund for
Swedish Culture, Knut and Alice Wallenberg’s Foundation,
The Swedish Natural Science Research Council, and in part
by the Chemistry Research Branch, ARL, AFRD, of the
Air Research and Development Command, U. S. Air Force,
through its European Office.
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will in a following paper be utilized for developing
an exact self-consistent-field theory, which bridges
the gap between the independent-particle model
and the exact many-particle theory.

2. PARTITIONING TECHNIQUE IN SOLVING
SECULAR EQUATIONS

In order to familiarize ourselves with an operator
formalism which otherwise may seem unnecessarily

abstract, we will start out with a brief review of the

partitioning technique as a numerical tool for
solving the secular equations connected with the
cigenvalue problem (1). In using Ritz’s method,®
we will introduce a complete orthonormal basis
{fi} and write the eigenfunction in the form
¥ = Y, fic;, where the coefficients {c;} form a
column vector ¢. Introducing the energy matrix H
having the elements H,;, = {f, |H| 1), one obtains
from (1) the matrix equation

Hc = Ec, )

which 1s simply the transform of the original
Schrodinger equation in the discrete representation
chosen.

Let us now divide or “partition” the complete
basis {f,} into two subsets (a) and (b). For the sake
of simplicity, we choose the subset (a) so that it
contains only a finite number of functions. The
matrix H and the vector may now be written in

H,, HJ _
’ c =

the form
va  Has Cy

and, instead of (2), we obtain two equations:
H,c, + H,c, = Ec,,
H,.c. + H,,c, = Ec,,

3

4)
6y
which can now be treated in slightly different ways.

Solution of Equation System

We start by reviewing the method used in the
numerical applications. In studying both non-
degenerate and degenerate levels E, it is convenient
to choose the subset (a) to consist of a single func-
tion, say f,, and to put ¢, = ¢, = 1. The approach
then gives all eigenvalues except those for which
accidentally ¢, = 0. Starting from a trial value
E = E'”, we then determine the corresponding
vector ¢ by solving Eq. (5) leading to the system:

(E(O)lbb - be)clEO) = H,,. (6)
0

Substitution of ¢/ into (4) gives a new value B
8 W. Ritz, Z. reine angew. Math. 135, 1 (1909).
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defined by the relation
EY = H,, + H,,¢,”. (7

The right-hand member defines a function f(E) for
E = E“, which has the property that f/(E) =
—c,(E)-c,(E). Repeating the procedure starting
from E‘V instead of E'”, we obtain a new value
E®, etc. The Egs. (6) and (7) define together a
first-order iteration process,” leading to a series
of numbers E, E, B, E®, ... , with the
property that any two consecutive numbers E%
and E“*Y bracket a true eigenvalue E. The series
E®, EV, E® ... is convergent if cjc, < 1 and
divergent if cjc, > 1. In both cases the first-order
process may be replaced by a second-order process
based on the formula:

E(l) _ E(O)
t ’
I+ oo

and we note that the right-hand member is equiva-
lent to the expectation value of H with respect to
the vector ¢'” having the components ¢, = 1 and
¢;”, which gives the connection with the variation
principle. The numerical process based on (6)—(8)
is very convenient, as each step renders an upper
and lower bound E” and E” as well as a second-
order approximation E* to a true eigenvalue E.
The process is very rapidly convergent, since the
error in each step is proportional to the square of
the error in the preceding step.

The numerical procedure does not distinguish
between degenerate and nondegenerate eigenvalues
E but, in order to obtain all eigenvectors ¢ associated
with a degenerate level, one has to solve the equation
system (H — E-1)c = 0, once the E value has
been determined.

E* = B9 + ®)

Solution by Inverse Matrix

One may determine ¢, explicitly from (5) in the
form

¢ = (E-1,, — be)_leaca) 9

provided that the inverse matrix (E-1,, — H,,) !
exists for the F value under consideration. Substitu-
tion of (9) into (4) leads to the relation

H..c, = Fc,, (10

where

H.=H., + H,(E 1, — H)"'H,. (11)

® For the general classification of iteration procedures, see
E. Schréder, Math. Ann. 2, 317 (1870); D. R. Hartree, Proc.
Cambridge Phil. Soc. 45, 230 (1949). Compare also P. O.
Lowdin, Technical note No. 11, Uppsala Quantum Chemistry
Group, 1958 (unpublished), particularly the Appendix.
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Equation (10) has exactly the same form as the
original eigenvalue problem (2), but the total
matrix H is now condensed into a finite matrix
H.. given by (11). This technique is of importance
in many physical and chemical problems, since
it enables us to concentrate our interest on a certain
part (a) of a system, whereas the influence of the
other parts (b) may be considered as a “perturba-
tion” represented by the second term in the right-
hand member of (11).

In treating an eigenvalue E having a degeneracy
of finite order g, we choose the subset (a) to contain
g functions, since the inverse matrix (E-1,, — H,;)™"
will then exist. For a nondegenerate level, one has
g = 1, and we will then choose ¢, = ¢, = 1. From
(10), we obtain E = H,,, or

E = H, + Hlb(E'lbb - be)_leu (12)

which relation corresponds to (7). The right-hand
member gives an explicit expression for the funetion
f(E), and we note that this function becomes infinite
for the E values which are eigenvalues to H,, but
not simultaneously eigenvalues to H. On the other
hand, the function f(¥) is regular also for those
E values which correspond to degenerate eigenvalues
of H. The matrix (E-1,, — H,,)™' does not exist
in this case, but the singularity is actually removed
by the effect of the two factors H;, and H,,.

The equation ¥ = f(F) may again be solved by
iteration procedures of first and second order. The
curve y = E — f(F) is graphically illustrated in
Fig. 1 together with the construction of the values
E and E* from the starting value E‘. Even for
the abstract operator formalism developed later,
it is of value to keep the general shape of this curve
in mind.

IFor a degenerate level of order g, we now return
to the original approach in which we chose the
subset (a) to consist of g functions. The vector c,
now contains ¢ elements and, since there are ¢
linearly independent vectors c, these g elements are
independent of each other. It is hence possible to
make the following simple choice:

1y 10| |0 0
ol (1] |0 0

ca: 0 y 0 2 1 y "t O * (13)
1

Substitution into (10) gives immediately H,, = E,
H,, = 0, and more generally H,, = E, H,, = 0 for

1V

Fic. 1. The function y = E — f(E) and the graphical con-
struction of E® and E* from E©,

ksl andk, =12 --- g The matrix H,, is hence

diagonal of order ¢:

(14

with all the diagonal elements equal: ,, = H,, =
- = H,, = E. For the energy we obtain in this

way:
E = Hu + Hw(E‘lbb - th)—leI, S 15Y

which relation is identical to (12) with the difference
that the subspace (b) has now been reduced to such
an extent—Dby removing ¢ rows and columns from
H—that the inverse matrix (£-1,, — H,,)"
actually exists. It may be shown that (15) may be
derived from (12) by a limiting procedure. Equation
(12) is hence the general one but, in those cusecs
when we would like to manipulate with the inverse
matrix, the special form (15) is preferable. Our
analysis shows that it is feasible to develop the
partitioning technique for the nondegenerate levels
and then extend the basic energy formula (12) to
the degenerate levels, too, by a simple reinterpreta-
tion of the last term in the right-hand member.

Partitioning by Projection

In this section we carry through the partitioning
of the vectors and matrices involved in the cigen-
value problem (2) by means of the two projection
matrices:

1 0

00

o0
01

0= , P= , (16)
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which are self-adjoint and idempotent and fulfill
the relations © + P = 1, P = P9 = 0. One has
immediately

0

ca
, c§=Pc=[

,  am

0

¢l =0¢ =
Cp

i.e., ¢/ and c/ are the complete vectors having ¢, and
¢, respectively, as the essential nonvanishing parts.
For the energy matrix, we obtain similarly:

r

H., = oHo = [n= 7|,
o o
©—eHgP = |0 He
o o %)
H,-PHo = |0 9,
~Hbu 0«
H, = pEP = |° °
0 H,j'

The primed matrices are convenient to work with
since they are defined in the total space, and they
can hence be added and subtracted, so that, e.g.,
¢ = c, + ¢}, H = H,, + Hi, + H], + Hj, etc.
Of essential importance in the theory is the “inverse
of the corner” defined by the relation:

[o 0 }
0 (E'lbb - be)—l

and the question is how it should be represented
in terms of © and P. Starting out from the equation

3 s mal
0 (E'lbb"_be)

- [a_l-lu 0 ] (20)
0 (H 1y — H,)™

which is valid for all values of the constant a 7 0,
and multiplying to the left and the right by P, we
obtain

T{, = Ple-0 + P(E-1 — H)P]"'P, (21)

where the operator T}, is entirely independent of
the value of o 5 0. For the sake of simplicity, it may
be tempting to put @ = 0, but this leads actually
to an improper notation, which will nevertheless
often be used in the following, since it is now clear
‘how this operator should be defined.

Using the projection matrices and (9), we will
now drop the primes and write the eigenvector ¢
n the form:

T}, = (19)
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¢ = (0 + THoO)C, (22)

where C is an arbitrary vector having 6C # 0. Of
particular interest is the matrix

Q = 0 + THo, (23)

which applied to an arbitrary vector C gives an
eigenvector c, i.e., ¢ = QC. Since it satisfies the
eigenvalue relation HQC = EQC for arbitrary
vectors C, it is an eigenmatrix to H, satisfying the
relation HQ = FQ. It is further idempotent, so
that Q° = Q, but it is neither self-adjoint nor
normal. Using (10) and (11), we obtain finally for
the energy:

Ep = o(H + HTH)o. (249

Formulas (23) and (24) are of such a general nature
that they can be carried over into an abstract
operator formalism which is independent of the
choice of any specific representation based on a
complete set {fi}.

3. PROJECTION OPERATOR FORMALISM FOR
SOLVING THE SCHRODINGER EQUATION

In this section, we will develop the partitioning
technique in terms of a simple operator formalism,
Let O be a self-adjoint projection operator which
defines a certain subspace {(a) of order ¢ in the total
Hilbert space, so that

0*=0; 0'=0;, Tr) =g (25

The operator P = 1 — O satisfies the relations
P = P, P' = P, and OP = PO = 0 and defines
a subspace (b), which we will call the orthogonal
complement to the subspace (a).

Let us further introduce the operator T, which
corresponds to the “inverse of the corner” (19) in
matrix theory, by the definition:

T = Pla-0 + P(E — H)P]"'P, (26)

where « # 0 is an arbitrary number. The inverse
operator in this expression exists for @ = 0 and,
since 87/da = 0, the operator T is entirely inde-
pendent of the value of «. As before, it is hence
tempting to put @ = 0 for the sake of simplicity,
but this leads to a somewhat improper notation. In
the following, we will often use the symbolie notation

T =P/E — H), @n
instead of the complete expression (26). For the

development of the theory, it is essential that T
fulfills the following relations:

P(E — H)T = P,
OT = TO = 0.

(28)
(29)
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The first one is obtained from the equation
[@-0 + P(E — H)P)[«-O + P(E — H)P]" =1

by multiplying to the left and to the right by P,
and the second one follows from the fact that
OP = PO = 0.

Let us now consider the operator @ defined by
the relation

Q=0+ THO (30)

analogous to (23). We will prove that this operator
is an eigenoperator to H, so that H? = EQ, provided
that E fulfills a certain condition. Using (28), we
obtain the identity

PH — E)Q = PH — E)O

4+ P(H — E)YTHO = PHO — PHO = 0,
for all values of E. Hence we have
(H—-E)Q=(0+P)(H-—-EQ

= OH — E)2 = O(H — E)(O + THO)

= OH + HTH — E)O = 0,
which gives the condition:

OEO = O(H + HTH)O. (31)

This relation is completely analogous to (24).
Formulas (30) and (31) form together the basis
for the theory.

The operator @ defined by (30) is an idempotent
eigenoperator to H satisfying the relations

HQ = EQ, =0 Tr(Q =g

The idempotency follows from the fact that,
according to (29),

@ = (0 + THO)-(0 + THO) = 0° 4 OTHO
+ THO? + THOTHO = 0 4+ THO = Q.
For the trace of @ we have further

Tr (Q) = Tr (O + THO) = Tr (0) + Tr (OTH) = g.

(32)

The operator Q is hence a projection operator but
not of the conventional orthogonal type. It is
neither self-adjoint nor normal, which is easily
checked by considering the adjoint operator
Q" = 0 + OHT. The operator © has actually a
rather complicated character, and we note that it
is a sum of an idempotent term O and a nilpotent
term THO, satisfying the relation (THO)* = 0.
In addition to 2, every operator of the type
Q =+ 941 — Q) is actually an idempotent
eigenoperator to H. The particular importance of
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the form (30) comes from the connection with the
perturbation theory. It fulfills further the simple
relations:

0Q = 0;
PQ=Q— 0;

Q0 = 9,
QP = 0.

We will now use the eigenoperator Q to construct
the eigenfunctions ¥ associated with the Hamil-
tonian H. Let us start by considering a nondegen-
erate level E, and let us choose ¢ = 1 so that O is
a one-dimensional projection operator which always
(except for a constant factor) selects one and the
same function. Let further ® be an arbitrary trial
function or “model” function which has a non-
vanishing projection with respect to 0. Let us put
0% = ¢, and let us normalize this projection so
that (¢|lg) = 1, or (@ |0| ®) = 1. The function

V= Qb =¢ 4+ THyp

(33)

(34)

is now an exact eigenfunction to H since, according
to (32), we have HY = HQ® = EQ® = EV. The
eigenoperator @ will hence from the trial function
® project out the exact solution. This solution is
characterized by a normalization condition of the
type {¢[¥) = (02[2%) = (2 |0| ®), ie,,

o |¥) =1, (35)

whereas for the actual normalization integral we
obtain (¥[¥) = (@ |2'Q| ) = (2|0 + OHT*HO| &),
ie.,

(¥ | ¥) = (¢ |1 + HI"H| ¢). (36)

Multiplying the relation (31) to the left by ®* and
to the right by ® and integrating, we obtain

B~ <¢ P ¢>>,

E—H

which equation is analogous to (12) and corresponds
to the Schrodinger-Brillouin'® formula in perturba-
tion theory; the latter may be derived from (37)
by expressing the inverse operator in 7 by means
of a convenient power-series expansion. The corre-
sponding wave function is given by (34). We note,
however, that these power series expansions have
to be convergent, whereas the condensed forms (34)
and (37) are not subiect to such a restriction and
represent forceful alternatives to infinite-order
perturbation theory.

In treating a degenerate level E of order g, we
start out from a g-dimensional projection operator
O and its orthogonal complement P = 1 — O. The

H+H

H

37

10 1,, Brillouin, J. phys. radium 33, 373 (1932).
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eigenoperator © defined by (30) will now project
on the eigenspace of order g connected with the
degeneracy. In order to follow the development
previously sketched in the matrix formalism, we
will now resolve O into ¢ orthogonal components:

O = Z Ok,
k=1

which are all one-dimensional projection operators
fulfilling the relations:

(38)

0:=0, 0/=0, Tr(0)=1 (39
0.0, =0 for k1
For @ we obtain the resolution Q = Zk ., where the
components 2, = Q0 for k = 1, 2, --- g form a set
of eigenoperators to H satisfying the relations:
& = Ok + THOIcy (40)
HQk = EQ;;, Q]ZC = Qk, Tr (Qk) =1, (4:].)

Multiplying the energy relation (31) to the left and
to the right by O, and O,, and by O, and O, respec-
tively, we obtain

OkEOk = Ok(H + I{TH)O/”

0.H + HTH)O, = 0,

(42)
(43)

which corresponds to the diagonalization achieved in
(14). From (29), we get similarly 0,7 = 70, = 0
which relation is useful in the following.

In order to derive the eigenfunctions to H, we
will let the projection operators O,, O, 0,
select a set of orthogonal functions ¢, ¢, - ¢,
which will be chosen normalized so that {¢|e;) = 6.
In the applications, the projection operators O, are
often defined essentially by means of these functions,
which may here be chosen quite arbitrarily. How-
ever, once the set ¢, @5, '+ ¢, Is fixed, it defines
also the orthogonal complement and the operators
P and T. Let us now consider the g functions

v, = ngok = @k + THﬁpk’

which are eigenfunctions to H according to (41).
Since {(¢|¥;) = 851, it is easily shown that the func-
tions ¥,, ¥,, --- ¥, are linearly independent. How-
ever, they are usually not orthonormal, as is shown
by their metric integral:

(44)

(T | 0) = (ou |1 + HTH| ¢1). (45)
From (42) and (43), we obtain further
P
E = <¢’k lH + HE’_—H H §0k> (46)
and
(ou |H + HTH| @) = 0. 47
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We note that formulas (44) and (46) are completely
identical with (34) and (37) in the nondegenerate
case with the difference that the projection operator
P defining the ‘“orthogonal complement’” is here
reduced to such an extent that the inverse operator
in the definition (26) of T actually exists. Keeping
this in mind, we will in the following not distinguish
between degenerate and nondegenerate levels in
discussing Eqgs. (34) and (37) or the analogous
Eqs. (44) and (46).

Iteration Procedures

In (37) and (46), the eigenvalue problem is given
into an implicit form F = f(¥), where
)

It is natural to try to solve this problem by iteration

procedures. These will be essentially the same as in

the matrix representation, and they will be only

briefly reviewed here in terms of the operator

formalism. Of basic importance is the fact that the
H —‘j—? H

first derivative
‘<‘” (E — H)* “’>

= —(THy | THg) < 0,
is always negative; it equals the normalization
integral of the second term in the wave function
(34) with negative sign. The higher derivatives are
also easily determined:

[ E) = (=)'l | HI" Hle);  (50)

they are useful in constructing iteration procedures
of higher orders than the second.

The formula E**" = f{E"} leads to a first-
order iteration procedure and a series of number
E®,EV, E®, E®, ...  which may be convergent
or divergent. Substitution of these numbers into
the right-hand member of (48) leads to an expression
for E in terms of a continued fraction. This expression
is actually much more complicated than the classical
continued fractions, since it involves operators and
the formation of expectation values, but it pre-
serves one very important feature of these fractions,
since it approaches the limit £ both from below and
from above, if it is convergent. It is easy to study
the series of numbers £, ', E®, ... directly,
and we will put B = E 4+ * where ¢ is the
error in the kth iteration. Using the mean-value
theorem

H{E + ) = (B) + 77E + 67,

H

(48)

” r
f(E)E<¢{H+HE_H

li

1(E) 1)
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where 0 € 6 < 1, one obtains
eV = PR 4 e, (51)

Since f’ is always negative according to (49), the
errors ¢ will alternate in sign, and this implies
that the successive values of E® will alternately
be upper and lower bounds to E. Between two con-
secutive values E® and E**"  there will hence
always be at least one eigenvalue F, and we will
refer to this as the bracketing theorem. The process
will be convergent if |f/| < 1, and divergent if
7> 1

Irrespective of whether the first-order process is
convergent or divergent, one can easily go over to
second-order iteration procedures having a much
faster convergence, since the error in each step will
be proportional to the square of the error in the
preceding step. One can, for instance, solve the
equation y = E — f(E) = 0 by the well-known
Newton-Raphson procedure:

1
f‘m) ,,/f()) _ EV(O) _ ]E( )
) =

TR e S
£ T

(52)
which corresponds to the tangential construction
in Fig. 1. The derivative f'(£) is given by (49), and
it 1s anyway evaluated in normalizing the eigen-
function. Introducing the approximate solution

P

¥ =+ por g

He, (53)

one can transform (52) into the expectation value

<‘I’(0) |H| \I,(O)>
=22l — [

(‘II(O) ‘ \I/(U)> E] (54)

which shows the connection with the variation
principle.

Extension of Wigner’s Theorem.

In Brillouin’s perturbation theory,'’ there is a
famous theorem by Wigner'' which gives a connec-
tion between the perturbation formulas and the
variation principle of a somewhat different type.
We will here derive an extension and generalization
of this theorem in terms of the operator formalism.

The variation principle says that, if the wave
function is affected by an error of the first order, the
expectation value (H) is affected by an error of the
second order. This implies that if the wave function
in a perturbation calculation is correct up to order n
with an error of order (n + 1), the energy error is
of order 2(n + 1) and {(H) is hence correct up to

it B, Wigner, Math. naturw. Anz. ungar. Akad. Wiss.
53, 477 (1935).
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order 2n -+ 1. The explicit relations are easily shown
by the operator formalism.

Let & be a trial value for the energy E, and
let 3 be a certain approximation of the matrix
T = P/(¢ — H) properly defined by (26). It is
easily shown [see Appendix, (A10)] that, if 3 is
affected by an error of the first order, then

5* =23 — 5(6 — H)3 (55)
is a better approximation with an error of the sccond
order. If, e.g., 3 is a power series expansion including
terms up to order n, then 3* is represented by the
same expansion including terms up to order
(@n 4 1); see (A12). Instead of the operator Q
associated with the trial value &, we have now the
two approximate operators:

Q=0+ 5HO, 0* = 0 + 3*HO. (56)

They fulfill the following basic formulas
0'% = 01 + 5 + H)O 57
= 0+ OH3HO,
and
O'(H — )8 = 001 + H3)(H — &)1 + 5H)0
= O[(H — & + H3(H — §&)
+ (H — &3H + H3(H — g)3H]0

= O[(H — &) + H{23 — 38 — H)5\HIO
= O[H — & + H3*H|0 = O[HO* — €0,  (38)

which are used in calculating the expcctation value
of H with respect to the approximate wave function:

V= Q% = ¢ + 5Hp. (59)
We obtain directly
¥ |H —6l¥) _ (@ |3 (H — 80| @)
¥ | ¥) (® 28| @)
_ (2 [0H + H3*H — 8)0| &)
(@ |0(1 + HFH)O| )

_{e|H + H5*H|¢) — &
(e |l + H5H| o)

(Il — &) =

(60)

1.e.,

o I + HY"H| o) — &
N+ BSH] o)

which relation holds for any trial value & for the
energy. There is one specific § value, for which this
relation takes a particularly elegant form, namely
the value for which the numerator in the second
term vanishes, so that

(H) = & + (61)
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&= (o [H+ H3*H]| o), (62)

since then (H)= & for the wave function ¥ = ¢+ 3He¢.
In the special case, when 3 is approximated by a
power series up to order n, this gives Wigner’s
theorem. For practical purposes, however, the
general form (61) is much more useful, since it is
valid for all values of the parameter &.

4. PERTURBATION THEORY

Let us now consider the case, when H = Hy, 4+ V,
where H, is the ‘“unperturbed” Hamiltonian and
V is an arbitrary, weak or strong ‘‘perturbation.”
It is now convenient to choose O as the eigenoperator
to H, associated with the state under consideration,
so that H,0 = OH, = E,0, and O will hence project
out the unperturbed eigenfunction ¢,. This means
that, whenever H, is standing close to the operator
0, it can be replaced by the number E,. We note
that we here introduce a single eigenfunction to H,
and not the complete set of all its eigenfunctions,
which is an essential simplification in both the
theory and the applications. The “orthogonal
complement”’ to ¢, characterized by P may be
introduced by orthogonalizing any complete set
towards ¢,. According to (30) and (31), we now
obtain

Q=0+THO=0+TE,+ V)0

=14+ TV)0; (63)

OEO = O(H + HTH)O
=0E, +V+ VIV)O. (64)

Of particular interest is here the operator W =
1 4 TV, which is called the wave operator, and the
operator

t=V+ VIV, (65)

which is called the reaction operator associated with
the perturbation V, the unperturbed Hamiltonian
H,, and the state under consideration. Using (37)
and (64), we obtain

E = E, + (g0 |t] ¢0), (66)

i.e., the energy shift is simply the expectation value
(), of the reaction operator with respect to the
unperturbed state. We note further the relations
Q=WOandt=VW.

Brillouin-Type Formulas

These expansions are treated here mainly for
historical reasons and to show the connection with
other approaches. They are characterized by having
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denominators of the “mixed” type (E — H,)
intermediate between the type (E — H) treated
previously and the type (B, — H,) used in the
Schrédinger theory. Let us introduce the operator

T, = Pla-O + P(E — H)P]"'P, (67)

for which we will also use the symbolic notation

Ty = P/(E — Ho). (68)
Using the identity [see Appendix, (A1)]
(A—B)'= A"+ A7B(A — B, (69)

for A = O + P(E — H,)P and B = PVP, and
multiplying to the left and to the right by P, we
obtain

T=Ty+ T, VT =T,(1 4+ VT (70)
TV =TV + VTV) = Ty, 71)

and
t =T+ VT, (72)

This relation corresponds actually to the Lippmann-
Schwinger'® integral equation in scattering theory.*®
For ¢ one finds the solution

t=0—VTy)'V
=V + VI,V + VIVT,V 4 -,

and this solution is still not explicit, since each
denominator in T, contains the energy E = E, + (£);.
The inverse operator in T, should further exist for
the E value under consideration, and the power
series should be convergent. Substitution of (73)
into (63) and (64) gives the formal expansions:

Q=1+ To)O
=0+ TV + T, VT,V

(73)

+ TOVTOVTOV + °T )O; (74)
OEO = OF,+ V -+ VI,V
+ VT, VT,V + --)0. (75)

Hence, we obtain for the eigenfunction ¥ and the
associated eigenvalue E:

¥ =14+T,V+ TV V + - g, (76)
E =By + (g0 [V + VI,V
+ VTOVZYOV + e l QDO): (77)

(1915”0])3. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469

B This derivation of the Lippmann-Schwinger equation
using the partitioning technique was actually given by Dr.
Kimio Ohno, Tokyo University, in a lecture in Uppsala in
1957 (unpublishedi
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which expansions are of Brillouin type. These
formulas have the disadvantage that the total
energy E occurs in the denominators (F — H,) to
all the factors T, which gives a rather complicated
implicit expression for the energy. A still more
serious disadvantage comes from the fact that, in
nuclear theory,'* one has found that the terms in
(77), do not stay proportional to the number N of
particles when N — =, but diverge. The use of the
Brillouin type of formulas has for these reasons to
large extent been abandoned.

Schridinger-Type Formulas

Let us now study the possibilities of obtaining an
explicit expression for the reaction operator ¢ defined
by (65). The denominator (E — H) in T may be
written in the form (E, + (#) — Hy — V), and hence
we obtain

P
=V Ve TEm v 5w,
which formula forms the basis for our discussion of
the Schrédinger-type perturbation theory. For the
energy shift, one gets directly:

<t>0 = <V>0 + <VE0 — H, £

(78)

- V+ <t>o V>o. (79)

The natural expression for the energy shift seems
hence to be a continued fraction of the generalized
type discussed previously in connection with the
energy formula E = f(E) and relation (48). We
note, however, that the use of such a fraction is
actually equivalent to the use of a first-order iteration

procedure based on the formula z“*'V = g{z*},
where

@ =) +<V P V> (80)
gz = Vi E,—Hy,—V-+z /)

and z is a real variable such that the solution of the
equation z = ¢(z) will give the true energy shift
(). Since g(x) = f(E, 4+ x) — E,, the discussion
in connection with the Egs. (48)—(54) is valid also
here. Again there will be a “bracketing theorem”
saying that any two consecutive numbers in the
series ', £, ®, - - - will bracket the true energy
shift (£)o. This theorem will be used below in dis-
cussing upper and lower bounds to (f),. According
to (36), the normalization integral for the eigen-
function ¥ takes the form

(¥ =1+ (oo [VI*V| o), (81)

14 See, e.g., K. A. Brueckner and C. A. Levinson, Phys,
Rev. 97, 1344(1955) J. Goldstone, Proc. Roy. Soc. (London)
A239, 267 (1957); L. S. Rodberg, Ann. Phys 2, 199 (1957).
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and, since the second term is identical to —g’, the
first-order iteration procedure and the corresponding
continued fraction will be convergent if (¥|¥) < 2,
whereas they will be divergent if (¥|¥) is larger than
2.

Irrespective of whether the first-order procedure

is convergent or divergent, one can easily go over to
a second order procedure analogous to (52):

@ _ 2O — o
1= 6™
© [2® — 2O

~x ()

z® — 22 +

(2) » (82)
and we note that the expression in the middle is
equivalent to the expectation value (54) used in the
variation principle. In both the first- and second-
order procedure, we have assumed that the inverse
matrices occurring in 7" have been evaluated exactly,
but later we will make us free from this restriction.

In order to get the connection with the conven-
tional Schrédinger theory, we will now evaluate T
and { by means of power-series expansions con-
taining the denominator (B, — H,). For this
purpose, we will introduce the operator

R, = Pla-O + P(E, — Hy)P]'P, (83)

which exists for @ % 0 and which is independent of
the particular value of a. In the following, we will
also use the symbolic expression

R, = P/(Eo - Ho)- (84)

For the sake of simplicity, we will assume that both
the unperturbed and perturbed levels under con-
sideration are nondegenerate, and the degenerate
case will be discussed later. Using the identity (69)
forA = «-0 4+ P(E, — Hy)P and B = PV'P, where

V=V — (&), (85)
we obtain

T =R, + RV'T, (86)

which is the “integral equation’ for the operator T.
The solution

T = (1 — R,V)'R, (87

= Ro + RgV’Ro + RoV’RoV’Ro + et (88)

may be expressed as a power series in R,V’, only
if [(R,V’)] < 1 for all trial functions. Substitution
of expansion (88) into (63) and (65) gives for the
eigenoperator @ and the reaction operator ¢ the
formal expressions



978

Q=04+ RV + RV'R,V

+ RoV’RoV’RQV + . ')07 (89)
and
t=V 4+ VR,V + VR, V'R,V
+ VR V'R, V'R,V + - -
=V 4+ VR, > (V'R)'V. (90)
k=0

We note that, since V’ contains (t),, the formulas
have an implicit character and have to be solved
by iteration. Conventionally the results are arranged
after powers of V and, in order to obtain ¢ correct
to at least the order n, one has to take n terms of
the right-hand member of (90) and express ()
correct at least up to the order (n — 2). By using
the partitioning of the integers, one can further
easily collect the terms of various orders and obtain:

t211+t2+t3+t4+"’,

r

tl = V;
tg = 1/R0‘73
Jta = VR(V — (V)R V, (91

Iy = VRy(V — (V)oRo(V — (V)R V

—(VR,V)VRLYV,

Il

L

For the wave operator W = 1 4+ TV, one gets
correspondingly :

W=1+W, +W,+ W4 -

(W, = R,V,

W, = Ry(V — (V)oR,V,

Wy = Ro(V — (V))Ro(V — (V)R V
— (VR V)RSV,

(92)

and we note that ¢ = VW and {, = VW,; the
eigenoperator is given by the relation @ = WO. The
energy shift (£), may now be written in the form

<t>o:E1+Ez+E3+E4+"', (93)

where E, = {p, [t;| ¢o) is the kth-order term.

We have in this way obtained condensed expres-
sions which correspond to the basic formulas in
Schrédinger’s perturbation theory.'® In order to get

16 B, Schrodinger, Ann. Physik (4) 80, 437 (1926); for the
explicit form of the third- and fourth-order terms, see K. F.
Niessen, Phys. Rev. 34, 253 (1929); compare also K. A.
Brueckner, tbid. 100, 36 (1955).
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the conventional relations, one has further to choose
the “orthogonal complement” to ¢, characterized
by the projection operator P = 1 — Q to consist
of all the remaining eigenfunctions ¢,, @5, @3, - -+ t0
the unperturbed Hamiltonian H, provided the
entire set is complete. In this representation the
operator R, is diagonal, and, denoting the eigen-
value of H, associated with ¢, by E;”, we obtain

P = Z o) el
k#=Q (94)
_ P _ leatenl
Bo= G =7, = ZEY - BT

Substitution of this expression for K, into (91) and
(92) leads to the conventional Schrédinger formulas,
and we obtain, for instance,

VeV
E, = <€00 |VR0VI €00> = ZF(O) _k_ }2(07 ’
k=20 440 “k

(95)
where V. = (@, |V| ¢1). We note that the relations
(91) and (92) have a more general character than
the standard formulas, since the former are valid
for any orthogonal complement to ¢,."°

Let us now discuss the normalization problem.
According to (35), the eigenfunction ¥ = Q&
determined by the eigenoperator @ = WO satisfies
the normalization condition {p,/¥} = 1. Using (36),
we obtain the actual normalization integral

4 |‘I’> = {¢o “ + VTZVI @), (96)
which contains the operator
VTV = VR(1 — V'R)'R(1 — V/R)™'V
= VRV + VR;V'R,V + VR, V'RV
+ VRIV'R, V'R,V
+ VR, V'RIV'R,V + --- . 97)

This operator is easily systematized after powers of
V, and we obtain

T O =148+ 68+ 8,4+ - ;
6y = <VR§V>0;
8, = (VRAV — (V)oR,V
+ VRV — (V)R V),,

(98)

These relations will later be of importance in using
the variation principle.

In concluding this section, we note that we have
here considered a state which is nondegenerate both

16 Compare, P. O. Lowdin, Technical Note 28, Uppsala
Quantum Chemistry Group 1959 (unpublished).
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in the unperturbed and perturbed system. When
power-series expansions of 7' are used, the treatment
of a degeneracy is complicated by the fact that the
inverse matrices in both operators

T=P/E—-H), R =P/E—-H) (99

defined by (26) and (83), respectively, should exist.
Starting out from an unperturbed level E, which
has a degeneracy of order g, one has to choose
the basic projection operator O to be of order g
so that R, exists. It is feasible to introduce a resolu-
tion of O into g orthogonal components O,, O0,, - -+ O,
according to (38), and we will denote the corre-
sponding functions by ¢, @os, ** - ¢o,. They are all
eigenfunctions to H, associated with the level E,.
If also the perturbed level has a degeneracy of
order g, there are no further complications, we can
directly apply formulas (42) and (43), and the
expansion relations (88)—(98) are valid in an un-
changed form. However, if there is a splitiing of the
degeneracy which is usually the case, the matrix
H defined by (11) and having the elements

ﬁkl = <¢’ok

is no longer diagonal. This leads to a secular equation
(10) of order g, which may again be conveniently
treated by partitioning. This “‘repeated-partitioning”’
technique is actually of practical importance also
in other connections.

E,+V+V

Vv €0oz> (100)

P
E-—-H

Upper and Lower Bounds in Perturbation Theory

In connection with relation (51) in the general
theory, we discussed a “bracketing” theorem which
provided upper and lower bounds for the true
eigenvalues F, and we will now study whether it is
possible to apply this theorem in the case when
H = H, + V. For the sake of simplicity, we will
start by considering the ground state, for which one
always has

E < (Hopar (101)

for all trial functions. For the zero-order function ¢,,
one obtains in particular

E L E,+ K, (102)

which relation also tells us that the sum £, 4+ E, +
E, + --- must be negative. Using (94), one can
easily conclude that the term E, is negative, but
the signs of the higher terms are usually harder to
obtain.

Upper bounds with successively increased accu-
racy may further be derived by observing that
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formula (61) is valid for all values of &. Let us start
by considering the series expansion of the operator

P _ P
&§—H (B, — Hy) — (V — &+ By

= Ro[l - (V — & + Eo)Ro]_l

in terms of powers of (V — & 4+ E,)R,, and let us
introduce the partial sum

(103)

n

3, = Ro Z [(V - &+ Eo)Ro]k-

k=0

(104)
Application of (55) gives immediately 3* = 3,,,,,
and formula (61) takes now the form

@ lBo+ V+ V5 Viey—8
H),, = & 2 !
Hlow = 8+ T 75V o)

(105)

for arbitrary values of & which parameter, therefore,
could be varied. Putting n = 0, we find that the
right-hand member is independent of & and the
result

<Hop>nv =E, + E, + (Ez + E3)/(1 + 52)

as an improved upper bound. One sees often in the
literature'” the statement that all the odd-order
energies Ky + E,, E, + E, + E, + E;, --- etc.
would form upper bounds to the true energy. How-
ever, from (106) one could derive the inequality
(HY) < E,+ E, + E, + E;, only if the sum (E,+E,)
is positive which seldom seems to be the case.
Instead of minimizing the expression (105) with
respect to &, it is often simpler to choose & equal to
energy & correct to order n, so that &€ = E, + E, +
E; 4 -+ + E,. Application of (105) gives then (H)
equal to the energy correct to order (2n + 1) plus
small correction terms of order (2n 4+ 2) and
(2n 4+ 3); the latter may be omitted only if one
definitely knows that the total correction is negative.
Let us now turn to the more difficult problem of
evaluating a lower bound to the energy. Choosing
& = (H), substituting this value in the function
f(E), and applying the bracketing theorem, one
H+4+H-—Fm—5H

obtains
41 >

The right-hand member gives a better lower bound
than the Temple value,”® which is easily derived
from the expression. By improving the value for

(106)

L (107)

17 Bee, e.g., P. M. Morse and H. Feshbach, Methods of
Theoretical Physics (MeGraw-Hill Book Company, Inc., New
York, 1953), Vol. 2, p. 1120; O. Sinanoglu, Phys. Rev. 122,
493 (1961).

18 G. Temple, Proc. Roy. Soc. (London) A119, 276§ (1928),
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(H) according to (105), one can also improve this
lower bound indefinitely. Putting H = H, 4+ V,
one obtains particularly

E > E, + E

P

Vay=m,=v"

+ (%o

¢’0>, (108)

where the last term is always negative. It seems as
if formula (108) would form a good starting point
for further research.

So far, our discussion concerning upper and lower
bounds is valid only for the ground state. However,
we can now make us free from this restriction and
consider any state if we observe that, with a proper
choice of the parameter &, the two quantities (105)
and (108) will bracket any true eigenvalue E. One
of the quantities gives an upper bound and the
other one a lower bound, and the order may vary
from state to state.

In conclusion, it should be added that a great
deal of research' has recently been carried out on
the problem of the lower bounds in the special case
when the perturbation V is positive definite.

Conclusions

This study of the eigenvalue problem shows that
one can get a detailed insight into the structure of
the various types of perturbation theories and their
connection with the more condensed forms based
on the use of inverse matrices of type (26) by means
of the partitioning technique. The operator for-
malism is particularly transparent, but the analysis
has, of course, only a formal character. We have
made no attempts to analyze the nature of the
eigenvalue spectrum itself or to prove any exist-
ence theorems. In certain connections, the formalism
may seem to be too abstract, and it is then worth-
while to remember that the theory has been de-
veloped from a highly practical numerical method
for solving secular equations. The approach is
applicable both to one~- and many-particle systems,
but the special problems connected with the latter
will further be discussed in a following paper.

APPENDIX.
CALCULATION OF AN INVERSE MATRIX

It is clear that, if one is only interested in eval-
uating the corrections in Schrédinger’s perturbation
theory up to a certain finite order, i.e., the energy

19 N. W. Bazley, Proc. Natl. Acad. Sci. U. S. 45, 850
(1959); Phys. Rev. 120, 144 (1960); N. W. Bazley and D. W.
Fox, Reports CF-2911 and CF-2928, Johns Hopkins Applied
Physics Laboratory (1961) (unpublished).
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quantities
E, = <§00 IVI %): E, = <500 ,VROV! ¢o);
Ea = <¢o ,VROVROVI ¢'n> - El(ﬁao lVRﬁV' 500);
«v-, ete.,

and the corresponding corrections to the wave
function, one does not have to invert any matrices
or to solve any eigenvalue problems in addition to
the unperturbed problem Hy,p, = FE,p, for the
specific state under consideration. If one introduces
a complete discrete representation consisting of ¢,
and a conveniently chosen form of its orthogonal
complement, the results desired may be obtained by
solving @ series of equation systems with fixed coeffi-
cients rendering a set of vectors representing the
functions R,V RiVeo, R, VRV, --- in the
discrete basis.** The mathematical theory for the
treatment of linear equation systems of infinite
order is then valid.

However, if one is interested in obtaining a solu-
tion which would correspond to «-order perturba-
tion theory, one has to evaluate the inverse matrix
T defined by (26). This is a more difficult problem,
and we will here briefly review some of the methods
which are available for this purpose.

(a)

Let A and B be two arbitrary operators which

usually do not commute. For the inverse of (A — B),
one has always the identity:

(A—B)7'=A"4+ A"B(4 -B™"  (AD
= A7 4+ (4 — B)'BA™Y, (A9

provided that the inverse operators involved really
exist. The identity is easily proven by multiplying
it to the right (respectively, to the left) by (4 — B).
Since the two right-hand members are equal, one
has the relation

A7'B(A — By = (A — B)7'BA™, (A3)

which is useful in moving the factor (4 — B)™" in
long products. In perturbation theory, the relations
(A1) and (A2) are often called “integral equations”
depending on the fact that in a continuous repre-
sentation, the operator products in the last term
are evaluated by means of integrals.

(b)
By repeated use of (A1) and (A2), we obtain

Fundamental Identity

Power-Series Expansion

20 See, e.g., P. 0. Lowdin, Technical Note No. 28, Part
III, Uppsala Quantum Chemistry Group 1959 (unpublished).



STUDIES IN PERTURBATION THEORY.

(A -B)™

= A" + A7BA™ + A7BAT'B(A — B)™

= A+ ATBAT + A'B(A — B)"'BA™

= A 4+ A7BA™' + (A — By'BAT'BA™Y, (A4)

where the three forms of the remainder are equal
according to (A4). Repeating the procedure, one
gets the well-known power-series expansion including
a remainder term. The infinite series

(A—B)" = A"+ A'BA™!

+ A7BATBAT + --- (A5)

is convergent, if and only if, the absolute magnitude
of all expectation values (BA™') are less than 1:

KBA™)| < ¢ < 1. (A6)

The power series has hence a limited range of
applicability. In perturbation theory, it is used in
deriving both the Brillouin-type and the Schro-
dinger-type expansions.

(c) Modified Power Series

PuttlngA —‘B = Al "‘Bl = A2 _‘Bg = ey,
one can modify the power series including remainder
at any stage of the expansion:

(A —B)™ = A7 + A7'BAT
+ ATBA'B, 47 + - (A7)

This relation may be useful in identifying modifica-
tions of perturbation theory derived by other
methods, since a great deal of variety is apparently
possible.

(d)

Let us now consider the special case when (A—B)

is an Hermitian or normal operator, and let U denote

the unitary transformation which brings (4 — B) to

diagonal form A, so that U'(4 — B)U = \. This
gives immediately

(A — B)™ = U\'U, (A8)

which relation may be used for evaluating the
inverse. In a discrete representation, one obtains

Eigenvalue Transformation

_ Usa Ut
(4 =B = 25—, (A9)

This method for calculating the inverse is charac-
teristic for a large part of the conventional perturba-
tion theory, but it is often rather cumbersome,
particularly if A has a partly continuous spectrum.
We note that, in deriving the Schrédinger form,
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one is using both the power series method for the
expansion in V and the eigenvalue method for
evaluating R,.

(e) Second-Order Iteration Procedure

Let 3 be an approximation to the inverse
(A — B)',sothat 3 = (4 — B)™" 4 ¢, where ¢
is a first-order correction. For the new operator
3%, defined by the relation

3* = 23 — 3(A — B)3, (A10)

one obtains 3* = (4 — B)™' — &4 — B)e, ie.,
3* is now correct to the second order. This leads to
a convenient second-order iteration procedure for
evaluating an inverse matrix. Formula (A10) is
used in deriving the extension of Wigner’s theorem
given in (61).

If one chooses 3 to be the power series (A5)
truncated at order n:

3, = A" X (BA™Y, (A1D)
k=0
application of (A10) gives immediately
5:‘ = 52,,4.1, (A].Z)

i.e., 0% equals the same power series up to order
2n + 1).
(f) Infinite Product

Putting 3 = A™" and using the iteration formula
(A10), one obtains the infinite product
(4 -B)~

= A1+ BA™(1 + BAT7'BA™)
X (1+BAT'BAT'BAT'BA™Y) ...

= A" IT {1 4+ BA™HY. (A13)
k=0

The partial products equal the partial sums 3, 3,
3s, 37, Gus, -+ defined by (A1l), and the infinite
product is convergent and divergent at the same

time as the infinite series (A5).

(g) Determinant Formula

If one introduces a discrete basis, the calculation
of an inverse matrix is actually equivalent to the
solution of a series of equation systems. In this
connection, it is also worthwhile to remember the
formula

(4 ~ B = ||l4 — Bllw/Il4 - Bl|, (A14)

where ||4 — B|] is the determinant of (4 — B) and
the numerator is one of its minors. For an infinite
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basis, one has to apply the theory for infinite deter-
minants, and at least the quotient has to be con-
vergent.

(h) Successive Partitioning

In quantum-mechanical applications to atoms,
molecules, and solid-state, one has so far to a large
extent used basic sets which have been truncated
to finite orders. In this case, it is of importance to
extend the basis, and this is conveniently done in
the method of ‘“successive partitioning” in which
one utilizes the previously obtained results. For
the inverse matrix, the method is based on the
formula®':

K, K,
[Kgl K,/
_ [Ka+ KoK 23Ks1 5 _’\’lzlz‘zﬂ (A15)
’_ — Koo K3
where
k= K K3},
K., = K;, — K, K11K ..

K12 = I(-li[(lZ;
(A16)

One starts out in the upper left corner, adds one
row and one column at a time, so that K, stays
one dimensional, and notes that K7} has been
evaluated in the preceding step of the calculation.
The formula is easily derived by solving the equation
K:x = 1 by partitioning. The final result will
actually be the same as if one applied the method
of successive partitioning directly to the eigenvalue
problem in the form (10).

(i) Chebyshev Expansions

Since this method has been treated in full else-
where,” we will here make only a few comments.
If « and z are two real numbers, one has the two
expansions

[r/(1 — r)][1 + rCy(2)

+ 7°Coz) + -+ +1"Culz) + -]
= r[1 + rS;(x)

+ 7 8(@) + o A+ "Su@) + o],

(@ — )" =

(A17)

2 See, e.g., A. S. Householder, Principles of Numerical
Analysis (McGraw-Hill Book Company, Inc., New York,
1953) p. 78; J. O. Hirschfelder and P. O. Léwdin, Molecular
Phys. 2, 229 (1959).

2 P, O. Lowdin, R. Pauncz, and J. de Heer, J. Math. Phys.
1, 461 (1960).
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where 1 4+ +° = ar,
r=3la— (" — 9" =20+ -9, (A18)

and C,(z) and S,(x) are the standard Chebyshev
polynomials

C.lx) = 2 cosnb,

S,(x) = sin (n 4+ 1)0/sin 8, (A19)

with 2 = 2 cos 4. The relations (A17) are easily
derived from the expansion (1 — re'")™" = >_, re*’
by separating it into its real and imaginary parts;
they are convergent, if r < 1 and @ is real, i.e.,
la| > 2 and |z| < 2.

It is now possible to apply this technique to the
operator (A ~— B)™' in several different ways. In
the case when A4 ™' exists, we may write (4 — B)™' =
A7'(1 — BA™")7" and consider the series expansion
for the second factor. In the case when (BA™")| <
¢ < 1, we will choose a parameter « situated in the
interval 2 < « < 2/¢ and use the formula:

(1 — BAY)"' = ala — aBA™)™!

o [1 + ir"Ck(aBA“):l

(A20)

T 11—

=ar Y 1S (aBA™"), (A21)
k=0

where 7 is given by (A18). We note that the right-
hand members are independent of the value of «
as long as the series are convergent. If the power-
series (A3) have a quotient maximized by g, the
Chebyshev expansions are characterized by a value
of r which may be chosen as low as

r=g/l + 1 = )"

the convergence is hence essentially improved.

Even combinations of the two formulas may be
useful. The Chebyshev expansions are particularly
convenient in treating operators and matrices having
cyclic character, since they lead to nice closed
expressions™ that are then valid also outside the
range of convergence of the original expansions.

In conclusion, we note that only a few of the
methods described here have so far been used to
investigate the various types of “perturbation
theory” that could be obtained from the funda-
mental formulas of type (34) and (37) containing
the matrix 7 by treating the inverse matrix in
(26) in different ways. Particularly the Chebyshev
expansions seem to offer an interesting starting
point for further research.
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Thermodynamical functions for classical and quantum systems are expressed in terms of the
one-particle density n; and the two-particle correlation matrix C;; (or quantities in direct relation
to them). Use is made of topological relations valid for the diagram representations of the grand
partition function expansions. The result considered as a functional of n; and C,s is stationary under
independent variations én, and 8Cy,. In particular, the entropy functional of a classical system no
longer contains any reference to the equilibrium parameters (or to the interactions) and the second
functional derivative is a negative definite matrix. The entropy functional of a quantum system
conserves traces of the equilibrium parameters in the Lee-Yang formulation; the Green’s function
formulation does not, but in this case the second functional derivative is no longer a negative definite

matrix.

INTRODUCTION

N the past three years, there have been several
successful attempts'™® to express the thermo-
dynamical functions of quantum-mechanical sys-
tems as explicit functionals of one-body functions
bearing a more or less direct relation to the average
occupation humber. These formulations'® remind
us, in character, of the classical virial expansion® in
terms of the one-particle density, and could be
expected to present the same type of interest for
the study of phase transitions, although some of
these formulations® * appear, in some respects, more
like generalizations of usual zero-temperature
(ground-state) expansions.” All of them, however
share in common a variational property that was
first established by Lee and Yang'; namely, that
the grand partition function of the system is
stationary under variations of the one-body func-
tion considered. This common feature has been
traced back to a topological relation®® satisfied by
the various diagramatic representations and directly
linked to the tree structure of these diagrams.

* Supported in part by the Air Force Office of Scientific
Research (ARDC), under contract number A.F. 49 (638)-589.

t On leave of absence from Service de Physique Mathe-
matique, Centre d’Etudes Nucléaires de Saclay, Seine et
Oise, France.

1T, D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959);
117, 22 (1960). Hereafter we shall refer to the last reference
as (I-Y). See also M. S. Green, Phys. Rev. Letters 1, 409
(1958).

( 2 P. Martin and J. Schwinger, Phys. Rev. 115, 1342
1959).

3 R. Balian and C. De Dominiecis, Nuclear Phys. 16, 502
(1960); Compt. rend. 250, 3285, 4111 (1960).

4 J. Luttinger and J. Ward, Phys. Rev. 118, 1417 (1960).

5 R. Balian, C. Bloch, and C. De Dominicis, Compt.
Rend. 250, 2850 (1960); Nuclear Phys. 25, 529 (1961); 27,
294 (1961).

6 H. Ursell, Proc. Cambridge Phil. Soc. 23, 685 (1927);
J. Yvon, Actualités sci. et ind. 203 (1935); J. Mayer, J. Chem.
Phys. 5, 67 (1937).

7 J. Goldstone, Proe. Roy. Soc. (London) A 239, 267 (1957).

8 C. Bloch, Physica 26, 562 (1960).

The next question arising naturally is whether
analogous formulations exist in terms of one- and
two-body functions (or matrices) directly related
to the one- and two-particle density matrices.’” Again,
besides the advantages brought by their variational
character, such formulations would be of particular
interest in characterizing and studying second-order
phase transitions.

The purpose of this work is to answer that
question. For both the classical'*™** and the quantum
systems, the grand partition function is written as
a stationary expression in terms of the one- and
two-particle densities (or quantities in direct rela-
tion to them).

In Sec. I(i) a classical grand canonical ensemble
is considered and we recall how its grand partition
function In Z(«, 8) can be expressed as a stationary
functional of the one-particle density through the
use of a topological relation valid for Yvon-Mayer
diagrams. This section is essentially a repetition
of Sec.’ VI.1 of the last paper quoted in reference 5.

In Sec. I(ii) the interaction potential is expressed

% Notice that one could easily express the pressure in
terms of the one- and two-particle density through the use
of the virial theorem. Such an expression, however, has no
stationarity property.

1 T, Morita and K. Hiroike, Progr. Theoret. Phys. (Kyoto)
25, 537 (1961).

11 M. 8. Green, J. Chem. Phys. 33, 1403 (1960).

12 The work of Morita and Hiroike (reference 10) was
brought to the attention of the author by Professor Uhlen-
beck, after this work had been completed. Morita and
Hirotke study classical systems and establish Eq. (1.50).
The method used here, however, covers both the classical
and quantum cases by exhibiting the topological relation
which underlies the stationarity properties; a feature par-
ticular to the entropy expression for classical systems which
seems to have escaped Morita and Hiroike’s attention is
also diseussed.

The functional expression derived for the grand partition
function of classical systems in reference 11 is stationary
but not maximal.

13 Several results of that section are already contained in
some early work of J. Yvon (1935).
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as a functional of the two-particle density following,
with slight variations, an analysis made by several
authors.'”"** Then a new topological relation is used
to express In Z(«, B) as a stationary functional of
both the one and two particle densities. An interest-
ing feature of the expression for the entropy is
pointed out, with its hypothetical relation to a
generalized expression for the Boltzmann H function.
The effect of the introduction of many body forces
is discussed.

In Sec. II(i), quantum systems are considered in
the Lee-Yang formulation, which is described from
the point of view introduced in Sec. I().

In Seec. I1(ii) the results of Sec. 1(ii) are extended
to quantum systems in the Lee-Yang formulation.
Similar results for the Green’s function formula-
tion®"* are quoted.

1. CLASSICAL SYSTEMS

i. Formulation in Terms of the
One-Particle Density

a. Definitions, Yvon-Mayer Diagrams

A classical system of N identical particles is
characterized by its Hamiltonian
N N

Hy = E [p? + u@)] + ;U(rs—r:'); (1.1)

where p; and r; are the momentum and position of

the ith particle; u(r;) is a (one-body) external

potential, w(r;—r;) is a two-body interaction

potential (for shortness we shall also use u; and

v:;); and the mass is taken as m = 1.

Grand partition function: It is defined by

Z(a, B)

dpy e~ ¥ (1.2)

!
M=
21‘%
e
f\
5

...drNdpl

o 1 N o
N};amfdrl ---drNIiIn,-

Here ¢* = z is the {absolute) chemical activity,
8~' = kT is the temperature (times the Boltzmann
constant) and we have

gi; = gt; — 1) = exp [—Bulr; —1)] — 1
ny = n'r) = 277 exp [a — Bulry)]

i

H (14 g 1.3

2>1

(1.4)
1.5

1 J, Van Leuwen, J. Groeneveld, and J. de Boer, Physica
25, 792 (1959). E. Meeron, Phys. Fluids 1, 246 (1958);
J. Math, Phys. 1, 192 (1960). M. S. Green, Hugues Aircraft
Company Report (1959) (unpublished). T. Morita and
K. Hiroike, Progr. Theoret. Phys. (Kyoto) 23, 1003 (1960).
{To quote only the papers where a complete analysis of the
two-particle density is £erformed). Early work in the same
direction may be found in J. Yvon: Rev, sci. 662 (1939);
Nuovo cimento Suppl. 9, 144, (1958).
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N = [dpoem (—Bp). (19
Yvon-Mayer diagrams are then a convenient way
of representing expansion (1.3). A labeled Yvon-
Mayer diagram of order N is a set of N points,
labeled 1, 2 .-+ N, and of single lines joining some
pairs of these points. To each diagram is associated
an algebraic quantity calculated with the following
rule (A):

(i) to each point ¢ associate a factor ng,
(i) to each line linking points ¢ and j associate
a factor g4,
(iii) integrate independently over N points with
a weight (N))™.

Z{a, B) is then given by the sum of the con-
tributions associated with all distinet, labeled,
Yvon-Mayer diagrams.

Densities: They are defined as the average of the
density operators, over the grand canonical en-
semble; the one- and two-particle densities are
expressed as

=)

) = Z7\(a, /3)[2 mjdr‘ co e drya,

N=0

N+t

X It Ta+ g“)(‘\i x — ri))]

Y

(1.7)

nir, 1) = Z7(a, §)

=
X[NZ;)(N+2)!.[dr‘

x T a+0)(Z s —x) o -)) | a9

1>

N+2

0
IR Y ”ﬂ-i
1

The expansion of n(r, r')Z(e, 8) for example is
represented by all distinet Yvon-Mayer diagrams
with N 4+ 2 points, of which N are labeled and two
are distinguished and held fixed at r, r’. These points
are the roots of the diagram and the diagram is a
2-rooted diagram (or a 2-diagram for short). The
algebraic quantity associated with an N-labeled,
2-diagram, is calculated with the formally unchanged
rule (A), as seen from inspection of (1.8).

A diagram is connected if there exists at least one
continuous line between any two points; a 2-diagram
is root-connected if it is made of two disconnected
parts, each one of them connected to a different
root. Simple combinatorial arguments show™® that:
(i) in (1.7) and (1.8) the denominator Z(a, @)
eliminates the contributions of all nonconnected

15 J. Mayer and M. Mayer, Statistical Mechanics (John

Wiley & Sons, Inc., New York); see also, G. Ulhenbeck and
G. Ford, Studies in Stat. Mech. 1 (1962).
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(or non-root-connected) diagrams, (ii) In Z(«, B)
is given by the sum of the contributions associated
with the connected diagrams only.

In Z(a, 8), n(x), n(r, 1') are then represented by
all the distinct, connected, (or root-connected)
N-labeled, ¢-diagrams, with ¢= 0, 1, 2, respec-
tively. These quantities may also be represented
in terms of the distinct, free (i.e., nonlabeled),
(root-) connected ¢-diagrams. The weight (N'1)™" is
then replaced by (s;)™", where s; is a symmetry
factor for a ¢-diagram.'® For example we represent
the grand partition function expansion as

" Z(a,B)=._.+/\+A+A+H+N+D+... a9

Notice that if we consider Z(e, 8) as a functional
of n? we have'” (r; # r,)

n(r) = n'@)[8/8°@)] In Z(a, ),  (1.10)
n(ry; 1) = n'T)n’ (@) [6°/8n°(r,) on'(ry)]
X In Z(a, ) + nlr)n(r,). (1.11)

From now on, unless specified, we deal with
connected {-diagrams. We analyze {-diagrams using
the following definitions:

An articulation point of multiplicity m(m > 1)
is such that by cutting a {-diagram at this point,
we can separate at most m connected parts.’®

A l-rreductble {-diagram is such that it has
no articulation point. The 1-irreducible 0-diagrams
are also known as stars, and a general O-diagram is
then a tree of stars.'” We call & {n?} the con-
tribution of all the 1-irreducible 0-diagrams. The
contribution of all the I-irreducible 1-diagrams is
then

)K" {r;ni) = n’@)[8/n’(m)]x ™ {n3}.  (1.12)

We now proceed to express In Z{(a, 8), n(r,),
n(t;; ry) as functionals of the one-particle density.

b. Densities

Consider the contribution to n(r,) of the 1-dia-
grams where only r, is allowed to be an articulation

16 The number of N-labeled (-diagrams corresponding to
ope given free ¢-diagram is N!/s;. The symmetry number

is the order of the permutation group of the N free points
ojf‘ the diagram, which leaves the connections invariant.
Labeled diagrams are useful for detailed proofs, free diagrams
handier to describe representations of expansions and are
used throughout the text.

17 For convenience, in the following we use n(r;), n(r, r3),
or ny, n12 instead of n(r), n(r, r’).

18 m-1 of these look like 1-diagrams, one like a (¢ + 1)-
diagram (or a {-diagram if the articulation point considered
i3 a root).
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point, we get

n(n)[l + Z § (K {rsnih)” ]

= n’(r)) exp (K {ry;n3}),

where m is the multiplicity of the articulation point
r;. A general 1-diagram can be generated then by
making the most general insertion at each point 7
other than the root r, of these diagrams. This has
the effect of replacing the factor n’(r;) by n(r;)
(cf. Appendix A) and yields the Yvon equation®

n(r) = n°r,) exp (K" {r;;n,}).

P {n;} or & {r;; n;} are now functionals of
n(r;) and are represented by all distinct 1-irreducible,
0- or 1-diagrams:

.‘}S‘(Z(‘/nir '—‘.+A+ + e
Ko - A
rini}zo—e + + + + +oee

Associated contributions are now calculated with a
rule (B) differing from rule (A) through point (i)
which now reads:

(1.13)

(1.14)

{115}

{1.18)

B(i) to a root (represented by an empty dot)
associate a factor of unity; to each point 7
(represented by a heavy dot) associate a
factor n,;.

Naturally (1.16) is obtained by taking the functional
derivative of (1.15)

K% r;nd = [8/on)]x" {n,}.  (1.17)

Similarly we may build the general 2-diagram by
considering first the class of 1-irreducible 2-diagrams
and by making the most general insertion at each
point (including the root r, and r;). If we write

n(ty, 1) = nr)n(r)[1 + C; o),

the first term represents the root-connected con-
tributions, the second the connected one. C(r;; rp)
is called the correlation function and we have

c("ﬁ"z)=?———g+cl/\2:+§Aé+iI—l+N+N

e dh T O

C(r,; r;) is represented by all the distinct, (con-
nected), 1-irreducible, 2-diagrams, the contributions
of which are calculated with rule (B).

(1.18)

{119}
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¢. Grand Partition Function

Of course, it could be obtained by direct integra-

tion of (1.14) since we have
f drn(r) = (9/d0) In Z(a, B).  (1.20)

We rather use a more detailed analysis which will
eventually give more insight into the variational
properties still to be established. In Z{x, B8) is
represented by the sum of distinct 0-diagrams
(calculated with rule A) and we wish to express it
in terms of n(r;).

To that effect we consider the three following
expressions:

(a) fdrln(rl). (1.21)
This quantity can be thought of as represented by
0-diagrams (calculated with rule A) but with one
point distinguished at r,, i.e., the contribution to
(1.21) of the class of diagrams with N(p) points
is N(p) times that of the same class to In Z(a, B).
This is also obvious from relation (1.10).

(b) x {n:}.

This quantity is represented [see (1.15)] by 1-
irreducible 0-diagrams where one has made the
most general insertion at each point. But it can
also be represented by the most general 0-diagram
(calculated with rule A) where one 1-¢rreducible part
has been distinguished. Let N(%X‘") be the number
of 1-irreducible parts of a diagram (i.e., the number
of separate parts obtained by cutting all the articula-
tion points of the diagram). The contribution of
0-diagrams with N(x‘V) I-irreducible parts to
%" {n;} is then N(x) times the contribution
to In Z(e, 8).

(c) Consider finally a general 0-diagram where we
distinguish one point at r, and one 1-irreducible part
rooted at r;). Such a diagram may be generated out
of the distinguished 1-irreducible part, making the
most general insertion at all points other than r,
(which provides a factor K {r,; n;}) and at the
root r, yielding

(1.22)

fdrln(rl)K‘”{rl;m}. (1.23)
An ordinary point may be viewed as an articulation
point with multiplicity m = 1. Let N(p-m) be,
in a diagram, the number of articulation points
weighted by their multiplicity, which is also the
number of ways one can choose a 1-irreducible part
rooted at a point r, on the diagram. Again, a 0-dia-
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gram contributing to (1.23) carries an extra weight
N(p-m) as compared with its contribution to
In Z(e, B).

We use now a general relation between the
introduced weights,

N() — N(p-m) + N(x") = +1.

This relation valid for a tree of 1-irreducible parts
is easily shown by induction®®''’; it allows us to
construct the proper weight for O-diagrams con-
tributing to In Z(a, 8) out of (1,21), (1.22), and

(1.23), thereby yielding In Z(«, 8) in terms of n(r;);

(1.24)

In Z(a, B) = f drn(r;)

- fdrln(r,)K(”{rl;n,-} LY. (1.25)
Using (1.5), (1.6), and (1.14) we get
In Z(e, 8) = f drn)[l — Inn@) + o
— In N — Bulr)] + x“ {n.}. (1.26)

A more suggestive form is obtained if one uses the
one-particle density tn phase space u(ry, p,) = p, with
the result

In Z(er, §) = [ dlu(1 = In )

+ &) + [l — o0t - pu),  (120)

where d1 stands for dr, dp;.

d. Variational Properties

Consider the right-hand side of (1.25) as a
functional ®{K"’} of an arbitrary function K (r;)
through the relation

a(r) = n'(r:) exp [KV ()],

it is verified that ®{K"’} has an extremum when
(1.17) is satisfied, ie., K (r,) = K" {r;; n;}. This
stationary property is traced to relation (1.24), i.e.,
to the tree structure of the diagrams.®® Indeed the
three terms of the variation §&{K "} generated by
8KV (r,) may again be represented diagramatically
in three different ways as in points (a, b, ¢) above, but
these diagrams now have an “external”’ 1-irreduci-
ble part 6K (r,) rooted at r,. Such an “external”
1-irreducible part cannot play the role of a dis-
tinguished 1-irreducible part in generating diagrams
"~ 19G. Ford and G. Uhlenbeck, Proc. Natl. Acad. Sci.

U. 8. 42, 122 (1956). See also M. 8. Green, J. Math. Phys. 1,
391, (1960).

(1.28)
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{point b) and hence for the diagrams representing
8&{K:"} we have the relation

N@p) — Np-m) + N(x") =0 (1.29)
equivalent to the stationary condition
[8/8K M (r)]@{ KV} = 0, (1.30)
which yields
KE®() = KP4 n:) = [8/en)]x" {n.}  (1.3D)
(K} = In Z(a, B). (1.32)

The variational property is more conveniently
expressed in terms of n{r;) [or u(r;; p.)]. Let the
right-hand side of (1.26), regarded as a functional
of Ai(r,), be ¥{n,}. It is then stationary with respect
to variations &4(r,) when 7{r;) = n{r,), and hence.

¥in} = In Z(a, B). (1.33)

In the next section we shall see that this extremum
is a maximum for In Z(e, 8).

(if) Formulation in Terms of the
One- and Two-~Particle Density

a. Definitions

In Z(a, B), n(ry), n(r,; r;) have been expressed
in terms of n(r;) and represented by I-irreducible
¢-diagrams. In the following, unless mentioned
explicitly we only deal with such 1-irreducible
¢-diagrams. We introduce now the following defi-
nitions:

An articulation pair of multiplicity u(e > 1) is
such that by ecutting the diagram at the points
(4, j) of the pair, we can separate at most u con-
nected parts.”® A single line directly linking (2, j)
is not counted as a separate part.

A 2-irreducible ¢-diagram is such that it has no
artieulation pair.

A simple 2-diagram is such that the roots ry, 1,
are not directly linked and do not constitute an articula-
tion pair. The contribut;ion of simple 2-diagrams, is
called S{r;; a3 n

Stryraim- /\ M.N.N

Like Cys, 8iz is a symmetrical function of r;, and r..

(1.34)

p—1 of these parts look like 2-diagrams, one like a
(¢ + 2)—d1agram {a (¢ + 1)- or a ¢-diagram if the articula-
tion pair contains one or two roots].

087

b. Two-Particle Density

We discard for the moment 2-diagrams containing
a direct link between the roots ry, r, [i.e., a factor
g{r, — r;)]; we write then the eontnbutxon of such
2-diagrams where the pair (1, 2) is allowed to be
an articulation pair of any multiplicity u

o

T o S,

Adding the contribution of 2-diagrams with a direct
(1, 2) link, we get for the correlation function

Clry;r) = [1+ glr, — 15)]
X {exp [S(ry;r)] — 1} + g(r, — 12).

To further analyze S,; we introduce the following
definitions: A nodal point is such that if we cut a
2-diagram at this point, we can separate two parts;
one containing the root r,, the other the root r,.
A nodal diagram contains at least one nodal point.
Simple diagrams fall into two classes: nodal and
elementary (i.e., simple, non-nodal) diagrams.

Nodal 2-diagrams: Let N(r,; r;) be their contribu-
tion. Between two sueccessive nodal points 7 and j
there is, by definition, a non-nodal part described by
X(r:;15)

X)) =

(1.35)

Clri;1;) — Nix;ry). (1.36)

The contribution of nodal diagrams can then be
written in short, as the solution of the integral
equation

N 1) = f dr; X (1 ; 1an(r) X(xs; 10)

+ [ X enE) N ). (130
Substitution of (1.36) into (1.37) yields
Ner) = [ CXCRENTCNGENED

— [ deNe ne) O, (1.39)

an equation expressing Ny, in terms of n; and C;.
Notice that for a homogeneous system, n; is a
constant, C;; = C(r; — r;), and the Fourier trans-
forms of (1.37, 38) reduce to algebraic equations
linear in N(k) « [ dr exp (¢k-r)N(r).

Elementary 2-diagrams: They can be generated
from the 2-irreducible 2-diagrams K‘¥(r,; 1,) (con-
taining no articulation pairs) by the following pro-
cedure: Replace each line directly linking any pair
(Z, 1) by the most general insertion connecting (¢, 7);
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algebraically it amounts to replace the factor g,; by
C.; (cf. Appendix A). We thus have, diagramatically,

Kﬁzz){n'uciij : @ + @«h vee

and by iteration of (1,38) we obtain the alternate
series

o NT1Y

{1.39)

{1.40)

Algebraic quantities associated with these 2-dia-
grams are calculated now with rule (C) differing
from rule (B) through point (ii) which now reads:

C(ii) to each heavy line linking the pair (z, 7) asso-
ciate a factor C,;.

Notice that the series of diagrams giving N, carries
an extra weight (—)”*' where p is the order of the
diagram.

We thus have expressed S,. in terms of n; and
C,- i

Si2{n:, Ci;} = Nyofny, Cii} + Kl(g) {n:, Ci;}, (1.41)

and with (1.18, 35) the two-particle density itself
in terms of n; and C,;.

¢. Grand Partition Function

Direct integrations of n(r;; r,) over a would be
much less straightforward here. We use the same
type of analysis as in See. I(i), i.e., we list quantities
easily expressed in terms of n; and C,; and repre-
sented by the same diagrams as In Z(a, 8) except
for varying weights:

@ [ dndanenE)Cesn); (142
This quantity can be thought of as represented by
all (reducible or not) O-diagrams calculated with
rule (A), but with one pair of points distinguished
at r,, r,; contribution to (1.42) of diagrams with
N (z) pairs is N(r) times that of the same diagrams
contribution to In Z{e, @) which is also obvious
from (1.11).

(b) In Sec. I1(i) we considered K as a functional
derivative of X, here we shall consider N, and

{3} as related to functionals 9t{n;; C:;} and
% {n;; Cy;} in the following fashion (Appendix B)

n(en() N {r; 12505 Ciy )

= 2[5/50(1'1;1'2)]91{";; Ciil (1.43)
n(fl)n(rz)K(2) {r,; 125045 Cui)
= 2[8/8C(xy; rz)]xm {n:; Ci;}. (1.44)
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Diagramatically we have

‘M{"x;cii} : A - D + Q - O + o0 {145)
Ky ,Cist = @ + ®+ (1.46)

9 is represented by polygonal diagrams (with
alternate signs) and & by 2-irreducible diagrams,
built with heavy dots and lines (which represent
the most general insertions n; or C;;), and calculated
with rule (C). Thus, § = 9 + & can also be
represented by a general (reducible or not) 0-dia-
gram, calculated with rule (A), with a polygonal or
a 2-irreducible skeleton distinguished. Let N(3) +
N(%®) be the number of ways this choice can be
done, it is also the extra weight these diagrams carry
as compared to the contribution of the same dia-
grams to In Z(«, 8).

(c¢) Consider a general (reducible or not) 0-dia-
gram where we now distinguish one pair of poinis at
r, 1, and one simple part rooted at r,, r,. These
diagrams may be generated from a skeleton nodal
or 2-irreducible 2-diagram, rooted at r,, r,, by
making the most general insertion at all points
and pairs except r, r, (which provides a factor
Npfn:, Cii} + K{?{m, Cii} = Swiin,, C,;}) and
at the roots yielding

f dr, dr, n(r)n@)[1 + C,; 1))
X 8{r;;12;n,C551. (1.47)

Let N(x-u) be, in a diagram, the number of articula-
tion pairs weighted by their multiplicity (an ordinary
pair being viewed as an articulation pair with u = 1),
N (7 -u) is also the number of ways one can choose a
simple part rooted at r;, r; in the diagram, and a
0-diagram contributing to (1.47) thus carries an
extra weight N(7-u) as compared to with its con-
tribution to In Z(«, B).

The introduced weights can be shown (Appendix
C) to satisfy a relation valid for any 0-diagrams

N(x®) = §[N(@) — N(xr-u)]

+ N(9) + N(x™). (1.48)
With (1.13) we get
N — N(p-m) + 3[N@) — N )]
+ N + N(x®) = +1, (1.49)

which allows us to build the proper weight for
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0-diagrams contributing to In Z(a, 8) as

In Ze, §) = [ drne) = [ drnG)K® fr;m.)

+ 3 [ dry dr neon@)0; 1)
— [1 4 Clry; r2)]8{r;; 125 m45 Ciy}]
+ S{TL“ Oii}‘ (1-50)

Expressed in another form, we see that relation
(1.48) is equivalent to

K00} = 3 [ dr, deane)n@)C; v

- [1 4 Cty;1)]8{ry, 155 n,C ;)] + 8{n.C.;}, (1.51)

where C(r;; r,) can be considered as a functional of
n; through repeated iterations of (1.35), which we
rewrite as

i+ Clry;r) = [1 + gty — 1))
X eXp (S{rl; r2; ni} Cii})' (1'52)

Using this expression and (1.14) to eliminate
8., and K{V, respectively, from (1.50), we get

IngZ(a, §) = [ dr, ne)[1 — Inn(e)
o= N — ulr)]
+ 3 [ dr,de niegnte] s

1+ Clry;my) :'

— [+ Cosr)ling g(r, — 1)

+ ${n;; Ciil. (1.53)

If we introduce the one- and two-particle density in
phase space u(r,, p.) and

piz = u(Ty, pi;Ta, P2)

= u(ry, poulr:, p)[1 + Cl,; 1), (1.54)

we get

In Z(e, ) = [ dl (1 — In w)

+4 [ dldz plCio — (1 + C) In (1 + C,9)]
+ 3{'"-'; Cii}

+ [ dl e — 681 — B = (8/2) [ a1 32 i
(1.55)
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d. Variational Properties

Discussion of the stationarity properties of the
right-hand side T of (1.50) could be carried out in
very much the same way as it was done for (1.25)
in Sec. I(i). Here it would be necessary to consider
variations of the quantity S.;, T{@; S:;} being
expressed in terms of #; and S;; through relation
(1.52). Again the stationarity property

[6/88(r,; )10 {7;, Si;} = 0 (1.56)

could be traced to the structure of the diagrams
which entails (1.49).

It is more convenient to consider the right-hand
side of (1.53) as a functional @{7,, C;;} of @, and
C.;. If we write the particular values n; and C,; of
these functions which render @ stationary with
respect to independent variations én; and 8C;; we
obtain

nr) = n'(r)) exp { f dr, n(rz)[C(rl, I.)

1+ 0<r1,r2>]

-1+ Ch,r)]1In 1+ g — 1)

+ [8/on(r))] ${n:, Cii}}

14+ Clry, 1)
14 g(r; — 1)

(1.57)

= €Xp <2 5—0—(2_’5 8{n:, Cn’}) ; (1.58)

(1.57) is identical to the expression of n(r,) in terms
of n; and C;; obtained with (1.14), (1.17), and (1.50);
(1.58) is identical to (1.52). The stationary value
of the functional itself

Q{n;, Ci;} = In Z(a, B). (1.59)

We determine now the sign of the second func-
tional derivatives. From expression (1.26) we get
52

on(r,) on(r,) ¥in)

= _,n—i.lj 8, — 1) + X(1,, 1) (1.60)
Here X(r,, r,) is the second functional derivative
of £V {n;}, i.e., it is represented by the 1-irreducible,
non-nodal, 2-diagrams, and hence identical with
(1.36). From (1.36) and (1.38) we get an integral
equation satisfied by X(r,, r,) (Yvon'?),

X(I'l, rz) = C(l'l, 1'2)

- f dry X, ton() 0, ). (1.61)
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On the other hand, the number of particles fluctua-
tions, an essentially positive definite matrix is
given by

(S5 -0
RNV

where the average value is over the grand canonical
ensemble, i.e.,

o(r,, 1) = n(r;) 8(r; — ;) + nlr)n(r)C@,, 1), (1.63)
It is a straightforward matter to verify then, using
(1.61), that the second functional derivative (1.60) is
the inverse matrix of —¢(ry, 1,), and hence a negative
definite matrix. The extremum of ¥{7,}, where it
takes the value In Z(«, 8), is thus a mazimum.

The second-order variation of the functional
Q{#;, .}, around the extremum 72, = n,, C,; = Cy;,
is also shown (Appendix D) to be a negative definite
quadratic form in 84, and 8C,;.

(1.62)

e. Entropy. Generalization to Many-Body Forces

The entropy of the grand canonical ensemble
has a particularly interesting form. From (1.55)
we have

S = In Z(a, B) — o(N) + B(H)
= [dtm ~ ) + 3 [ dlaz wplca,

~14+C2ln (1 + 012)] + N+ x®. (164)

Here %t and X are calculated with the series
(1.45, 46) and rule (C), where n(r;) is replaced by
u(r,, p;). Again we may consider the right-hand side

of (1.64) as a functional ={a;, C;;}. If we variate
Z, and C; with the constraints
) = f dl o (1.65)
) = [ atwmet +w
+ 3 [ 102 gl + Coos,  (1.66)

Z has a maximum (equal to the entropy) for the
values of u(r,, p,) and C(ry, 1;) obtained from (1.57)
and (1.58).

The potentials u; and »;; no longer appear ex-
plicitly in Z{a., C;;}; perhaps more significant is the
fact that the equilibrium parameters o and 8 have
completely disappeared. Only the maximum value of
=, through the constraints (1.63, 66) and the La-
grange multipliers, will introduce explicitly those
quantities.
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This raises the interesting question: Is it possible
to give a physical interpretation to Z{a:, C.;} outside
its maximum? More precisely, 4s i possible to
identify — (E/k) with a generalized Boltzmann H
Sfunction, for a system outside equilibrium, in its
kinetic stage? We do not know, as yet, the answer
to this question. Assuming that g, and C,; depend
upon the time ¢, the time derivative of = is written as

dz _ 5 oosp (——— s{z, Cb) | L g
—E = fdl In [,Ul CXp< 5'&-1 L‘S{'ul’ C”}>] dt i

+4 [tz + G

d

xﬁph&ﬂmé}ﬂWMnu+é@] (1.67)

and may suggest evolution equations for g(ry, pi, )
and C(r,, 15, ) that imply (—d=/dt) > 0.

The introduction of 3-body forces in the Hamil-
tonian would render the entropy expression more
complicated and B8 dependent. However it is pos-
sible to further refine the analysis of the diagrams
by considering triplets of points, articulation triplets,
3-irreducible diagrams and by the same method to
recast Tq. (1.67) into the following form, now B
independent:

1
§=[dmt —mw) +5; [ dld2 e
X [012 - (1 -+ 012) In (1 + 012”
-+ 537 f dl d2 d3 pypous

X 1+ Cio)(1 + Coa)(1 + Cy)
X [Tizs = (1 + Tiza) In (1 + Tiyg)]
+ 5{”1’; Cij} Fijk}; (1-68)

here we have defined the 3-particle density in phase
space as

Hlliz.us(l + 012)
X (14 Coa)(1 4+ Cs)(1 + T'yna),

3 contains two classes of diagrams, one having some
similarity with the polygonal diagrams 97, the other
being mainly made of 3-irreducible diagrams.

P23 =
(1.69)

II. QUANTUM SYSTEMS

(i) Formulation in Terms of the
One-Particle Density

We now want to extend to quantum systems the
results established so far. Among the various pos-
sible formulations of quantum statistical mechanies
we shall eonsider a formulation of Lee and Yang,'
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which, besides its simplicity, remains closer to the
classical formulation. At the end we shall also quote
the corresponding results for the Green’s function
formulation used by Luttinger and Ward.*

In this section we use the same procedure as
Sec. I(i) to rederive Lee and Yang's results, ex-
pressing the grand partition function as a stationary
functional of a quantity in direct relation to the
one-particle density. In the next section, the method
is extended to produce a stationary expression of
quantities directly related to the one and two
particle densities. We have tried to keep the same
symbols as in the classical case, for equivalent
quantities.

a. Definitions. Lee-Yang Diagrams

We start from the Lee-Yang description of
statistical mechanics of translationally invariant
systems in terms of the (contracted) ¢-diagrams
(L-Y Sec. 1V), which, for short, we call {-diagrams.
Such diagrams are built up with o-vertices con-
nected by lines bearing an arrow. An a-vertex
(¢ > 2) connects « incoming lines and « outgoing
lines. A ¢-diagram has ¢ incoming and { outgoing
external lines. We shall only be concerned with
connected diagrams. We recall the rule giving the
algebraic quantity associated with a labeled dia-
gram (rule A). Each of the N internal lines bears an
integer 7 and a corresponding momentum k;, each
external line (if any) bears a pregiven momentum:

(1) associate to each internal line 7 a factor

m(k;) = 2[1 ~ e exp (—pK)] 7, (2.1
where ¢ = +1 or —1 for Bose or Fermi systems’
respectively.

(i1) associate to each a-vertex, a factor
ks, - Ko, Yol ks, - Ky,)

where k, and k; are momenta associated with the
incoming and outgoing lines of the vertex. This
factor can be said to describe the evolution of «
particles between the values 0 and 8 of the inverse
of the temperature, as if the rest of the medium
were absent. It is defined in more detail for Bose or
Fermi systems in L-Y.

(ii1) sum over all internal momenta with a weight
(N)™' (for labeled diagrams) or a weight (s;)7'
(for free diagrams™).

(iv) assign a factor ¢ where P is the order of
the permutation

ki, — kg, -k,

1

—ky,, -

a

2 Compare with footnote 16.
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of all the initial coordinates into the final coordinates
of all the vertex functions T, taken together.

The grand partition function defined as
Z(a, B) = Tr exp («aN — gH), 2.2

where N and H are the number and the Hamiltonian
operators, is then expressed as

In Z(e, B) = 2 eln [z "m(k,)]
k,
+ > (all distinct O-diagrams). (2.3)

The one-particle density (diagonal) matriz is defined
as
(ki ["1’ k) = &, nk)

= Z7'a,B) Tr exp @N — fH)ay ax,, (2.4

where ay,, ax, arc the creation and annihilation
operators for a particle in a state defined by its
momentum k; (i = 1). It is conveniently expressed
in terms of

M&k,) = 2[1 + en(k))]
M&,) = mk,)
+ m’(k,) > (all distinet, 1-diagrams). (2.6)

Equations (2.1) to (2.6) are introduced or derived
in L-Y and we shall consider them our starting
point. We also introduce the two-particle density
matrix as

Kk n,| kik,) = Z7 (e, B)
X Tr exp (N — H)ay .05 .0k 0,

(2.5)

(2.6)
and express it in terms of Lee-Yang 2-diagrams
(KK | Kiko) = (8xcrkey vk,

+ € Sk, O In(l)n(k,)

+ 27 m (k) m (k) m(k,) m(ks)

X > (all distinet, 2-diagrams).

2.7

To analyze the diagrams, the following definitions
are introduced:

An articulation lace k, of multiplicity m(m > 1;
also called necklace in reference 5) is a sequence of
lines bearing the same momentum k, (by virtue of
momentum conservation) in a {-diagram. Removal
of one articulation lace splits the diagram into m
disconnected parts. A lace k, is meant to be either
an articulation lace k,(m > 1) or a nonrepeated
line k,.

A 1-irreducible {-diagram contains no articulation
lace. & {m,} is the class of I-irreducible 0-dia-
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grams; the class of 1-rreducible 1-diagrams is then
represented by

K®{k,; m,} = [8/6m&)]x™ {m,}. 2.8)

b. Densities

One-particle density: The contribution to M(k,)
of the 1-diagrams where only k, is allowed to be an
articulation lace, is given by

m(kl)[l + 2 [K P {k; mi}M(kl)]’"] y (29
me=1

where m is the mulitplicity of the lace. The general

1-diagram is generated by making the most general

insertion at all lines other than k, with the effect
of replacing m(k,) by M(k,).

M) = m) + emE&)K® {ky; M} M(k)  (2.10)
or
Mk) = mlE)(1 — emE)K® k; M) (2.10)

Relation (2.11) between M(k,) and K% (k,) is
homographic instead of exponential as in (1.14)
because there is an ordering imposed at an articula-
tion lace which does not exist at an articulation
point. KV {M,} or K {k,; M.} is given by the
sum of 1-irreducible 0- or 1-diagrams

Ky = 00 + &b + () + %

K"k,; M} = p+@+¢+o€+ - (2.13)

calculated with rule (B) which differs from rule (A)
through point (i):
B(i) to each internal line 7 (drawn with a heavy
line) associate a factor M.
Two-particle density: We have

2 [(kiks [nae] Kiko) — (8x-,x: Ox'.k,
+ € fkrax, Bice,w )l )n(ks)]
= M&DM &)k, |C] kk)Mk)Mks), {2.149)

where the matrix C,{M,} is represented by the
sum of the l-rreducible 2-diagrams

¢ ¢ O R v s
y
<k|k,2|C|klkz> : X N % ' Q ' w ' ﬁ ! % )
(B o2 v 12 o2 t 2

(2.!5)

+ {e.12)

calculated with rule (B).

¢. Grand Partition Function

Instead of computing In Z(e, 8) by direct integra-
tion of Y «, n(k,) over o, we consider three expres-
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sions which are also represented by 0-diagrams (with
some element distinguished) and expressed in terms
of M{k,).

(a) A general O-diagram with one lace k, dis-
tinguished, carries an extra weight N(I) equal to its
number of laces. The contribution of such diagrams

i 822

Z ?—:; (KD {ky; M. mE)]", (2.16)
where m is the multiplicity of the lace.

(b) A general O-diagram with a I-¢rreducible part
distinguished has an extra weight N(%x‘"). This
number can be obtained in the following way:
Suppress an articulation lace k;, close each one of
these m parts obtained by a k; line, and repeat the
operation inside each one of these m parts; the
total number of Il-rreducible parts obtained is
N(%™). Such diagrams are generated from & {m,}
by making the most general insertion in all lines
yielding

KV{M,}. (2.17)

(c) Consider a general 0-diagram with one single
line k, distinguished, or equivalently with one lace
k, and one 1-irreducible part KV (k,) distinguished
in the lace. Such a 0-diagram carries an extra weight
N(l-m), which is the number of laces weighted by
their multiplicity (and also the number of lines).
Since such diagrams are generated by starting from
a l-irreducible part, making the most general
insertion in all laces but k, (ie., KV{k;; M,})
and then in the lace k, (i.e., M(,)), their con-
tribution is

Z K(l){kl;

ks

M Mk). (2.18)

These weights satisfy a simple relation which is
immediately proven by induction and which follows
from the tree structure of the diagrams

N — NI-m) + N(x™) = +1. (2.19)

Such a relation, together with Eqs. (2.16) to (2.18),
implies

In Za, B) — 2 ¢ In (" miky)

ks

= -—Z eln[1 — KV {k,;
k,

— kZ K(l} {kl;

M 3miky)]

MiMk,) + xV{M}. (2.20

2 A diagram made of m l-irreducible parts K®)(ky)
connected by an articulation lace k, is invariant under
circular permutation of these m parts giving rise to a sym-
metry number s = m.
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Using relations (2.3) and (2.11) one gets [L-Y.
Eq. IV.32)]
InZ(a, ) = 2 eln M) — X {M(k,)

— m)]m@)] ™ + &V {M}. (2.21)

The right-hand side @ of (2.20), considered through
(2.11) as a functional of K¢’ [or the right-hand side
¥ of (2.21) as a functional of 3], is stationary
under variations 6K" (or 8M;), a property which
could be traced to relation (2.19).

Using exactly the same method and argument as
in the classical case [Sec. I(ii), the relevant matrix
X, is defined in the following section] it is shown
that the functional ¥{M,} has a negative second
derivative' at its extremum where M; = M,. It is
to be remembered however that the proof of
Appendix D does not apply as such to quantum
systems; indeed, second functional derivatives of
In Z(a, B) with respect to potentials do not neces-
sarily behave like fluctuations, i.e., have no obvious
negative definite character.

(ii) Formulation in Terms of the
One- and Two-Particle Densities

a. Definitions

The grand partition function and the one- and
two-particle densities are now expressed as func-
tionals of M, and represented by l-irreducible
¢-diagrams calculated with rule (B) (in the fol-
lowing, unless mentioned, we only deal with 1-irre-
ducible diagrams). We now introduce further defini-
tions along the same lines as in Sec. I(ii).

Consider in g 0-diagram a pair of lines (z, j) which
we may think of as being cut open: k;, k; for the
incoming pieces, k%, k! for the outgoing pieces.
Consider now all the possible pairs (z,, j.), (¢, 72) + -,
which after being further cut open, lead to a partition
of the original diagram into two parts; one containing
the incoming lines k;, K, the other the outgoing lines k!,
k/. The set of u pairs of lines (¢, 7; %1, 51; * - * %uz1, Ju—1)
plays the same role as an articulation pair for the
classical systems and is called an articulation
sequence of pairs of laces or arficulation sequence,
of multiplicity u. The same definition applies to
8 2-diagram after the incoming external lines have
been closed with the outgoing external lines yielding
a 0-diagram.

A simple 2-diagram is such that the external lines
considered as an opened pair are not part of an
articulation sequence and the contribution of all
the distinet, simple diagrams we represent by the
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matrix &k} |S| k.k,)

e v e o ow v o
QKK ISIkkyy - >< + >é +M + M + %+ (2.23)
[ 2 ' 2 ] 2 [

Like C,,, the matrix S, is a symmetrical function
of ky, k, (and of k/, k).

b. Two-Particle Density Matriz

The contribution to {klkj |C| kk,) of diagrams
where the opened pair (k{k;; k.k,) may be part of
an articulation sequence of increasing multiplicity,
is written in short as (Appendix A)

Swl:l + 2 (%SuMle)“] ;

or equivalently, the matrix C,, is expressed as the
solution of the integral equation

(ks 1C) k) = (KK |S] kk,)
+ %IZ &k | S| LILYMA)M (L)1, |Ckk,). (2.24)

1ls

Further definitions are needed to analyze S,.:
A nodal parr in a 2-diagram, is a pair of internal
lines (Z, j) such that by cutting them open, the
2-diagram separates into two 2-diagrams each one
containing one incoming external line (k, or k,) and
outgoing external line (k{ or kj). A nodal diagram
contains at least one nodal pair. Simple 2-diagrams
are classified into nodal and elementary (i.e., simple,
non-nodal) diagrams.

Nodal diagrams: Let (klk; |n| k;k,) be the con-
tribution of those nodal 2-diagrams where by cutting
a nodal pair one disconnects (k;k;) from (k.k;); the
contribution of all nodal 2-diagrams is

(kik} |N] Ioks) = (KK o k) + ek |n] ki)
(2.25)

The matrix (kik; |n] k,k,) is generated by iterating
non-nodal parts described by the matrix
<k{k§ |X ] k1k2> = <k;k§ Icf k1k2>

— &k IV k). (2.20)

In the iteration these non-nodal parts are connected
by nodal pairs of lines. N,, may be expressed as a
solution of the integral equation

(I |N] kki)
= > (kk! |X| Kk (k)M (k) (kok] X | keoks)

kak’,
+ k; (k] | X | Jeoks) M (ka) M (k) (kki [NV | k),
(2.27)
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where we have
k! | |kk) = &ki| [kk); (2.28
with (2.26) and (2.28) we can transform (2.27) into
(kuk{ [V koki)
> (k! |C) k)M (ko) M (k) (ko) |C] Kok

kaik’s
— > (k! [N k)M (k) M (k) (ko |C] ok,
ksk's
(2.29)

thereby expressing N, in terms of C .

Elementary diagrams: Here the analysis differs
from the classical case because 3, 4 --- n-vertices
may play the role of many-body interactions. We
find convenient to distinguish two subclasses among
the (simple, non-nodal) elementary 2-diagrams:

(7) “Z-vertex’-like 2-diagrams: They contain no
articulation sequence. Their classical equivalent
reduces to the direct link between points (1, 2) a
diagram which was excluded from the class of
simple 2-diagrams. Their contribution is written as
(klk; |V] k,k,) and symbolized by a general 2-vertex

KK b

§-9-@-

(#7) 2-irreducible 2-diagrams: They contain no
articulation sequence of multiplicity u > 2. Notice
that, as simple 2-diagrams, their external lines
(considered as an opened pair) cannot be part of
an articulation sequence, even with p = 2. Classi-
cally this subtlety in the classification entered
through the special treatment allowed to the direct
(Z, j) links.

These 2-diagrams contribute a matrix
(kjk) |K| kk,). They are built of parts playing
the role of “‘effective” two-body forces and repre-
sented [Eq. (2.30)] as generalized 2-vertices and of
parts corresponding to “effective’”’ many-body forces.

Llementary 2-diagrams which do not belong to the
“2-vertex” subclass are obtained from the 2-irre-
ducible 2-diagrams by the following procedure: Each
generalized 2-vertex part linking the four internal
lines kZ, k7 and k;, k; is replaced by the most general
insertion connecting these lines; algebraically it
amounts to replace each factor (kk; |V| k.k,) by

&kik; |C| kk;) (Appendix A) which is represented
as a heavy dot with two incoming k;, k; and two

{2.30)
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outgoing k!, k/ lines. In terms of diagrams we have

2:4:Q:
@@@@@

KKa Il = Q m
3 -G

Contributions associated with these 2-diagrams are
calculated with rule (C) differing from rule (B)
through point (ii):

ki kalK@ K, ko)

t2.31)

(2.32)

C(ii) To each heavy dot 2-vertex, associate a
matrix &k} |C] kk;), where ki, k! and k;, k;
are the momenta of the outgoing and incoming lines;
to each a-vertex (a > 2) associate a matrix T,.

The result of this section is summarized by the
symbolic matrix equations

Cio = (1 — 38,.M,M,)7'S,,, (2.33)
Sm{M,-, O“} = NlZ{A[iy Cii} + Vl?{Mi}
+ K (M, Cu}. (239

¢. Grand Partition Function

IFollowing the pattern used for the classical sys-
tems, we consider three expressions which are
easily expressed as functionals of M; and C,; and
represented by general 0-diagrams with one element
distinguished.

(a) Consider a general 0-diagram with one articula-
tton sequence (multiplicity u) distinguished. As an
iteration of simple parts its contribution, in terms of
the matrix 8,,, is written,”® with obvious notations,

Tr, [slele +2 3 % (JZ—SIZMIMZ)"] . (2.35)
Compared with its contribution to In Z(a, 8), here
a O-diagram carries an extra weight N (o) equal to
its number of articulation sequences.

(b) Just as we introduced the functional %" { M},
here we define functionals of the matrix C,,, the
derivative of which restores the matrices Ny;, Vi,
and K{2’, namely (Appendix B),

D) M (k) e |V | Tk, )V (1) M (1)

= 4[5/ 5(kik] |C| kk)|N{M,, Ciy}  (2.36)

% Compare with footnote 22 for the factor (u)™?; see
also Appendix A for factors 1/2.
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M ()M (I (il | V] Beykeo) M () M (k)
= 4[3/5(klk} |C| k)]0 (M, )
M () M () il [K™ | ko) M (k) M (ko)
= 4[5/5(ik} |C| k)%™ (M, C./}.

Diagrammatically we have

5.8
o é8% @ ®-..

N is represented by polygonal diagrams (with
alternate signs), X by 2-irreducible diagrams (no
articulation pair of multiplicity 4 > 2). U is defined
as containing a term independent of the matrix
C,:. Contributions of these diagrams are calculated
with rule (C). The quantity $ = 9 + 0 + K is
again represented by the most general 0-diagram,
since the heavy dots and lines are equivalent to
the most general insertions, but now a nodal,
2-vertex or 2-irreductble skeleton is distinguished. A
general 0-diagram thus carries a weight

N(8) = N(:) + N(V) + N(x®)

(2.37)

(2.38)

(2.39)

‘M{Miacii}

(2.42)

counting the number of ways it can be generated
out of nodal, 2-vertex or 2-irreducible skeletons,
respectively.

(¢) Consider a general 0-diagram where we
distinguish one pair of laces, or equivalently, one
articulation sequence and one simple part (e.g., the
simple part S;» which follows the pair of laces
distinguished). Such a 0-diagram carries an extra
weight N(o-u) which is the number of articulation
sequences weighted by their multiplicity, or also,
the number of pair of laces (a pair of laces which is
not part of an articulation sequence is counted with
multiplicity ¢ = 1). These diagrams may be gener-
ated by making insertions in the simple part
(Si2{M., Ci}) and in the distinguished pair of
laces yielding

Trie S (MM, + M, M,C.M,M,). (2.43)

We can then immediately construct the grand
partition function as a functional of A; and C,;.
To that effect we use a second topological relation-
ship valid for Lee-Yang diagrams (Appendix E)
which relates the weights introduced in (a, b, ¢) to
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N(x) (number of ways a O-diagram may be
generated out of 1l-irreducible skeletons).

N(x™) = 3[N(o) — N(o-w)]
+ N(9) + N(U) 4+ N(x™®). (2.44)
Or equivalently, considering (2.19) we have
N() — N(l-m) + 3[N(s) — N(o-w)]
4+ N(8) = 1. (2.45)

Together with (2.20), (2.35), (2.39) to (2.41), and
(2.43), this relation implies

In Z(e, 8) — Try [eln (z7'm)] =
Tr, [—eln (1 — KV'm) — K" M,]
+ Tr,z ["— € 1n (1 - %Slele)

- %Slele(l + %012M1M2)]

+ 8{M,, C.}, (2.46)
${M., Cy} = M., C.;;} +0{M,, C.;}
+ x2{M,, C.;}. (2.47)
Notice that (2.44) is equivalent to the relation

U {M,}
= —Try, [In (1 — 38,.{M;, C;} M, M)
+ 18,.{M., C.;} MM, (1 + 1C.M,M>)]
+ 8{M,, C,;}, (2.48)

where in the right-hand side C;; may be considered
as a functional of M, through repeated iterations
of (2.26). Using (2.26) and (2.11) to eliminate K"
and 8,, from (2.47), we get the desired result:

In Z(e, /) = Tr [eIn 'M,) — (M,/m; — 1)]

+ TI‘12 [ln (1 + %ClelMZ)

— L0LM M) + ${M,, C.;}. (249

d. Variational Properties

The right-hand side of (2.47) can be verified to be
stationary under changes of the functions K"’ and
S;; in a way traceable to the diagram structure as
in Sec. I. We rather consider the right-hand side
of (2.49) as a functional 2{M;, C;;} of the matrices
M, and C,;. The particular values M;, C;; of those
matrices which render stationary @ under variations
oM, 6C; satisfy then the following equations:

5(1/M1 - 1/m1) + Tr, [Clez(l + %CIQMIA/IZ)_I

— CpM,] + (6/M)${M,, C;;} =0 (2.50)
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M\ M,C..M M1 + %0121111]‘[2)~1
- (5/5012)S{Mi; On} = 0. (2-51)

Equation (2.50) together with (2.11) expresses K"
as a functional of M, and C,;, an expression which
could be also obtained from (2.48) and (2.26).
Equation (2.51) is an immediate consequence of
(2.16) and (2.39) to (2.41). For those particular
values of M, C,; equal to the actual matrices M, C;
immediately related to the one- and two-particle
densities through (2.5) and (2.14), the functional Q
has an extremum equal to the grand partition
function. The study of the quadratic form in 8M;
and 5C;; representing the second-order variation
of @ is deferred to another paper.

(iii) Other Formulations. Conclusions

A stationary expression of In Z{«, 8) in terms of
the one-particle Green’s function has been derived
by Luttinger and Ward.* Analysis and proofs
similar to the ones carried out above could be
extended to this formalism resulting in a doubly
stationary expression in terms of quantities directly
related to the one- and two-particles densities. We
shall just quote the results.

We define the one- and two-particles Green’s
functions in the Fourier series representation®'*'**
and try to keep the same notations as before for
equivalent quantities:

G = (—o, + & — a/f)”" (2.52)
G, = G + GK{VG, (2.53)
G2 = G1Ga(8,1: 80y + € 8150 8sy)

+ 16,G,8::G10.  (2.54)

We have used shorthand notation @, for G(w,, k,),

G2 for {wlk], wik) |G| wk,, wk;) etc --- . The
energy variable w takes only discrete values
w= w8 2n + (1 — &/2], (2.55)

n is a positive or negative integer, K" is the mass
operator, 28;, the interaction operator. We introduce
the correlation operator C,, by the equation

%SI2G12 = Cl2G1G2, (2.56)

which after taking into account Eq. (2.54) and the
esymmetry of (wk,, wk; |S] wk, wk,) under
exchange of 1, 2 of 1/, 2’, may be written as

012 = (1 - %SI2G1G2)—~1S12~

Using a topological relation between various weights

(2.57)

2% E. Montroll and J. Ward, Phys. Fluids 1, 55 (1958).
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as in the previous sections leads to
In Z(a, ) = Tr, [ ¢ In (G) — G.K,"]
- TI'12 [ln (1 - %SlzGng) + %Sl2(G1G2

+ 1G,G.C,G\G,)] + ${G., C.;}, (2.58)
with
GYIGZ‘Stlz(;lGZ = 4[6/5012)S{G” Cij} (2.59)
and
8{G;, Ci;} = a{Gy, C;} + UGy, Cuy)
+ %®{G,, C.;} (2.60)
‘M{Gincli}=A - m + 0 (2.61)
o (2.62)
{2.63)

Here the polygonal (9t) and the 2-irreducible (5*’)
diagrams are Feynman diagrams constructed with
heavy lines (associated with G;) and bubbles with
two incoming and two outgoing lines (associated
with matrices C;;). The vertex-like diagrams (V)
also contain a single dotted horizontal line (asso-
ciated with the original two-body potential matrix
—(8/2)&’k! |v] kk;)). Algebraic contributions are
calculated then by summing over momenta and
energies (with conservation of these quantities
through each vertex or bubble) as indicated else-
where.?"* Equation (2.58) may also be rewritten as

In Z{e, )
= Try ¢ [In (G7") + (@ — ki + o/B)G]
+ Try; [In (1 + 3C..G1G2)
— 30,G,G,] + 8{G,, Cy,}, (2.64)

an expression stationary with respect to changes in
G, and C,;.

It is possible to eliminate the dependence upon
the equilibrium parameters in the entropy func-
tional through a scale transformation. If we write

Bw, = & = w2n + (1 — ¢/2]

6‘1G1 = G‘ (2.65)
B_szz = Gm,
and also
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B = R
.62812 = sz (2-66>
52012 = @12)
we get for the entropy
S =Tr e[in (@) + &,G)
+ Try» [111 (1 -+ %612(?162) - %0126152]
+ W{G“ CY;,-} + K(Z){Gn éii}- (2.67)

This expression is free of any reference to the
equilibrium parameters (or the interactions) and is
stationary with respect to variations of G,, €y, under
the constraints of constant particle number and
energy

(N) = Tr, G, (2.68)

(Hy = Tr, K{G, + 3 Try 0,Gr0;  (2.69)
the one- and two-particle Green’s functions then
satisfy their equilibrium equations [8°G,, for example
satisfies (2.54), (2.57), and (2.59) to (2.63). However,
the second functional derivative of (2.67) with re-
spect to G, C\,, is not a negative definite matrix®® as
contrasted with the classical case.

Doubly stationary expressions involving the
average occupation number as in reference 5 and
an average two-particle density matrix, are more
involved to establish. They require extending the
disentangling theorem® to operators involving two
creation or two annihilation operators. Such a
formulation would presumably furnish the closest
analog to the classical result towards which it
would tend term by term as A tends to zero. An
extension of the disentangling theorem would also
furnish a doubly stationary formulation in terms
of densities of “quasi-particles”.® Notice that the
entropy as expressed in terms of ‘“‘quasi-particle”
occupation numbers, was formally identical to the
entropy of ‘“free’” ‘‘quasi-particles,” and hence
independent of the equilibrium parameters (in
contrast, the energy constraint contained a com-
plicated functional). Moreover, ‘‘quasi-particle”
occupation numbers are not directly related to
physical quantities (except at zero temperature and
at the Fermi surface) and one would not expect any
positive definiteness character for the second funec-
tional derivatives.

In this work we have thus given an answer to the

% A expression equivalent to (2.21) in this formulation is
stationary under variations of @; but its second functional
derivative is not necessarily a positive definite matrix (con-
trary to an assertion made in reference 4). The reason is
that, here, the matrix C,» is not a fluctuation matrix. The
stationarity equation has to be supplemented by a stability
condition.
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question raised in the introduction by explicitly
writing the thermodynamical functions as doubly
stationary functionals of the one- and two-particle
densities (or quantities in direct relation to them).
It is not clear whether the suggestive forms ob-
tained for the entropy (or yet to be derived in the
formulations mentioned just above) will lead to a
generalization of Boltzmann’s H function.

From a more practical point of view it is hoped
that the doubly stationary expressions obtained will
prove useful for the study of phase transitions of
classical'®** and quantum systems. For example
within the framework of Lee-Yang theory of super-
fluid transitions in bose systems, it would be neces-
sary first to rewrite the above results in the 2-
ensemble formulation.*® Superfluid transitions in a
Fermi systemm would require, to take care of pair
condensation, a generalization of the x-ensemble,
which the doubly stationary formulations seem
particularly suited to carry out.””
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APPENDIX A. INSERTIONS

Classical systems: A general insertion made at
points () or (¢ and 7) on a skeleton diagram may
be factorized and leads to the substitutions
n°(r;) — n(r;) or’ g(r; — r;) — C(r,, r;). We briefly
mention the proof.

A skeleton ¢-diagram with N 4 ¢ points has ¥
labeled points; the insertion, a diagram of N/ 4 1
or N' + 2 points, is made at the labeled point(s)
r; or r; and r;. There are

(N + NN)!

NIV (A1)
% T. Lee and C. Yang, Phys. Rev. 117, 897 (1960).
27 C. N. Yang (private communication).
28 Or multiplication by a factor C;; if in the skeleton the
points (¢, j) are not directly linked.
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distinet labeled ¢-diagrams giving the same con-
tribution and obtained by permuting in every
possible way the labels of the skeleton and those of
the insertion. The definition of a {-diagram con-
tribution and the form of (A1) then lead to the
factorization of the skeleton and the insertion con-
tributions (when r; or r; and r; are held fixed) and,
therefore to the substitution mentioned above.
The same sort of proof may be used when the roots
of the skeleton play the role of r,, r;.

Quantum systems: Substitutions used in Secs.
II(i) and (ii) are treated similarly. In particular the
proof is the same for the insertions made on a line
(?) leading to the substitution m(k;) — M (k;), and
for insertions relative to the internal incoming
(k;, k;) and outgoing (&, k/) lines of a (generalized)
2-vertex in a skeleton leading to the substitution

&K |V kk;) — &k [C] kk,;).

A slight modification occurs, in a 2-diagram, when
the pairs of lines involved belong to an articulation
sequence comprising the external lines (k.k.; kik)
like it occurs in relation (2.24).

Consider the class of 2-diagrams with N’ -+ N + 2
internal lines containing two simple parts S/, and
8,2 with N’ and N internal lines (which we symbolize
in Fig. 1). For each diagram of this elass there are

(N’ 4+ N + 2)!

N F 91N (42)

distinct labeled 2-diagrams obtained by permuting
the label of what we arbitrarily call the skeleton (e.g.,
simple part S!, plus lines 1,, 1,) and of the insertion
(simple part S,,). If, in the skeleton we do not
distinguish diagrams where lines 1;, I, bear different
labels, we get a counting factor

(N + N + 1) V' + N + 21,
2 (N 4+ 2)IN!

(A3)

The factor % arises because, due to the symmetry
of the simple parts, exchange of labels between 1,,
and 1; does not lead to distinct diagrams. Expression
{A3) leads to the factorization

Fre. 1. Class of diagrams with two simple
parts S;." and S;..
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1lz
and consequently to (2.24), (2.36), and (2.43).
APPENDIX B: FUNCTIONAL DERIVATIVES

Classical systems: Given a functional X'” {C;} of
the symmetrical funetion C(r;, r;), its funectional
derivative may be defined as

[3‘3(2){&;} - 3‘3(2){0«7}]
A(r17r2)

limit
A}
8

L AN N
T 8C(r;Ty) x7H{C

(B1)

where
éci = C(ty, 1) + 3 Alr,, 12)
X [8(; — 1) 8@, — 1) + 8(ry —1;) 8(r. — 1)]. (B2)

If %'® is represented by O-diagrams [calculated
with rule (C), for example], we show that fwice the
right-hand side of (Bl) is represented by the sum
of all distinct 2-diagrams which can be generated
out of the O-diagrams [ealculated with rule (C)] by
suppressing a link C,; and letting the pair (Z, 7) be
fixed at (ry, 12).

Consider the family of (N <4 2)-labeled, distinct,
0-diagrams associated with a given free diagram.'®
Choose a pair of points (4, ) in the free diagram.
In the family of (N + 2)-labeled, distinct, 0-dia-
grams, that pair is labeled in (N + 2)(N + 1)/2
ways if 7 and 7 play a symmetrical role, or in
(N + 2)(N + 1) ways if 7 and 7 do not play a
symmetrical role. But there is only one distinct way
of identifying (¢, 7) with (r,, r;) in the first case and
two ways in the second. The original weight
[((N 4+ 2)1]"* assigned to (N -+ 2)-labeled 0-diagrams
thus becomes 2(N!)"* for the N-labeled, 2-diagrams
generated in the fashion described above, which
proves the assertion.

Quantum systems: The extension to functionals of
matrices (k’k} |[C] k.k;) is immediate. The matrix
C;; is now invariant under exchange of (k;, k;) or
(!, k). The argument applied above to the pair
(r:, r,), applies here both to the incoming pair (k,, k;)
and to the outgoing pair (k/, k!). Consequently, if a
functional X, of the matrix C;;, is represented by
0-diagrams the sum of all distinct 2-diagrams which
can be generated out of the O-diagrams by sup-
pressing a heavy dot C.; and letting the incoming
pair (k;, k;) and the outgoing pair (k}, k/) fixed,
respectively, at (k,, k;) and (k{, kj), represents
four times the functional derivative,
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APPENDIX C: PROOF OF RELATION (1.48)
It suffices to prove that the relation
3N@) — N@-w] + N(®) + N(K™) = +1 (CD)

is true for any l-irreducible 0-diagram. Indeed con-
sider a 0-diagram where we choose a pair of points
(¢, 7) with 7 and j belonging to different 1-irreducible
parts. The pair (z, j) has then a multiplicity 4 = 1
and only pairs inside the same l-irreducible part
will contribute a nonvanishing [N(r) — N(z-u)] to
(1.48). The quantity N(9) + N(%'®) counting the
number of ways a diagram can be generated out of
a polygonal skeleton (1.45) or a 2-irreducible
skeleton (1.46) can also be broken up into contribu-
tions referring to each separate l-irreducible parts,
since the generating diagrams (1.45) and (1.46) have
no articulation points. As a consequence, the rela-
tion (1.48) itself can be broken into a sum of rela-
tions (C1), one for each 1-irreducible part of the
diagram.

In the following we only consider l-irreducible
0-diagrams. The proof is inductive. We assume that
(C1) is verified for all 1-irreducible 0-diagrams of
order up to p, we show that (C1) is still verified for
diagrams of order p + 1.

1. Consider in a 0-diagram of order p’ < p, a pair
of points (¢, j) connected by a direct link. We
generate a O-diagram of order p + 1 by (Fig. 2)

(a) inserting at (2, j) a 2-irreducible 2-diagram, or

(b) replacing the direct link (¢, 7) by a 2-irre-

ducible, 2-diagram.

Under transformations (a) or (b), the weights
involved in relation (C1) undergo changes which
we now examine. In either cases the multiplicity
of the pair (7, j) is increased by one unit. Each new
pair has multiplicity one. Thus,

8[N(x) — N(x-p)] = —1, (C2)

and obviously ’
SN(I) = 0 (C3)
SN(x) = 0. (Co

Relation (C1) remains verified for the new diagram.
2. Consider in a 0-diagram of order p, a pair of
points (¢, j) connected by a direct link. We generate
a O-diagram of order » + 1 by (Fig. 3)
(a) inserting at (¢, j) the nodal 2-diagram of
lowest order, or
(b) replacing the direct link (2, ) by the nodal
2-diagram of lowest order.
These transformations generate changes of the
weights
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._.i J - %i jor@

Fia. 2. Illustration by a simple example of substitution 1
considered in Appendix C.

oN(m) = p. (Ch)

(i) Let m be that (p + 1)th point of the new dia-
gram. The pair (¢, j) has a multiplicity increased
by one; any pair including point m has multiplicity
one except when transformation (b) is applied to
a pth-order diagram of the following character:
after removal of the direct link (7, 7), the remaining
2-diagrams, rooted at points (Z, j) is a nodal 2-dia-
gram. Excepting such a case for the moment, we have

SN(r-u) =p + 1, (C6)

and obviously
SN() =1 (C7)
SN(x®) = 0, (C8)

which leaves relation (C1) invariant.

(i) We return to the exceptional case. The pth-
order diagram is obtained by adding a direct link
(7, 7) to the nodal 2-diagram rooted at (z, j). By
virtue of the proofs given in operations 1 and 2(i)
if suffices to consider the case of a pth-order poly-
gonal diagram. It is then just as easy to verify
directly relation (Cl) for any polygonal diagram.

We have
we = (%) ©10)
Wrw) = 2@ - (;) ; (C11)

(C11) states that any pair of points has multiplicity
2 except if the two points are adjacent summits (in
which case it has multiplicity one).

NG) = —[Z,H“(;)] =
+[()-6)+0)]
_ (Iz)) _ (;) + (2) , (C13)

RN ' ,o,/\J

Fia. 3. Illustration of substitution 2 consideredin Appendix C.
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(C13) gives the number of ways one can generate
such a diagram out of the polygonal diagrams (of
order < p) of (1.45). Here it suffices to choose in
in the p th-order diagram the summits we want to
keep in the generating one. Successive terms in the
first bracket corresponds to the choice of ¢ summits
with the factor (—)*"' attached to polygonal dia-
grams in (1.45). The second bracket takes care of
the fact that the lowest order polygonal diagram is
of order 3. Expressions (C10) to (C13) again imply
(C1).

Clearly now we can generate a general 0-diagram,
of order p + 1, out of diagrams of lower order by
applications of operations 1 or 2; relation (C1) being
checked for the simplest diagram (p = 2) is valid
for any diagram.

APPENDIX D: SECOND VARIATIONS

We show that, for classical systems, the quadratic
form of the second variations obtained from the
functional Z{7,, C;;} (or Q) is positive definite at
the extremum 7i; = n;, C;; = C.;. The proof follows
some of the argument used in reference 5 for a single
functional and a quantum system.

From the definition of Z (1.64) we have

SE/om; = w;

85/ ény;; =

(D1)

Wi, (D2)

—

where we have considered =
n;, n;; and we let

as a functional of

Bu,
= 3Bvi;.

The second functional derivatives are given by the
matrix

w; =

(D3)

Wiy

dwy/ 0Ny (D4)

where A = (¢) or (¢j). The quadratic form represent-
ing the second variation of E is thus

dw,
A,ZA’ f 0Ny _M,p My
From the definition of In Z (1.3) we also have

(D6)

The second functional derivatives are given by the
matrix

(D3)

6ln Z/B’wA = —Ny4.

6nA/6wAr (D7)
and give rise to a quadratic form
N4
8 swy > 0. D8
2 [ me 0. oy
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This form is positive definite because successive
functional derivatives of ln Z with respect to w,
give rise to successive fluctuations. It suffices to
recognize that the matrix (D4) is the inverse and
opposite of (D7), to prove that the quantity (D))
is negative definite.

APPENDIX E: PROOF OF RELATION (2.44)

It suffices to prove that relation
3[N(e) — N(o-w] + N() + N(U)
+ Nx®) = +1 (ED

holds for any 1-irreducible 0-diagram. Consider two
laces (7, 7), each one belonging to a different 1-irre-
ducible part of the diagram. Laces ¢ and j cannot
belong to an articulation sequence of multiplicity
u > 1:indeed after having cut open the lines 2 and
J (&, k;) incoming lines; k!, k! outgoing lines), we
may further separate the diagram into 2 pieces by
separating away, for example, the 1-irreducible part
to which (k;, k) belong. We then have two pieces
containing (k;, k})(k;, k’), respectively. The 2-dia-
gram obtained after opening the laces 7z and j thus
had the structure of a nodal (simple) diagram.
Hence, only pairs of laces belonging to the same
l-irreducible part will contribute a nonvanishing
[N(c) — N(o-up)] to (2.37). Counting the number
of ways a 0O-diagram can be generated out of the
polygonal diagrams (2.39), the vertex-like diagrams
(2.40) or the 2-irreducible diagrams (2.41) may also
be broken up into contributions referring to each
separate l-irreducible part, since the generating
diagrams have no articulation lace. Consequently,
(2.44) itself may be broken up into a sum of relations
like (E1), one for each of the 1-irreducible parts
constituting the diagram.

In the following we only consider 1-irreducible
0-diagrams the inductive proof given here follows
closely the proof of Appendix C relative to classical
systems. We assume that (E1) is valid for any
l-irreducible diagram of order up to p (the order
is the sum of the orders a; of each a-vertex). We
show that (E1) is still verified for diagrams of order
p+ 1.

We consider the following possibilities of generat-
ing a O-diagram of order p out of a diagram of lower
order.

1. The diagram is obtained by replacing an
ordinary 2-vertex by a generalized 2-vertex (Fig. 4).
We label by m or n internal lines of the insertion, by s
internal lines of the rest of the diagram. Insertion
lines are labeled k.k;, kik!; considering only 1-irre-
ducible diagrams these momenta must all be dif-
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ferent. We recall that a pair (m, n) is part of an
articulation sequence (u > 1) if, after cutting open
(m, n) into incoming (k,, k,) and outgoing (k;, k’)
pieces, we can separate the diagram into two dis-
connected parts containing (k,, k,) and (k/, ki),
respectively, by cutting open one more pair only.
From the definition of the generalized 2-vertex part
no pair (m, n)(m, s), (m, 1), or (m, j) may be part
of an articulation sequence (of multiplicity x > 1)
since it takes cutting more than four internal lines
to split apart a generalized 2-vertex.

We then have

8[N(e) — N(e-w)] = 0, (E2)

and similarly

SN() = SN(V) = sN(X™) = 0. (E3)

Relation (E1) is thus unchanged under the con-
sidered operation. Naturally, substitution of a
generalized 2-vertex by another one leads to the
same conclusion.

2. The diagram is obtained by replacing an
ordinary 2-vertex by a 2-irreducible 2-diagram
(Fig. 5). The 2-irreducible 2-diagram inserted may
be thought as built with » generalized 2-vertices
besides “effective” a-vertices (a > 2).

By definition, no pair (m, n) may be part of the
same articulation sequence as (k,, k;; ki, k/); but
2v pairs (m, n), (m, 1), or (m, j) form » articulation
sequences of multiplicity 2. Further a pair (m, s)
cannot be part of an articulation sequence: Indeed,
suppose we cut open the pair (m, s); to separate
the diagram into two parts containing (k,,, k,) and
(k., k’) we have to separate the inserted 2-irreducible
diagram which requires cutting at least three more
lines. Hence, we have

8[N(e) — N(o-w)] = —».

The new diagram may be generated now in » — 1
extra ways out of the diagrams of U, and one extra
way out of the diagrams of &

(E4)

sN() = 0, (E3)
SN =v — 1, (E6)
SN(%®) =1, (ED

leaving thus (E1) unchanged.

3. The diagram is obtained by replacing an
ordinary 2-vertex by two of them connected ladder-
wise (Fig. 6). The pair (m, n) is part of the articula-
tion sequence containing (ki k;; k/, k!) and its
order is increased by one unit. A pair (m, 7), (m, J),
or (m, s) cannot be part of an articulation sequence:
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, Fig. 4. Illustration of

K' Kj Ki ki substitution 1 in Appen-
] = dix K. The generalized
ki k; ki ki 2-vertex is defined by
‘ ! (2.30).

K, e K e F1c. 5. Illustration by
! 1 = i i a simple example of sub-
stitution 2 considered in

ki ki ki kj Appendix E.

Indeed, after having cut the line m into k,, and k7,
to separate into different parts k,, from k., we need
to cut also the line » into k,, k; thus, the only way
the line m can be made part of an articulation
sequence is by being paired with the line n. Hence
the change in N(¢) — N(c-u) reduces to

8[N(o) = N(o-p)] = —1. (E8)

Also we have one more possibility of generating the
diagram out of ©

SN(V) = 1, (E9)

and
SN() = sN(x®) = 0,

thus leaving preserved relation (E1).

Notice that the substitution considered has no
classical equivalent.

4. The diagram is obtained by replacing an
ordinary 2-vertex by two of them connected “node-
wise” (Fig. 7). Notice that we shall not need to
consider apart the substitution corresponding to
case 2(a) of Appendix C since it can be obtained by
competition of operations 3 and 4.

We consider two cases:

(i) (k. k;; ki, k!) are part of an articulation
sequence of multiplicity u > 2; the resulting dia-
gram has the structure shown in Fig. 8 for u = 3,
for example. Pairs (m, n) or (m, s) cannot be part
of an articulation sequence. This is obvious for
(m, n). For (m, s), let us cut (m, s) open into (k,,, k,)
and k., k!); to put k,, and k/ into different parts
we certainly need to cut n open, then to perform
the separation of the diagram into two parts, we
shall need to cut more than one line. On the other

K Kj ki ki
>< b— m n
ki ki ki K
v m '

k|; i ki: : <k]

ki><ki ki n kj

FiG. 7. Illustration of substitution 4 considered in Appendix E.

(E10)

Fic. 6. Illustration of
substitution 3 considered
in Appendix E.
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)
hand the transformed diagram contains two more

articulation sequences (k,, k;; k,, k) and (k,, k;;
k,, k!) so that we have

8[N(e) — N(c-w] = —2. (E11)

But we also have one more possibility to generate
the diagram out of U and out of 9t

SN() = sN(U) = 1,
SN(x®) = 0,

which leaves (E1) unchanged.

(ii) (k;, k;; kI, k’) is an articulation sequence
of Jmultiplicity » = 2. By virtue of points 1 to 3
it suffices to consider the particular case of polygonal
diagrams. It is then just as easy to show directly
that relation (E1) is satisfied.

Consider a polygonal diagram (2.39) with p

Fig. 8. Pairs of lines (k; k;) or
(k' k;) are part of an articulation
sequence with ¢ = 3. The bubbles
figure simple parts.

(E12)
(E13)

CYRANO DE DOMINICIS

summits (2p lines), it is immediately found that

e = () E19)
e [(2) 4] ) o
Further, we have |
N@) = (71)) , (E16)
N(x®) = 0. (EL7)
Thus
3(N(e) — N(o-w) + N(U)
+ V(&™) = —@ + (;) (E18)

The calculation for N(91) being exactly the same
as for the classical case, relation (E1) is thus proved
for the polygonal diagrams.

By using operations 1 to 4 we can build any
diagram of order p + 1 out of diagrams of lower
order and relation (El) being verified for the
simplest diagram (single 2-vertex) is verified for
any diagram.
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The usefulness of the perturbation expansion and the Wigner-Kirkwood expansion of the quantum-
mechanical partition function is discussed for various interaction potentials. It is shown that, contrary
to what is expected from the Wigner-Kirkwood expansion, quantum-mechanical diffraction correc-
tions at high temperature to the classical partition function may involve nonanalytic forms of %2
This occurs when the second-order perturbation term is finite in the classical limit, and the interaction
potential has a cusp or singularity in any derivative. The second-order perturbation term is evaluated
exactly for the exponential, screened Coulomb, and square barrier potentials, and the nonanalytic
form (%22 is found. For potentials more singular than 1/r at the origin, the diffraction corrections

are analytic in %2,

A new method of deriving the Wigner-Kirkwood expansion from the perturbation expansion is
given. The method allows one to subtract off any order of the perturbation expansion which may be
evaluated separately, and is particularly useful for the screened Coulomb potential.

The classical second virial coefficient and the O(%#?) and O(4*) diffraction corrections are evaluated
for the singular potential, u(r) = (g,/r?)e~"/7°, by using the Mellin transform of ¢~

I. INTRODUCTION

HE problem of calculating small quantum cor-
rections at high temperature to classical thermo-
dynamic quantities has been discussed extensively
during the three decades since the classic papers
of Wigner and Kirkwood." In this paper the same
problem is considered again, but with the purpose
of establishing the analytic properties of the partition
function with respect to Planck’s constant for
various interaction potentials. The quantum cor-
rections to the classical partition function to be
considered are those due to the operation of the
uncertainty principle. Effects due to quantum
statistics will not be treated here. Thus, we consider
a gas of distinguishable particles interacting accord-
ing to the laws of wave mechanics. Such quantum
corrections will be referred to as diffraction effects.
The fundamental problem of quantum statistical
mechanies is the evaluation of the partition function,
Z = Trexp (—8H), where H =2, (—F*/2m,)Vi +
> iciu(ryy), and B = 1/kT is the reciprocal tempera-
ture. Since the partition function may be evaluated
directly for only a very limited set of interaction
potentials, it is necessary in general to resort to
some expansion procedure. One method is to expand
in powers of the interaction potential. Such a per-
turbation expansion is appropriate when wu(r) is
small in some sense compared with the kinetic

# Work performed under the auspices of the U. S. Atomic

E Commission. )
ngr};ggp. Wigner, Phys. Rev. 40, 747 (1932); J. G. Kirkwood,

ibid. 44, 31 (1933).

energy. When the terms of the perturbation ex-
pansion are evaluated, the diffraction corrections
to the classical limit of the nth order appear as some
function of % multiplying the nth power of the
coupling constant of the interaction. A second
method in common use involves expanding in powers
of h*V?; thus the kinetic energy is considered small
compared with the potential energy. This second
method is appropriate when u(r) is very singular
at r = 0. The expansion in powers of the kinetic
energy is the well-known Wigner-Kirkwood ex-
pansion' (hereafter to be referred to as the WK
expansion). Using the WK method, the partition
function (written for one particle) is:

3/2
Tr e-BII — (27I'ka> fdar e

h2

Ao At nenz
X {1 -1 (VU + 1240 (o
— 8(VUPVU + 12(V*U)] — } , )

where U = Bu(r), and X = k/(2mkT)"* is the
thermal de Broglie wavelength.? The A* term in
Eq. (1) is the form obtained by Yaglom.® The
evaluation of the terms of the WK expansion is

2 In statistical-mechanics textbooks, the thermal wave-
length is often defined as h/(2emkT )" and denoted by the
symbol A, so that the ideal gas partition function reads
(V/2)w,

8 A. M. Yaglom, Teoriya Veroyatnostei i ee Primeniva 1,
161 (1956). For an English language summary of Yaglom’s
method see 8. G. Brush, Revs. Modern Phys. 33, 79 (1961).
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quite lengthy and no terms beyond the X* term are
known to exist in the literature. Equation (1) has
had considerable practical application in the cal-
culation of quantum corrections to the equation of
state of nonideal gases.*”®

At first glance it would appear from the structure
of Eq. (1) that the partition function is an analytic
function of A%, and in consequence there seems to
be a common and erroneous belief among physicists
that diffraction corrections necessarily involve only
even powers of Planck’s constant. The argument
for the nonideal gas calculations is that any reason-
able form of the intermolecular interaction potential
is strongly repulsive near » = 0; usually r™** is
assumed. Hence ¢™Y goes to zero much faster as
r — 0 than the terms of the expansion go to o,
so that the configuration space integrals are finite.
Although little is known about the convergence of
the resulting series, it seems reasonable that at
high temperature the first few terms give the
diffraction corrections accurately.

It is not true, however, that for all potential
interactions the partition function is analytic in X,
A simple counter example is the exponential po-
tential, u(r) = go¢~”’"". Since this potential form is
finite at 7 = 0, one cannot depend on the e Y factor
for the existence of the coefficients of powers of A°.
The mth term of the WK expansion includes
(V2U)", and since V%" = (1 — 2/r)e”", one
sees that the coefficient of A" includes at least one
term of order r""e™™". Thus, after the integration
over r the coefficients of A* and A* are finite, but
that of A° is logarithmically divergent and all higher
coefficients are more strongly divergent. The ex-
ponential potential is an example, albeit not very
interesting for physical problems, for which the WK
expansion may not be used. Instead, one must
evaluate the terms of the perturbation expansion,
and it will be found that the coefficient of each power
of the coupling constant is a nonanalytic function
of A% It will be shown that the nonanalyticity takes
the form of terms of order (A*)™**? in addition to
the expected terms of order 7*". A more interesting,
though less obvious example, is a potential with
an 7! singularity at the origin. Evaluation of the
second-order perturbation term for the screened
Coulomb potential yields again a function with
both even and odd powers of /i in its expansion. In
view of these examples it seems worthwhile to

+J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Mo-
lecular Theory of Gases and Liquids (John Wiley & Sons, Inc.,

New York, 1954), Chap. 6, pp. 419-424.
s Oppenheim and A. 8. Friedman, J. Chem. Phys. 35,

35 (1961).
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examine the guestion of when the partition function
is analytic in A® and when it is not.

Before taking up the analyticity of Z as a function
of A°, its analyticity with respect to two other
quantities should be eonsidered, namely, the particle
number density p and the coupling constant of the
interaction g. In this paper we will consider only
potentials such that the cluster integrals of the
Mayer cluster expansion exist.® With this restriction
the pressure is an analytic function of p; ie., it is
given by a power series expansion in p, the usual
virial expansion.” One is next interested in the
analyticity of the virial coefficients as functions of
¢ and A°. In this paper, only the second virial coef-
ficient will be studied since the methods used may
be easily extended to the higher virial coefficients.
The second virial coefficient is the sum of all two-
body interactions, and is defined as:

_ (4 X)*”? 1

B, = ~B(Ho+u) __ ~BHo _ A
s 31 [Tre Trev ]h—.—; 2
x [ e -1, @
where H, = —(h’/2u)V* and u is the reduced mass

of the two interacting particles.
We will be primarily interested in the evaluation
of B, for repulsive singular potentials of the form:

ur) = (g,/r)e""", 3

where the coupling constant g, has dimensions EL".
The exponential screening function is chosen for
mathematical convenience. Other screening functions
such as the Gaussian form ¢ """ may also be
used. The analyticity of the classical form of B,
as a function of g is obvious for nonsingular po-
tentials, say, of the form r"¢ "/, The first-order
singularity, p = 1in Eq. (3), is the very interesting
case of the screened Coulomb potential. For this
potential the first two terms of the perturbation
expansion are finite because of the three-dimensional
volume element 4#r® dr. The third order is log-
arithmically divergent, and the higher orders more
strongly divergent. The exact evaluation of B, for
the screened Coulomb potential yields:

B, = —2rr5{—Bg1/ro + (1/4)(8g,/ro)*
+ (1/6)(591/?0)3[13 (5g1/7'0) -+ eonsﬂ R }

@)

. %For the unscreened Coulomb potential, the cluster
integrals are all divergent because of the infinite range of
¢?/r. The correct pressure expression includes the nonanalytic
forms p*? (the Debye-Hiickel term) and p2n p,

TT. E. Hill, Statistical Mechanics (McGraw-Hill Book
Company, Inc., New York, 1956), pp. 141-144.
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Thus, the divergence of the third and higher orders
of the perturbation expansion gives rise to the
nonanalytic form ¢} In g,. For a second-order
singularity, p = 2, the first term of the perturba-
tion expansion is finite, and all higher orders are
divergent. The exact result for B, contains the
nonanalytic form g5 In g,. Similarly, for p = 3
all orders of the perturbation expansion are in-
finite, and the exact result for B, begins with
gs In g5. For p > 3, B, begins with (3¢,)%”.

A simple dimensional analysis gives quickly some
information about the analyticity of B, as a fune-
tion of A*. For the singular potentials defined by
Eq. (3), the fundamental lengths which com-
pletely determine B, are: the classical interaction
length I = (Bg,)"?, the thermal wavelength X =
k(8/2m)'?, and the screening length r,. From these
lengths we may form two independent dimension-
less parameters which will be taken to be any two
of the ratios:

A= Urg, 7 = NI, v = X/r.
By using Eqgs. (1) and (2) the WK expsnsion of the

second virial coefficient in terms of the parameters
A and % is:

B, = =220[Co(A) — 7°C(A) + #'Co(8) — ---], (5)
where the expansion coefficients are:
Colr) = f 2Zdr e’ - 1),
° (6)
o == [ 2 dee (.0,
12 Jo
with 2 = r/l, and U = z7%**. Cy(A) gives the

classical second virial coefficient. The coefficients
of the diffraction corrections, C,(A) --- C,.(A), are
finite for all p > 1 in the limit of no screening,
ro = ® or A = 0. From Eq. (5) we see that the
parameter of smallness for the WK expansion is 5°.
Since its dependence on the coupling constant is
g;%’?, it is clear that the WK expansion is a strong
coupling expansion in contrast to the perturbation
expansion. The temperature dependence of #° is
B'7%* and hence the diffraction corrections vanish
at high temperature when p > 3. The radius of
convergence of the power series in #° of Eq. (5) is
not known, but it seems clear that a third-order
singularity in the potential is sufficient to guarantee
that diffraction corrections at high temperature in-
volve only powers of 5°, and hence only even powers
of A%

The less singular cases, p = 2 and p = 1, must
be considered separately from p > 3. For p = 2,
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7" has no temperature dependence, and hence the
WK expansion would indicate that diffraction cor-
rections do not depend on temperature. Finally,
for p = 1, the sereened Coulomb potential, the
temperature dependence of %° is 87'. Note that
for p > 3 the thermal wavelength is small compared
with the classical interaction length at high tem-
perature, whereas for p = 1 the order is reversed,
X >> I. Thus the terms of the WK expansion diverge
in the high-temperature limit for p = 1. This
behavior indicates that B, cannot be an analytic
function of A° for p = 1. The r~* singularity at first
appears to be too weak to allow an expansion in
which the kinetic energy is treated as small com-
pared with (7). It will be shown in Secs. III and V,
however, that the nonanalyticity in A* for p = 1
appears only in the second-order perturbation term.
The diffraction corrections involve v = %A, and
in the second-order theory both odd and even
powers of v appear. The diffraction corrections to
the sum of all higher orders of the perturbation
expansion involve only even powers of v, and the
coefficients may be calculated by a modification
of the WK expansion.

In Sec. II the perturbation expansion is developed
in some detail, and a method of deriving the WK
expansion from the perturbation expansion is given.
In Sec. IIT the second-order perturbation term is
evaluated explicitly for a number of different po-
tentials in order to illustrate the condition for which
it is or is not analytic in 4*. In Sec. IV some of the
coefficients of the WK expansion are evaluated by
a very convenient technique, the use of the Mellin
transform. In Sec. V the special case of the screened
Coulomb potential is considered in some detail.

II. THE PERTURBATION EXPANSION AND ITS
USE FOR DERIVING THE WK EXPANSION

The perturbation expansion of B, is most easily
developed with the help of the resolvent operator.
One uses

_ 1 dee ™
2m Joz — H’

—BH

where the contour C goes from right to left in the
upper half-plane and left to right in the lower half.
Thus, it encloses the simple poles on the real axis
at the eigenvalues of H when the trace is taken.
This method was used by Glassgold, Heckrotte,
and Watson for the linked cluster expansion of the
complete partition function® If we put H =

¢ A. E. Glassgold, W. Heckrotte, and K. M. Watson, Phys.
Rev. 115, 1374 (1959).
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(H — E,) + E,, where E, = p°/2u is the unper-
turbed kinetic energy of relative motion, and use
the resolvent of e ?** %’ then the second virial
coeflicient is

(4xx%)*"? f
21 (21rx) omi ], 20"

1 1
z— (Ho +u—E,) 2z— (Hy— Ey)

'ﬁEo

B, = —

X<p

Expanding in powers of u gives

(4 x )3/2 —ﬁEo
n-l (21rh) 2m

rEA——

= Y B...

n=1

)

@

B2=_

7

Since Boltzmann statistics have been assumed, the
individual particle momenta may be transformed
to center-of-mass and relative momenta, and the
center-of-mass momentum integrated out. Thus, H,
is the free-particle Hamiltonian for relative motion.
H, = —(K*/2u)V? and |p) indicates its eigen-
functions.

The operator product in Eq. (8) is written out in
momentum space to give the nth order of B, as

_ (41rx )3/2 d3 ~-p2/2uxT
By = f (2nh)°
n Sk "
X f 4 %2 )3(n—1) 5(k - _kn—l)
1 dzé®
X ulk) - ulk) 5= [ 7
1 1
e - , (9

X T == D
where
Ppb=D -+ kk], <y Put =p+h(k1 + e +kn—1);
and

w() = V! _[ &Ere™u()

is the Fourier transform of the potential. The
quantities %k, - - - , ik, are the momentum transfers
at the respective = interactions. The & function
ensures momentum conservation in the final inter-
action. The contour integration in Eq. (9) may be
performed and the result represented as:

HUGH E.
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1 dZ e—ﬁz 8 Bn B2
ori | B = [Cas [ [ s,
X exp —[(B. — Bu-1)(Poe1 — D)/ 20

+ oo (B — By — P)/2u]. (10)

The multiple integral form [Eq. (10)] is the nth
term of the familiar ordered exponential expansion
commonly used in field theory calculations and in
recent years also in quantum statistical mechanies.®
Equation (10) shows the equivalence of the linked
cluster expansion of the partition function in the
resolvent operator formalism® and the work of Bloch
and de Dominicis.”

The relative momentum integration may be
readily performed when Eq. (10) is used in Eq. (9).
The result is

_ _(= 6)" vta
B,. = f (2 )3(n—1)
X ok, —k — -+ —k,)
X u(kl) trt u(kn)lﬂn(x'kl} Tty an—l); (11)
where
Fn(mly "';an-l) = '[ldvn te f“dvl
X exp — 7‘2{[(02 - Vl)ki +
+ (Un - vn—l)(kl + -+ kn'l)Z]
— [, — vk, +
+ (1},. - vn—l)(kl + ‘ + kn—l)]z}' (12)

All quantum-mechanical diffraction effects are con-
tained in the functions F,. The F, are entire functions
of X, The first term of F, when expanded in powers
of A% is 1/n!, and consequently in the classical limit,
X — 0, Eq. (11) reduces to

® The first use of the ordered exponential expansion in
statistical mechanics was by M. L. Goldberger and E. N.
Adams, J. Chem. Phys. 20, 240 (1952). They pointed out that
if @ and b are any two operators, the expansion of ¢~ (*?) may

be written as:
1 vs
e 2 (—1)”_[ dv, - -+ f dv, €™
0 0
x b -a(vn-ﬂn—l)b b —-a(n—n)be-l":

n=0
When b is chosen to be the kinetic energy operator and a the
potential energy, the WK expansion is obtained. Conversely,
when b is the potential energy, the perturbation expansion is
obtained.

10 G, Bloch and C. de Dominicis, Nuclear Phys. 7, 459
(1959). Their work iz much more general than this paper in
that quantum statistics are included. Also, they develop the
perturbation expansion of the grand partition function,
whereas in this paper only the expansion of the relative-
motion one-particle canonical partition function is needed for
the second virial coefficient.
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(13)

B?n classical

= _(—B)nfd3ru(r)".

2n!

Also since F, = 1, the first-order perturbation term
hasg no diffraction effects.

The actual evaluation of Eq. (11) for any given
potential is tractable only in second order since
for n = 2 there is only one integration variable.
This integration for a few examples is discussed
in the next section. For higher order terms the
evaluation of Eq. (11) is very difficult because it
requires integration over the n — 1 wave vectors,
k, .-+ k..,. Because of this complexity it may be
wondered whether or not the integration is simpler
in configuration space rather than in wave-number
space. Two different forms may be obtained directly
from Eq. (11). One of these is

By, = —3(4nX)X(—p)" f f &r, - dr,

X ulr) -+ ulr) f dv, -+ f ’ dv,
o 0

exp [—(r, — 1) /481 — v, + )]

X [0 — v, + 091
5 &P [—(, — 1)°/48°@w, — v))]
[47"7\2(7)2 - 01)13/2
X exp [—(rn - rn—l>2/47\2(vn - vn-—l)]. (14)

[4xr* (0, — va_1)]*”

The details required to turn Eq. (11) into Eq. (14)
are not given here since this form and its derivation
are adequately discussed by Goldberger and Adams’
and also by Green."! Unfortunately, the evaluation
of B,, in the form of Eq. (14) appears to be even
harder than in the form of Eq. (11) since one must
still integrate over the n vectors r, --- r, which
represent the separation of the two particles at the
“times’ v, ¢ - - U,

The second form of B,, as a configuration space
integral is obtained by using the familiar repre-
sentation of the three-dimensional delta function:

o(k) = 62——710—3 f d’r exp (k-1

and noting that in the power series expansion of F,
the wave numbers k, - k,_, become the dif-
ferential operators, ¢V, - - - ¢V,-,. Thus, one obtains

1 {, 8. Green, J. Chem. Phys. 20, 1274 (1952). In his work
Green goes one step further and obtains a result for the
intermediate temperature integrals. The result, however, does
not appear useful for the remaining configuration space
integrations required in the evaluation of Eq. (14).
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By = 3= [ @r w0V, -, AV

X ) - - w (). (15)

The subscripts 1 through » in Eq. (15) are for
bookkeeping purposes. They may be erased after
the differential operators V, --- V,_; in the ex-
pansion of F, are applied, respectively, onu, - -+ u,_;.

B,, in the form (15) is not particularly useful
for explicit evaluation, but it is useful as a means
of obtaining the WK expansion from the perturba-
tion expansion. For this derivation the expansion
of F, as defined by Eq. (12) in powers of A is needed.
The exponent of the integrand of Eq. (12) may
be written as:

{[(Ug - vl)k? + vt + (vn - vn—l)(kl + e + kn—\)z]
— (@ — vy + -+ + (Vn — Vu-y)
X (k1 + e + kn—l)]2}
= i anrrk3 + 2 ni anr,r,kr,'kr,y

where
= @, —v, )1 — @ — v,

The differences, v, — v»,, are a measure of the
“times” from the interactions with momentum
transfer A k, to the final interaction. The multiple
v integrations in Eq. (12) represent an average
over the duration of these excitations. It may be
shown that

anr,r.

1 g
(a'hf:h>av = f dvn st f dU1 Qv yry
0 0

_m+ D —r)
- n + 2!

, Ak, _,) is

(16)

The expansion of F,.(Rk,, - - -

1 va n—1
Fom [ oo | dvx{l - xz[Zan,,ki
0 0

r=1

n—1

+2 X am.r,kr,-k,,:l + O(x% }

ra>7r,
1 2 = 2
= 7‘;’; — R [; (anrr>nvkr

n-1

+2 27 (am,r,)wk,,-k,‘] + .-

Ta>ry

(17

When Eq. (17) is put into B, in the form of Eq. (15)
and the summations over r, and r, carried out,
one obtains



I

1 30 (= U) \
_‘fd’{ nl " (n+ 2)!
X [(n - 1)2(’” + 4) VZ(](_ U)n—-l

_ (=2 = Unf + 5
12

X (TUH-UF™ | + -} as)
The O(X*™) term of the WK expansion is obtained
by summing Bi7’ for all orders of perturbation
theory. Clearly By summed from n = 1 to o
gives the classical second virial coefficient. The
method will be carried out explicitly only for the
O(**) term. In order to obtain the usual form of
the O(X*) term it is necessary to integrate the
V2U(—U)""" portion of Eq. (19) by parts. Since
we are interested primarily in potentials which are
singular at the origin, the integration by parts is
done by excluding a sphere of radius § about the
origin. The result for B, in Eq. (19) including a
surface term from the integration by parts is:

{ f (VU= U)?
12(n — 2)!

A2 ..
B = -5 lim

&—0

I )T ) SR }
6 + 2)! 4 U ()(—U(8) (19)
When Eq. (19) is summed over 7, the surface term
gives no contribution, and one obtains:

B, = ——%fd‘* @ - 1)

A2 2 ~U
- E(VU)e + } (20)

in agreement with Eq. (1). In order to obtain higher-
order terms in the WK expansion, one needs formulae
analogous to Eq. (16) for powers and products
of the a,,,.,. These may be calculated readily but
laboriously.

The usual method for the derivation of the WK
expansion described in textbooks'? follows the pro-
cedure used by Kirkwood' in which the Bloch
equation, 3f/98 = —HJ, is solved by iteration in
powers of AV subject to the condition that f =
exp —B[p*/2m + u(r)] at & = 0. This method is
very analogous to the WKB method for solving

12T, D. Landau and E. M. Lifshitz, Statistical Physics
(Pergamon Press, New York, 1958), pp. 96-100.

HUGH E.

DEWITT

the Schrodinger equation. It is straightforward but
very tedious. Other methods have been given by
Goldberger and Adams,” Oppenheim and Ross,*
Chester,'* Siegert,'® and Yaglom.® All these methods
require considerable effort even to obtain the O(%*)
term. The very elegant method of Yaglom is prob-
ably the most useful as judged by the ease in which
the O(X*) term is obtained. In this method the
solution of the Bloch equation is expressed as a
Wiener functional integral which is expanded in a
Taylor series in powers of A.

The derivation given in the preceding paragraphs
in which a given power of A* in the perturbation
expansion i1s summed, has been described in some
detail, not as an addition to the list of methods of
obtaining the WK expansion, but because of an
important advantage that it has. With this method
one may subtract out any number of lower orders
of the perturbation expansion which have a finite
classical limit and make a WK expansion on the
remainder. This procedure must be used for po-
tentials with ™% and »~' singularities at the origin.

III. ANALYTICITY OF SECOND-ORDER
PERTURBATION THEORY AS A
FUNCTION OF h2

In the previous section, three different forms were
given for the nth-order perturbation term B,,.
The explicit evaluation of B,, when n > 2 for any
potential is in general a formidable task. The second-
order term, however, is sufficiently simple that the
evaluation may often be accomplished. In this
section, B,, will be evaluated for a few potentials
in order to exhibit the diffraction corrections, and
to indicate the analyticity as a function of x°
hence also of #*. For the evaluation of B,, the mo-
mentum space form (11) is the easiest to use.

The unpleasant function F,(Ak,, , AK,_,)
defined by Eq. (12) may be expressed in terms of
known functions for n = 2. It is:

1
Fg(Xk) — %f d?) e—x’v(l——v)’
[}

= 3(2/we " Erfi (x/2), @n

_ (_l)aKZx
o ;2*’(% + it

where x = Ak, and Erfi (a) = [; dte'’ is the imaginary

1. Oppenheim and J. Ross, Phys. Rev. 107, 28 (1957).
14 G. V. Chester, Phys. Rev. 93, 606 (1954).
18 A, J. F. Siegert, J. Chem., Phys. 20, 572 (1952).
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error function. F, has the following asymptotic
expansion for large real «:

1] 2 22 2"(2n — P!
Fz=—|:;5+;1+---+-(—ﬁyn—3)—:|-

5 (22)

The expression (11) for the second-order term
may also be found in the work of Montroll and
Ward.'* They develop their results for certain
terms in the perturbation expansion of the partition
function of a many-body system by using the pair
interaction propagator. For Boltzmann statistics the
pair propagator is

G(xk, 8’ — B") = NB exp [—KE(1 — v)],

where N is the number of particles of the system
and v = (8 — B'")/B. Because of the symmetry
property of the propagator G(x, 8 — (8’ — ') =
G(x, 8/ — B, it may be expanded in Fourier series,
G = N8 2. L) exp (2mitv). The Fourier com-
ponents are:

L(¢) = fo "y exp [2rity — (1 — 5], (23)

Thus, F.(x) is the Oth component of the pair
propagator F, = 1L,(«*).

The second-order perturbation term to be evalu-
ated is:
8 [ 4xk® dk

By, = —=- o3 (Vu(k))zLo(x2k2)~

1), T (24)

Note from the series expansion (21) of L, that the
integrand of Eq. (24) is an analytic function of X%
The resulting function of & after the integration is
not necessarily analytic in X%,

As the first example we consider B,, for the ex-
ponential potential, u(r) = g /. Its Fourier
transform is Vu(k) = Sarigo/(1 -+ k3. After
changing the integration variable to x = kry, Ba,
becomes:

B?2 =

3 2 @ 2 2, 2
__"o(8mBgo) f v drloy ) g
0

8 "+ 1

with v = X/r,. The diffraction effects may not be
obtained by integrating term by term the expansion

16 5, W. Montroll and J. C. Ward, Phys. Fluids 1, 55
(1958). For a more complete discussion of the properties of
propagators and their Fourier components, see the article by
Montroll in La theorie des gaz neutres et tonises (Hermann et
Cie, Paris, 1960). In place of Fy(xk) they obtain 1/2 3,L2
(Bh%k2/2m) where m 1s the mass of one particle. An easily
proved identity valid for classical statistics, ¥ ,LAx?) =
Ly(2z?), establishes the correspondence between their form
and Eq. (21) of this paper. The factor of 2in L ¢(22?) represents
the change to the reduced mass of the two interacting particles,
ie., 2812k2/2m = BR%k?/2u = K%
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of Ly(v°z") since all terms beyond O(y*) are divergent.
Integrals of this type may be evaluated in the follow-
ing manner:

2 del')

Hr(’Y) =ﬁ (:c2+ l)r »
= f i 2" deLo(y’z”)
(_1)r+1 dr—l 1

X r — Dlda' (@ + a)|oat’
. (_l)r—H dr‘l o
= r — 11 da™ ! al(y, a) ot (26)
with
[T dx Loy’
H(’Y’ a) - xZ + a
_ f’ v ® dx exp [—vz%(1 — )]
0 0 2 +a ’
1 af? 172
«p2 Bt ]
= fo dv o{g%ﬁ%— Ve ——a%%—)} ,(27)
where 8° = ~"0(1 — v).'" After carrying out the

differentiations indicated in Eq. (26), one obtains
for Eq. (25):

2
B, = "ér Tg(ﬁgo)z

(m + 1/2)(m — 1/2)(m — 3/2y*"
X {Z 2"@m + 1!

- e (28)

64

This result (28) consists of an expected analytic
function of 4° plus another analytic function multi-
plied by the nonanalytic form (v*)**. The summation
in Eq. (28) is the expansion of

3/8 — ¥*/16 + /32 + (v*/64) Lo(—v"),

where Lo(—v") as defined by Eq. (23) for imaginary
argument is (2/v)e""”* Erf (v/2). Consequently, the
odd and even powers of v in the braces of Eq. (28)
may be combined into one function:

{1 =3/8—+"/16 + v*/32
— (v°/32)e"""* Erfc (v/2).  (29)

As a contrast to the exponential potential

1 The z integral in Eq. (27) after the change of variable
¥ = 2%, is the Laplace transform of 37y + o)™ exp ( — &2y)
and is (x/2)e'%e262 Erfe(al/20), See Baleman Project Tables
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. I,
%. %2%6,)N0. 24. In Eq. (27) we have used Erfc (y) = #»'12/2 —

of (y).
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we next consider the Gaussian potential u(r)
goe~"’"*", which has the Fourier transform Vu(k)
7 *rig, exp — (kry)®/4. Since u(k) is also Gaussian,
B,, may be evaluated by expanding L,(y’2®) and

integrating term by term. One obtains:
23 ©
_(890)27'0 f da xZ(ﬂ_a/fze—ﬂM)an 72x2),
8 0

_ _T 23 (_l)m')’2m
- 8 (Bg()) Ty ,WZ() 2’”(2777, + l)!'

Bzz =

X fw dx x2m+26—z’/2,
0

_ _(2n* (Bgy)’ro_
T 32 14427
which is an analytic function of v°.

The reason for the different analyticity properties
of the two forms (28) and (30) for the two potentials,
lies in the behavior as r — 0. The Gaussian form
and all of its derivatives are smooth as r — 0,
whereas the exponential form has a cusp at r = 0.
As functions of a complex variable z, one notes
that ¢*" is analytic at z = 0, while ¢™'*' is non-
analytic since its first derivative is discontinuous
at z = 0. In the Fourier transform the cusp of
e /" is manifested by the second-order pole of
w(k) « (K° - 1/r2)7% at i/7,.

In general, the second-order perturbation term
will be analytic function #° for any potential that is
smooth at r = 0, for example, r"e”""/"*", while some
nonanalytic form of A° will appear for any potential
that has a cusp in any derivative. For example,
r™¢”"/" has a cusp in the mth derivative at » = 0.
(Its Fourier transform has a pole of order m + 2
at i/ry.) By, can be evaluated for u(r) o« r"e™’™
for any integer m using Eq. (26); the first non-
analytic form to appear is of order v*"*°.

An interesting example of a potential with a cusp
not at r = 0 is the square barrier:

ur) = ¢, r < T
=0 r> 7
which has the Fourier transform
Vu(k) = dmwgara(kro)  ji(kro),
where j,(z) is a spherical Bessel function. The
second-order perturbation term for this potential is:

) [ gy )L

L 0

—7r5(Bgo)’[1/3 — (v/4) Erf (2/%)

+ (v°/32) Exf (2/7) — (*/16)e¥""].  (31)
Some details of the integration required to obtain

Eq. (31) are given in the Appendix. For small v
the expression in brackets in Eq. (31) becomes

(30)

B'zz =
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[1 =% — 7%/8 + »'*4*/64. Again the dif-
fraction corrections to the classical result are non-
analytic in v°.

Next we consider the screened Coulomb potential
u(r) = (g./r)e””", which has the Fourier trans-
form Vu(k) = 4rgr2/(k* + 1/r)). This potential
has not just a cusp, but an infinite spike at r = 0.
According to the rule discussed in a previous para-
graph a result that is nonanalytic in 7° is to be
expected; the first nonanalytic diffraction correction
should be of O(y). Also, as was discussed in the
Introduction, nonanalytic behavior for the 1/r singu-
larity is indicated even by the WK expansion param-
eter ° which increases linearly with temperature.
The integration of B,, for this potential is easily
worked out by using Eq. (26). The result is
_ro(4mBgi/r)” [T a® dx Lo(y’z’

87" o (@4 1)°
= 32758 /ro)* {[1 + (*/2)Lo(—7")]
— 7% (y/2e”). (32)
Equation (32) has the expected form similar to the
result for the exponential potential, i.e., the power-
series expansion of the function in braces contains
both even and odd powers of v. By using the defini-
tion of Lo(—+v") in terms of the error function, the
expression in braces of Eq. (32) may be written as
{ } =1— """ Erfc (v/2). (33)
The second form (33) is convenient for obtaining
an asymptotic expansion for large v; it begins with
2/4°. This limit means X >> 7, and is not physically
interesting, since quantum statistics have not been
considered.

Some remarks about the electron gas at finite
temperature are in order at this point. In the electron
gas the interaction potential is the unscreened
Coulomb potential ¢”/r. Electrical neutrality is
maintained by the assumption of a continuous back-
ground of positive charge equal to the charge of N
electrons in a volume V. Since every term of the
perturbation expansion of the partition function
in powers of ¢°/r is divergent (because of the infinite
range of the interaction), finite results for the free
energy are obtained by selective summation of
terms in perturbation expansion. It is well known
that the sum of the most divergent part of each
cluster integral, the sum of the ring diagrams,
gives the Debye-Hiickel free energy. The funda-
mental lengths of the electron gas are | = gé,
the Debye screening length Ap = (47B8¢°0) ™% which
replaces 7o, and the thermal wavelength. The free
energy of the classical gas is a function of the ratio of
the two classical lengths A = Be®/Ap = 27'8%p"%¢ .

Bzz =

li
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The Debye-Hiickel contribution to gF = —In Z
is —NA/3. It is the leading interaction term when
A > 1; note that it is nonanalytic in p and €’ i.e.,
A involves p® and (¢°)*/®. Diffraction corrections
will be in a function of the ratio v = X/Ap, mul-
tiplying the classical Debye term. The WK expansion
cannot be used to find the diffraction corrections
since the WK expansion parameter, n° = (X/8¢%)%,
diverges as 8' at high temperature. Instead, the
diffraction corrections must be found by an evalua-
tion of the quantum mechanical ring sum.'®"** There
is an analogy between the quantum ring sum for
the electron gas and the second-order perturbation
term for the static screened Coulomb potential.
However, the mathematical expression for the ring
sum is far more complicated than B,,, and im-
portant additional physical effects due to plasma
oscillations are described by it. Since the Coulomb
potential has a spike at r = 0 [and its Fourier
transform, Vu(k) = 4wxe’/k*, has a double pole
at k = 0], it is to be expected that the function of
v* multiplying the classical Debye term will be
nonanalytic in 4° in exactly the same manner as
Eq. (32) is nonanalytic. This nonanalyticity, the
appearance of both even and odd powers of v in
the diffraction corrections to the Debye term, has
already been reported.’® The explicit evaluation will
be given in a forthcoming publication. Because of
the complexity of the mathematical expressions in
the quantum ring sum, it is not possible to obtain
the diffraction corrections in closed form as in Eqgs.
(32) or (33), but instead only as two convergent
series, one involving " and the other (y*)™*'/,

IV. EVALUATION OF TERMS IN THE WK EXPANSION

In this section the evaluation of a few terms of the
WK expansion will be described for the singular
potential Bu(r) = (Bg,/r")e /™ = 2 % ** with
2 = r/l. Specifically, we need the coefficients C,,(A)
of "™ in Eq. (5). The coefficients C,, C;, and C,
have been evaluated for the Lennard-Jones potential
in the form of infinite series of gamma functions,
and for other more complicated potentials used in
the theory of nonideal gases they have been evalu-
ated numerically.® The usefulness of these results
is somewhat limited by the fact that little is known
about the convergence of the WK expansion. The
simple singular potential to be discussed here does
not correspond well to any physical problem, but
the results do show the dependence of the coef-

18, E. DeWitt, J. Nuclear Energy, Part C; Plasma

Physics 2, 27 (1961).
19 H. . DeWitt, Bull. Am. Phys. Soc., 5, 7 (1960).
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ficients C,,(A) on the order of the singularity and
thus give a little more information about the con-
vergence of the expansion.

The coefficients in Eq. (5) may be evaluated
readily by the use of the Mellin transform, an
elegant and useful method in statistical mechanics
recently pointed out by Iwata.”” The Mellin trans-
formation of the exponential series is

o+im

>EWL L g

n=r 1 Jo—io

—r<oe< —r—1. (39

In our use of this transform, the contour of inte-
gration is deformed to enclose the entire negative
real axis to the left of —(r — 1). For the evaluation
of the C,(A), the exponential ¢™ in the integrand
is expanded with Eq. (34) and the order of z and s
integration inverted.

The classical second virial coefficient, Cy(A) from
Eq. (6) is
Co(A) = ——f ds T(s) f 2° dx (™% *) (35)
subject to —1 < Re(s) < 0 since ¢”” — 1 is being
expanded. With the change of variable y = — Asz,
the « integral in Eq. (35) becomes a gamma function,
and the result is:

Co(A)

5% fc ds T(s) T(ps + 3)(—sh)" "+, (36)
The result is obtained by summing the residues of
all poles to the left of s = 0. The integrand has first-
order poles when ps + 3 = 0, —1, —2, , —t
but s is not an integer; it has second-order poles
when s = —1, —2, . The residues of the first-
order poles are O(A") while the residues of the
second-order poles are nonanalytic in A. The com-
plete result is:

p—1

_Ty, _ (=pmt
Co(A) D ”ZO sin =(y, 4+ 3)/p

% Z ( l)t(p+1){ t+ (‘/p + 3)/p] }PH"YP
it + 1+ (v, + 3)/pIT(1 + pt + v,)

( 1)(p+1)t+p 1[(t + 1)A]pt+12 3
+ Z T(t+ 2T(pt +1+p — 3)

X {ln C+DA+1-3/pp¢+1)

_I(t+2 Tpt+p-— 2)}
pT¢+ 2~ Tt +p—2f

37)

20 G. Iwata, Progr. Theoret. Phys. (Kyoto) 24, 1118 (1960).
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wherey, = 0,1,2, --- ,p —4,p — 2, p — 1. The
prime on the summation indicates that the wvalue
v, = p — 3 is to be excluded; for this value the
integrand has double poles, and the second sum-
mation in Eq. (37) gives these residues. This ex-
pression (37) is general for p > 3. For p = 2, how-
ever, in addition to Eq. (37) there is a residue from
the simple pole at s = —1 which is —A™'. This
additional term is the first-order perturbation term,
ie., [ 2 de(—x7%¢"**) = — A", Similarly, for the
screened Coulomb potential, p = 1, the first two
orders of perturbation theory are finite and are
given by the residues of the simple poles at s = —1
and —2.

The coefficient of the first diffraction correction,
C1(4A), is evaluated by the same method. It is:

L fm 2 dx ex (—ac_”e_‘”)<i oc"’e—“)2
12 P dx ’

1
12 ), 2mi F@f
X [px (2p+2) + Zpr—(sz) + A2x~2p:|' (38)

The contour for Eq. (38) crosses the real s axis
to the right of s = 0. With the change of variable
y = —(s — 2)Az, Eq. (38) becomes

oW = 5 [ 3210
X T=Go — DA — 2 +
+ 2pAl—(s — DAIT I T — 2p + 2)
+ A[—(s — A"V I(ps — 2p + 3)}.

CI(A> =

P ds(x e )0

(39)

1

¢:(8) = 150

2m > T(s) {—3[p'T(ps — 4p — D)[—

HUGH E.
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The first few terms in A are

oW = 13 {WZ — 1/p) — (8%/2p)
X T@ = 3/p) + -] + (‘1}('510);323;'”‘
e  I'(p)

(40)

The complete result for Eq. (39) is easily obtained
by summing all residues from the first- and second-
order poles of the integrand. It is a lengthy result
and is not written down since it is not needed.

The coefficient of »* as defined by Eq. (1) is:

1 ® _
Ca(A) = @/; 2" dreV

X [(V.U)

A more convenient form for computational purposes
is obtained by using VU = U" + (2/z)U’, and
then integrating by parts the terms U’’U’ and
U'U" /x. The result is

— 8(V.U)’ViU + 12(ViU)’l. (41)

2 U’2

N T
Cl) = g5 [ 4" dae
13
g + =+ U”z]

X|: 3 =z

With U = z7% **, the same procedure used for
C.(A) gives, after some algebra,

5
36U T (42)

(S — 4)A]—(m—4p—l)

+ 4p AP(ps - 4p)["‘(8 hand 4)A:|_(m_4p) + 6p2A2I‘(p8 — 4p ._|_ 1)[_(8 - 4)A]—(pa—4p+3)
+ 4pA2P(pS — 4p + 2)[—(8 — 4)A]—(ps—4p+2) + A4I‘(p8 _ 4p + 3)[—(8 _ 4)A]~(pa—4p+3)]

— (40/3)[p'T(ps — 3p — D[—(s — A" ™™ + 3p"AT(ps — 3p)[—(s — 3)A] ™

(43)

+ 3pA°T(ps — 3p + D[—(s — ATV + A’T(ps — 3p + 2[—(s — 3HA] " ~*?]
+ 12[p°((p + 1* + 2)T(ps — 2p — D[—(s — AT 4+ (4p°(p + 1) + 4p)

X AT(ps — 2p)[—(s — 2)A]™"* 7" + (2p(p + 1) + 4p° + 2A’T(ps — 2p + 1)

X [ — AT ™7 + 4p"AT(ps — 2p + 2)[—(s — A]” P 72*?

+ AT(ps — 2p + 3)[—

Each term in this lengthy expression may be
evaluated by summing the residues of first- and
second-order poles. We give only the value of the
leading term:

Cz(A) =

(s — 247"

p2p® — 11p + 21)
240 T+ 1/p) + ---.

Collecting the previous results gives the second

(44)

virial coefficient for U = z” valid for p > 3 as
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1
B, = —2 13{— u
: T\ psin 3x/p A + 3/p)

(2p° — 11p* + 2ip)n’
1440

_DY o
12 re - 1/p +

X T2+ 1/p + } (45)
Although it has not been possible to obtain a general
term for this expansion, it is clear that the form
of the general term for large p is " '»*". Thus,
the convergence of the WK expansion for any given
value of n° depends strongly on the order of the
singularity of the repulsive core of the potential.

The limit of large p is interesting because the po-
tential g,r ® becomes equivalent to a hard sphere
with radius 7, = lim (8¢,)"’” as p — . The first
term in Eq. (45) reduces to (2/3)xrs, the classical
hard-sphere second virial coefficient. Thus, WK ex-
pansion when fully evaluated could give the dif-
fraction corrections to the hard sphere second virial
coeflicient at high temperature. For large p Eq. (45)
becomes:

B, = —2mr5{—1/3
— alpn/12 — (pn)°/720 + ---1},  (46)
where 7 = X/r,. It appears from the numerical

values of the first two diffraction terms in Eqgs. (45)
and (46) that the WK expansion is a convergent
series in powers of p, although nothing can be said
about the radius of convergence. It is possible that
the limit of the square bracket in Eq. (46) as p — «
is finite and nonzero, in which case the diffraction
corrections to the hard sphere virial coefficient are
nonanalytic in n°. This result seems very probable
in view of the nonanalytic result (31) for B,, with
a barrier potential of finite height. It should be noted
that most recent work on the quantum-mechanical
hard sphere gas has been at low temperature so
that X is much greater than the hard sphere radius.
Thus, in the work of Yang and Lee® the expansion
parameter is 7,/A, rather than A/r,. We hope to
study the hard sphere gas at high temperature,
A < 7,, in more detail in a later publication.

V. THE SCREENED COULOMB POTENTIAL

The screened Coulomb potential must be con-
sidered separately from the more singular potentials
treated in the previous section since the WK ex-
pansion parameter n° is large at high temperature.
The diffraction corrections to the classical limit of
the second virial coefficient for this potential must

21T, D. Lee and C. N. Yang, Phys. Rev. 105, 1119 (1957).

1013

be expressed in powers of v = nA = A/r,, which
goes to zero as 8% at high temperature. The classical
value of B, is obtained from Eq. (37) with p = 1
and with the additional residues of the two simple
polesat s = —1 and —2. It is:

B, classical = —2x(8g,)*C.(A)

= —Qwi{—A + 1A

Ar+2(r + 2)7‘—1
+ r};{ I'(r + 3)T(r)

X l:ln (r+ 2)A + 2C — 2k,

P42 1
P T A 2]} “7)

In obtaining Eq. (47) from Eq. (37) the relation
 (r + 1)/T(r + 1) = —C + h, with h, =
14+ %+ .-+ -+ 1/r has been used. The first two
terms of KEq. (47) are the first and second orders
of the perturbation expansion (from the residues of
the simple poles at s = —1 and —2). The higher
orders of the perturbation expansion are individually
infinite, but their sum gives the nonanalytic form
A" In A. The summation in Eq. (47) is identical
with Iwata’s® result, the S, integral of Abe’s™
modified cluster expansion for the classical electron
gas.

This section is devoted to obtaining diffraction
corrections to Eq. (47). The first-order perturbation
term is always classical. The diffraction corrections
to the second-order term were obtained in closed
form in Sec. III, Eqgs. (32) and (33) and found to
be nonanalytic in +°, i.e., they involve both even
and odd powers of y. Our problem then is to find
diffraction corrections to the A™*? In A terms in
Eq. (47). One conceivable approach is to evaluate
every order of the quantum perturbation expansion
and sum them. (The third order begins with A® In v
and the higher orders with A"/y"7®.) Such an ap-
proach is approximately as difficult as solving a
quantum mechanical scattering problem by cal-
culating the nth order Born approximation and
summing the Born series. Instead, it will be shown
how the WK expansion may be used, even though
at first glance the 1/r singularity appears to be
too weak to allow the WK expansion.

22 R. Abe, Progr. Theoret. Phys. (Kyoto) 22, 213 (1959).
A similar expansion for ionic solutions was developed by H.
F. Friedman, Molecular Phys. 2, 23 (1959). Abe’s giant cluster
expansion for the electron gas is a special case of the very
general Meeron nodal expansion, E. Meeron, Phys. Fluids I,
(1?3%)1958); E. Meeron and E. R. Rodemich, ibid. 1, 246

+
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Let us first consider what happens when the
screened Coulomb potential is used blindly in the
evaluation of the WK expansion coefficients C,.(A).
The general form may be shown to be:

2m—1

C.(A) = D @A’ + A

X 2 A(bn In A + ¢,,). (48)
The calculation of the coefficients @..., bm,, and ¢,
in Eq. (48) is feasible in any order with such ex-
pressions as Eq. (39) and (43), but is very tedious
even for m = 2. For example, the complete result
for C,(A) obtained from Eq. (39) with p = 1 is:

) = 350 = 4/2)

1 @ Ar+l(7_ + 2)r—-1

12 2 T¢ + 910 [1" ¢+ 24

_ rP 4+ 2 :I
rir + D{r + 2)

The series in Eq. (49) closely resembles the series
in the classical expression (47). Both series are
rapidly convergent. The limit of C;(A) as A — 0
is 1/12.

The infinite sum in Eq. (48) comes from the
residues of second-order poles, and the finite sum
comes from the 2m simple poles all lying to the right
of the second-order poles on the real s axis. The
diffraction corrections from the finite sum are of
order s*"A* and have temperature dependence of
B8 ™**; thus they become large at high temperature
for s < m. The diffraction corrections from the
infinite sum, however, are of order ""A*"™'*" =
v*" A" and are small at high temperature. In fact,
the finite sum in Eq. (48) contributes only to the
second-order perturbation term B,,, and the di-
vergence at high temperature of 7°"A’ is just what
is needed to give the nonanalytic form (v*)"/* which
appears in B,,. The infinite sum gives the quantum
corrections to the third and higher orders of the
perturbation expansion, i.e., the desired diffraction
corrections to the A™*® In A terms in Eq. (47).
These diffraction corrections are analytic in +°.

There is no point in giving a direct proof that
> n""C.(A) with only the finite sum part of
Eq. (48) does indeed reproduce B,,. Instead, the
proper procedure is to subtract out of the second
virial coefficient the first and second orders of the
perturbation expansion, and make a WK expansion
of the remainder. Thus we define:

+ 2C — 2h, (49)

DEWITT

Bj = ngn = —2r(8g,)’° ; 7°"CL(8),  (50)

and use Eq. (18) for B,, The coefficients C%(A)
where the prime indicates the removal of first- and
second-order perturbation theory are defined as:

—2r(8g.)* 7" "CL(A) = D B,

n=3

In Sec. II, only B;Y and B;. were explicitly
evaluated. By summing Eq. (18) and (19) from
n = 3 one obtains for the modified second virial
coefficient

B, = —%{f Sl — 14U — U2

— (R¥/12(VUe ¥ = 1) + 0(xY]

+ (8°/12) lim 4r 8°U"(2) U(a)} , (51)

instead of Eq. (20). The surface term in Eq. (19)
must be retained in order that the O(X*) term in
Eq. (51) be finite. The singularity in the integral
coefficient of A* is canceled by the surface term
for the 1/r potential. The terms of the WK ex-
pansion of B} are calculated as described in the
previous section with the help of the Mellin trans-
form of the exponential series. Thus C;(A) is defined
as in Eq. (35), but the condition on the contour of
the s integration is —3 < Re(s) < —2 where the
contour crosses the real axis. Thus the simple poles
at s = —1 and —2 are not included and the result
for C4(4A) is the infinite sum in Eq. (47). Similarly,
C1(4A) is given by Eq. (39), but with the restriction
that —1 < Re(s) < 0 where the contour crosses
the real axis. Again this restriction eliminates the
simple poles and leaves only the second-order poles
within the contour. Thus C}(A) is equal to the
infinite sum in Eq. (49). Similarly, for arbitrary
m the subtraction of second-order perturbation
theory leaves only the second-order poles within
the contour, and C/(A) is equal to the infinite sum
indicated in Eq. (48).

In this paper only the O(X?) corrections to B!
have been evaluated explicitly. The O(x*) corrections
may be obtained as the residues of the second-
order poles of Eq. (43) with p = 1. Higher-order
corrections must await the evaluation of more terms
of the WK expansion. Our complete result for B,
for the screened Coulomb potential including the
second-order term is
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Bz = Bzx +B22 +B£

I

—zﬂ%{—A + 1L+ 3 Lo(—7)

1 12 24 Ar+2<r + 2)1'-1
e+ T = D

X [ln (r + 2)A + 2C — 2h,

+ P42 1 ]

r+ Dr+2 r2

. Ar+2<r+2)r
R Dy vy

r=1

X [ln r + 2A + 2C — 2,

r + 2 4
T e+ 2)] + Ol )}'

In Sec. III it was pointed out that the quantum
mechanical ring sum for the electron gas and B,
for the screened Coulomb potential were rather
similar. Diffraction corrections to both are non-
analytic in 4°. In the same way there is a con-
siderable similarity between B} for the screened
Coulomb potential and the quantum mechanical
generalization of the Abe S,(A) contribution to the
electron gas free energy.”® The S, term is the next
step in the rearrangement of the perturbation ex-
pansion of the partition function after the ring terms
have been grouped together. It is the sum of three
and more effective interactions between two elec-
trons in the plasma. Each effective interaction is the
sum of all possible chains of Coulomb interactions;
the result is a screened Coulomb interaction with
7o = Ap in the classical limit. Thus the classical form
of 8;, Abe's result, is identical in form to B} for
the screened Coulomb potential.

The quantum theory of S, has not been com-
pletely developed yet, although it is implicit in the
article by Montroll.'® It seems clear, however, that
diffraction corrections to S, must be calculated in
the same manner that B} in Eq. (52) was obtained,
that is, by a WK expansion of S,. This calculation
is being carried out now.

(52)

VI. CONCLUDING REMARKS

The main point of this article has been to show
with specific examples that nonanalytic forms of A®
may appear in the diffraction corrections to the
classical partition function of an interacting gas for
some potentials. The analysis here has been limited
for simplicity to the second virial coefficient, al-
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though some of our conclusions will apply also to
the higher virial coefficients. No attempt has been
made to give an exhaustive specification of what
nonanalytic forms of A* may appear. The following
statements seem to be valid conclusions from the
examples worked out. If the second-order perturba-
tion term B, has a finite classical limit for a given
potential, then the diffraction corrections to that
classical limit include nonanalytic forms of A° when
the potential has a cusp or singularity in any deriva-
tive. For the examples of the square wall potential
and the form »"¢™""° this nonanalytic form is
(h*)"?. This statement applies also to the Coulomb
potential for a gas in three dimensions, since in
three dimensions the spatial volume element 4+ dr
assures the finiteness of B,, for the screened Coulomb
potential and of the ring sum for the electron gas.

For potentials more singular at the origin than 1/r,
B,, is infinite, and one must evaluate the entire
second virial coefficient. The virial coefficient is
nonanalytic in the coupling constant of the inter-
action, but the diffraction corrections are analytic
in A* and may be obtained as the first few terms
of the WK expansion. Hence, the WK expansion is
quite justified for caleulating diffraction corrections
to the virial coefficients of nonideal gases. The con-
vergence of the expansion, however, depends strongly
on the order of the singularity assumed in the
intermolecular potential.

Any sharp corners in the potential will result in
diffraction corrections that are nonanalytic in A%
The reason is that the WK expansion fails since
its coefficients are integrals over derivatives of the
potential and thus are delta functions and deriva-
tives of delta functions. Thus the second virial
coefficient for the square barrier potential has non-
analytic diffraction corrections, and so also does the
hard sphere potential (a special case of the square
barrier with the height of the barrier put to «),
give rise to nonanalytic form (A%

The screened Coulomb interaction in three di-
mensions is particularly interesting since its second
virial coefficient has two parts with different types
of diffraction corrections. B,, is finite classically,
but because of the 1/r singularity its diffraction
corrections involve both A* and (A*)'®. The re-
mainder of B,, i.e., all higher orders of the per-
turbation expansion, is nonanalytic in the coupling
constant (g3 In g¢,), but the diffraction corrections
are analytic in A® since they may be calculated with
the WK expansion. In one and two dimensions,
however, all diffraction corrections to B, are analytic
in A® since B,, is infinite. With this mathematical
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structure in mind, it is easy to make the extension
to the electron gas for which u(r) = ¢°/r. The ring
sum which is analogous to B,, must have non-
analytic diffraction corrections, while the diffraction
corrections to the remaining orders of the perturba-
tion expansion when appropriately grouped together
(the Abe expansion) involve only powers of A°.
It is believed that the method described in this
article for using the WK expansion will have con-
siderable utility in evaluating the theory of the
quantum mechanical electron gas.
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APPENDIX

The integral required for the second-order per-
turbation term (31) for the square wall potential is:

- [ " 4 @) Lol (A1)

In order to evaluate it, the square of the spherical
Bessel function is written in terms of trigonometric
functions,

qi@)? = 2731 — cos 2x) — z sin 2
4 12°(1 4 cos 22)],

~and expanded in powers of z. Also the integral
representation (23) of Ly(y°z”) is used. Equation (A1)

becomes
1) (21')2n —-4 ( l)
@Cn — 4! \2n 4

I_fdz
n=3

—y3zp(l—
X/ d?)e yirdp 1’);
0

L2 (=p2? /(1 1
- E(2n—3)< 2(n-1)!>

HUGH E.

DEWITT

/2
X [ dsin o)ty cos 6). (A2)
0
The second line of Eq. (A2) is obtained by doing the
z integration over the Gaussian function first, and
with the change of variable v = (1 4+ sin 6)/2.
For each value of n, the 6 integral in Eq. (A2) is
divergent. This trouble is avoided by using the
Mellin transform of the series in Eq. (A2); it be-
comes

ils_ 2—23+3
fod 27('?/ 28 + 3

I=—x

[T + 3T + 1]

T/2
X f d (sin 6)(y cos 6%, (A3)
0
where the contour C encloses the entire real axis to
the left of the point —3. The 6 integration for
arbitrary s is

V2 T(s + 5/2)

/2
f d (sin ) cos 6" = = ,
° 2 T@+3

so that Eq. (A3) becomes

T [ ds "
I'==5), 2mo®

T'(s + 5/2) <1 . 1)_
s+ D+ D@s+3)\s ' 2

The integrand of Eq. (A4) has only simple poles.
After calculating the residues, one obtains

(=DM

X (A4

m
I'= 2 ; 2r + 3)@r + 3 + D! (A5)
Equation (A5) is the expansion of
T 1 1 @ e —1 a o i
2[3—2afodte +2a3f0dtte ], (A6)

with @ = 2/v. Integrating the last term of Eq. (A6)
by parts gives the form recorded in Eq. (31).
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We present a simplified derivation of a generalized master equation for the diagonal part of the
occupation probability density. This derivation is valid for systems of arbitrary volume. It does not
require the use of perturbation expansions nor the use of a diagonal singularity condition. In addition,
a similar derivation is presented of a generalized master equation for the nondiagonal part of the
occupation probability density. These equations become identical to the generalized master equations
of Van Hove and Janner, respectively, if a perturbation expansion is made, if a diagonal singularity
condition is assumed, and if the limit of infinite volume is taken.

ECENT advances in the understanding of

the nonequilibrium behavior of many-particle
quantum systems have been made by Van Hove,'
by Prigogine and his co-workers,” and by others.
They have used dynamical arguments to obtain
kinetic equations which describe the irreversible
evolution of systems from particular initial states.
In general, these kinetic equations are non-Marko-
vian, but in some limiting cases they can be ap-
proximated by the Markovian Pauli equations.?
Central in the work of these authors is a many-
body perturbation theory applied to an infinite
system. In particular, Van Hove has obtained a
generalized master equation for the diagonal part
of the occupation probability density (g.m.e.d.) by
making a perturbation expansion and assuming a
diagonal singularity condition. Also, the limit of an
infinite system is essential to the analysis so that
certain terms can be ignored.

It is clearly desirable to derive a g.m.e.d. with-
out recourse to perturbation theory.* We wish to
present a simplified derivation of a g.m.e.d. by
making use of reasoning similar to that of Heitler
and others in the treatment of damping theory.®
This derivation does not make use of perturbation
expansions or of Van Hove's diagonal singularity

* This work was supported by the National Science
Foundation.

t Based on part of the author’s dissertation submitted
to Lehigh University in partial fulfillment of the requirements
for the degree of Doctor of Philosophy, October, 1961.
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3 I. Prigogine and P. Resibois, Physica 27, 629 (1961).

4 Similar motivations appear in R. W. Zwanzig, in Lectures
in Theoretical Physics, edited by W. E. Brittin, B. W. Downs,
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1961), vol. III; E. W. Montroll, in Fundamental Problems in
Statistical Mechanics (North-Holland Publishing Company,
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5 W. Heitler, The Quantum Theory of Radiation (Oxford
University Press, New York, 1953), 3rd ed., p. 164.

condition and it is valid for systems of finite volume.
The difference between our result and Van Hove's
will be discussed below.

Recently, Janner’ has used the reasoning and
assumptions of Van Hove to derive a generalized
master equation for the nondiagonal part of the
occupation probability density (g.m.e.n.). A simpli-
fied derivation of a g.m.e.n. is given below and this
g.m.e.n. is compared to Janner’s.

We will first present a derivation of the following
g.m.e.d.:

QE_E_(t/aao) —
= = 15(t/0) 8(a — a0

+or 3 fo gt — ool )Py(F Jela)

— wi(t — t'/a’)Py(t' /aay)], )

where 6(ae — ap) is a Kronecker delta, and the
partial transition probability Pg(t/aa,) is related to
the transition probability P(¢/aa,) for ¢t > 0 by

f_ Z AEP4(t/acg) = P(t/aa)

= (o] exp H/R) [o) (o] exp (—iHI/R) [ao), (2)

with P(0/ac;) = 6(a — o) and the quantities
wg and fp are defined below. (Our notation will be
the same as that used by Van Hove and Janner.)
The Hamiltonian, which is assumed not to depend
explicitly on the time, is written as a sum of an
unperturbed part H, and a perturbation H,,

H = H, + H,, (3)
with

Hy [o) = e [o), 4

6 A. Janner, Helv. Phys. Acta (to be published).
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and we use the eigenstates [@) to compute matrix
elements.

Our analysis will be based on the properties of the
resolvent operator R, which has been discussed by
Van Hove'” and by Hugenholtz,® and is defined by

R =H-D7, (3)

where [ is a complex number. The resolvent is
related to the time unitary transformation operator
aceording to

exp (—iHi/R) = —(2mi)~ fc dL R, exp (—ili/h), (6)

where the contour C is taken counterclockwise
around a sufficiently large portion of the real axis.
Introducing Eq. (6) into Eq. (2), we obtain

P(t/acg) = —(2m) fc dldr

X exp [1(I — U)t/R] (o] B, [a) (o] Ro- [0,
and defining a quantity X,
X, ioga) = Xzz'(aao) = (Cl’o] R, [a) (a] Ry [a()), (7)

we have
P(t/ac) = —(@m)" f dl
(5}

X exp [i(I — U)i/R) Xip o). (8)
The g.m.e.d. is a mathematical consequence of the
following equation for X:
(I — INXylawy) = Frpo(e) 8l — ag)
-1 Z (Wi (o) X 1 (et

- W”,(oz'a)X”,(aao)],
where we have introduced
Wl 1 '(oza') = iF), ,(a) W /(aa')

and F and W are defined below.

We first derive this equation for X and then
show how the g.m.e.d. follows from it. In the repre-
sentation furnished by H, we write the resolvent
as the sum of its diagonal and nondiagonal parts;
e.g. (the complex arguments I and !’ will not be
explicitly indicated except when needed for clarity)

R = Rd + Rndy (11)

(9)

(10)

L. Van Hove, in La théorie des gas meulres et ionisés,
edited by C. DeWitt and J. G. Detoeuf (John Wiley & Sons,
Inc., New York, 1959).

8 N. M. Hugenholtz, in Lectures in Theoretical Physics,
edited by W. E. Brittin and B. W. Downs (Interscience
Publishers, Inc., New York, 1960), Vol. II.
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d and nd denoting the diagonal and nondiagonal
parts, respectively. Defining D and U by By = D
and R,y = DUD (note that U is nondiagonal),
we can write

R = (I + DU) D, (12)

where [ is the unit operator. Equation (12) can be
rearranged to yield

I=(H,+ H, —)UI+DU)D, (13)

and if the diagonal part of this equation is taken,
we obtain an expression for D,

D, =H,+ G — D)7, (149)
with

G, = [Hx -+ H, D,U}]a. (15)

If the nondiagonal part of Eq. (13) is taken, we
obtain

0=[H, +(H,— ) DU + H, DU,
and using Eq. (14) we can write
U= —[H,+ H, DU — @ DUl,a.
Substitution of Iq. (15) into this expression yields
U= —[H,+ [H,].a DU — [H, DU, DUL,. (16)

We find after substitution of Eq. (12) into Eq. (7)
and recalling that U is nondiagonal

Xilaoy) = Di(a) Dy ()[6(a ~ a)
+ Di(o) Dyoleto) (o] Uy [0 {a] Uy [e0)], (17)

with D;(a) = {(a] D; [a). An identity for D;(«) D;.(a)
is obtained from Eq. (14):

Fii(e) = Di(e) — Di(e)
lea + Gile) = U7 — [ea + Gi() — V]
Do) D, (@[l — ' — Qi(a) + G, (0],
which can be solved to give
D) D ()

=Fu@l~V -G+ 6@ 18

Substitution of Eq. (18) into Eq. (17) yields, after
some simplification,

I

i

‘(l - ll)th’(aao) = Fyi(a) 8o — )

-+ Fzz'(a) Dl(ao) DZ'(an) Ul(aoa)U,'(aa(,)
+ [G;(Ol) - Gl'(a)]X”'(aag), (19)

where we introduced {(a,] U; [a) = Ui(ape), ete.
Let us define an operator W by the equation



DERIVATION OF GENERALIZED MASTER EQUATIONS

sz'(aao) = U,(aoa) Uz'(aao) - Z W”r(aa')

X D) D,. (&)U (oYU, (o).
This equation can be iterated to yield

W'”'(aao) = Uz(aoa) Uz'(aao) - Z Ul(a'a) U,,(aa’)

(20)

X .Dl(a') D,/(a') Uilaod) U (& erg) + - - ’ (21)
from which it is evident that W has the symmetry
PV”'(aao) = Wlll(aoa). (22)

We can obtain an expression for the second
quantity on the right-hand side of Eq. (19)
in terms of X and W as follows: Multiply Eq. (20)
by D(ay) D; {ay) and rearrange terms to obtain

; Wilea') Di(a") Dy (e 8le’ — ap)

+ Dz(ao) Dl'(ao) Uz(aoa/) U,,(a'ao)]
= Dz(“o) D, (a) U,(aoa) U,:(aao),

which with the aid of Eq. (17) gives the desired
relation

E’ Wu'(aa,)X”'(a,ao)

= Do) D; () U, (aea) U, (o). (23)
This enables us to write Eq. (19) as
(l - l’)th'(aao) = F”'(a) 5(0‘ - ao)

+ Fn'(a) Z W'”,(aa’)X”'(a’ao)

+ [Gila) — G (a)]X (o). (24)

Now we obtain an expression for [(;(a) — G4 ()]
in terms of W,;;.. From the definition of R,, it
follows that

R—R.=H-D)'"—H-IN"
= R[le(l - l’),
and by taking a diagonal element we obtain

Fiu@=00-1) aE X, (o). (25)

If we sum Eq. (24) over o, and use Eq. (25), we
obtain

;, Fi(@)Wilea) = —[Gi(@) — Gr(a)]. (26)

Instead of using this to eliminate [Gi(a) — Gi-(a)]
in Eq. (24), we will use

; F”r(a')W”r(a’a) = —[Gile) — G (d)]. (26’)

Equation (26") is obtained as follows: We inter-
change the complex arguments I and ' in Eq. (17)
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and follow the same analysis that led to Eq. (26).
This will yield

; Fri(@)Wilao!) = —[Gr(@) — Gila)],  (26")

and using the symmetry property of W expressed
by Eq. (22) and multiplying by minus one we
obtain Eq. (26").

Using Eq. (26') to eliminate [G;(a) — Gy ()] in
Eq. (24), we write
(- l')X”:(aao) = Fi.(a) 8(a — 0fo)

- i Z, [Wll’(aa,)X”'(a’ao)

- Wl 1 :(a’a)X, 1 :(aao)], (27)

which is the desired equation, Eq. (9), for X. As
indicated by Van Hove," a g.m.e.d. is a mathematical
consequence of this equation and for the sake of
completeness we demonstrate this in detail in the
appendix. In the appendix we also discuss the role
played by the inhomogeneous term on the right-hand
side of Eq. (27).
Let us now derive a g.m.e.n., which is

%@(t/{!a’ao) — gE(t/aa'ao)
+ 2r f At S [welt — & Jac Y ot Jo’"alas)
L 2

— wg(t — V/a" o) g(t fac’ay)], (28)
Ig(t/ac’ay) is related to I(t/ac’a;) for ¢ > 0 by

f_: dE Iy(t/ac’ay) = I(t/ao'ap)

= ('] exp (GH/P) [o) (o] exp (—iH/R) law) (29)

with I(0/ac’a,) = 0, wy is the same quantity
that appears in Eq. (1), and the inhomogeneous
term ¢x(t/ac’a,) will be defined below. Introduce
Eq. (6) into Eq. (29) to obtain

1(t/aa'ay) = —(2m) fc dldv

X exp [{(I — U)¢/R] Y1, (e o), (30)
with
Y (ad’ay) = {1 R, [a) (o] R, [ao)- (31)

The g.m.e.n. (28) is a mathematical consequence of
the following equation for Y:

(I = Y nled'ay) = Fiyi() V(o)
-1 Z (Wi(aa) Y (e &)

— W (a"a) Y (ad’ag)], (32)
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where F and W are the same quantities which
appear in Eq. (9) and V will be defined below.

We now derive Eq. (32) in essentially the same way
we obtained Eq. (27). Substitute Eq. (12) into Eq.
(31) to obtain

Yilad'as) = Di(e) D, (o)D) U (') 6l — ay)
+ D, (ag) U, -(aaq) 8lc — o)
+ D) Uie'a) Uy (aco) Do),
and use Eq. (18) to write
(I =Y ladlay) = Fi i {a)[ D) U {o'a) 6la — ap)
+ Dy () U -laay) 8lc — o)
+ Di@) Uie'a) Uy (aan) Dy(ew)]

(33)

+ [Ge) — G (@)]Y - (ad’ay). (34)
Let us define an operator V by the equation
Vi lod'as) = Di(o)U(d'e) (e — ap)

+ D (ag) Ui laas) 6(e — o)

4+ D) U (') U, (aay) Dy (o)

- T D) D)

X Ule’a) U, (ac) V(o d’ay) . (35)

Multiply by D;(e) D,-(a) and rearrange terms to
obtain

3 Di(@) Du@sla — @) + Di(a") Die")

X Uda"0) U, (oa’)] V(0" o o)

= Di(e) Di(@)[D:(a")U.(da) 6(a — aq)
+ Dy (ag) U, (aay) 8l — ')
+ D (o) U (') U, (acts) D;(axo)]. (36)

The factor multiplying Vi;.(a'@’ap) is recognized
from Eq. (17) to be X,;;.(aa”) and the right-hand
side is recognized from Eq. (33) to be Y- (ad’ay),
50 we obtain the relation

Z; Xll’(aa”) V”:(a"a'ag) = Y”r(aa'ao). (37)

Using Eqgs. (23) and (37), we write Eq. (35) as
D) U (a'a) 8(a — ag) + D, (ag) U (eon) 8a — o)
+ D) Ui’y U, (o) Dy(ex)
= Vilad'a) + ;: Wiad) Y1 (@ 'a’as).  (38)

Substituting this into the right-hand side of Eq. (34)
and using Eq. (26’) we obtain the desired equation

ROBERT J. SWENSON

(l - Z,) Yll'(aa'ao) = F”/(a) V”f(aa'ag)
— 3 2 [Wilaa”) Yy, (oo’ a)

- W”r(a"a) Y”/(aa'ozo)]. (39)

The g.m.e.n. (28) is a mathematical consequence of
this equation, as discussed in the Appendix.

It is thus possible to obtain generalized master
equations for the diagonal and nondiagonal parts
of the occupation probability density which are
valid for finite systems without using perturbation
theory and without requiring that the potential
satisfy a diagonal singularity condition. Of course
in any practical caleculation it is convenient and for
some things necessary to take the limit of an infinite
system and then sums can be replaced by integrals.
Furthermore, in this limit the analytic behavior of
the resolvent and related operators simplifies, since
a set of dense poles along the real axis condense
into a branch cut.'**

In order to compare the above results with the
work of Van Hove''” and Janner® we express the
resolvent operator as an expansion in powers of the
“interaction” H, (see reference 1). If this is done,
we obtain the following expression for W:

T’V”'(aao) = {<ao](H1 — H, D,H,
-+ d4,D,H, D,H, — ) [a> (a]
X (Hl - H, D.H + - ) [a0>}id; (40)

where 7d stands for “‘irreducible diagonal” and
means that all intermediate states are unequal to
the initial state and no two intermediate states are
equal. Van Hove's expression for W [see Eq. (9.22)
in reference 7] is the same as Eq. (40) except for
the meaning of 7d. In his work the definition of id
is that all intermediate states are “nonidentical” to
the initial state and no two intermediate states are
“identical’’; however, intermediate states may be-
come ‘‘occasionally equal.” This leads to some
terms being counted twice, but Van Hove demon-
strates” that if a diagonal singularity condition is
assumed the error introduced is proportional to one
over the volume and thus vanishes in the limit of an
infinite system. If we make the same assumptions
as Van Hove, then the ¢d which appears in Eq. (40)
can be replaced by Van Hove's 4d.

We conclude that our results become identical to
Van Hove's and Janner's if we adopt their as-
sumptions. However, in some cases it is more con-
venient to expand the resolvent in terms of some
quantity other than the interaction®; e.g., if the

9 R. J. Swenson, J. Math. Phys. (to be published).
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interaction contains a hard core it is useful to
expand in terms of a scattering matrix.
ACKNOWLEDGMENTS

The author expresses his thanks to Professor
James A. McLennan, Jr., for his encouragement,
many discussions, and critical reading of the manu-
script. He also thanks Dr. Janner for sending a
preprint of his recent work.

APPENDIX

We wish to demonstrate how a g.m.e.d. can be
obtained from Eq. (27). The same arguments apply
for obtaining Eq. (28) from Eq. (39). From Eq. (8)
we have

P(t/aay) = —(2n)"" f dl f av
X exp [i(l — V)i/R]X.(aag),  (AD)

and for ¢t > 0 we can deform the contours to obtain
(see reference 7)

Plt/acs) = (2m) f dE" f dE*
X eXp ['L(El — K — Zin)t/h]XEl_iﬂ.El+iﬂ(aa0>- (A2)
Let us make the change of variables

E'— E*=2E" and E'+ E® = 2E,
which yields, for P(t/aay),

P(t/acg) = (259! f_ Z dE f :dj'

X exp [20(E" — i) t/B) X ga —in b-p +inlocg), (A3)
or
P(tfae) = [ Z dE Py(t/acs), (Ad)
with Pg(t) defined as
Pi(t/aay) = (207" f Z B’
X exp [20((E" — in)t/R]X piprmin. -5 +is(@o). (AD)

Taking the time derivative of Eq. (A5) yields

dP g(t/ac) _

. 25\ —1 ” nl ; [
- §2r°h) f Y exp [20(E — in)t/n]

X 2E" — )X prp—in. -5 +inlaag), (A6)

and from Eq. (27) we obtain an expression for
2(E" — in) Xprpooin m-prrin{ao); le.,

1021
2( ! — i'l)XE+E'—n,,E-E'+in(aao)
= FE+E’—iv,,E—E’+in(a> B(a - 010)
— 17 E] [W(...)((X&’)X(...)(ﬂ!lao)
— Wih@a)X .. (aa0)], (A7)

where the arguments indicated by (---) are the
same as the arguments of F. Equation (A7) enables
us to write the time derivative of Pr(f) as

‘—%E(t/ a0) _ onp)t ﬁ Z dE" exp [2i(E" — in)t/h]

X {FE+E’~in,E'—E'+in(a) 5(“ - 010)
-1 Z (W (0a) X (oo (e atg)

— We@a)X (... (aag)]}. (A8)
Now we define wy and f; by
fu(t/a) = i(25°H)"" f dE"
X exp [21( i) — iﬂ)t/h:]FEJrE’—iq,E—E’+in(a) (A9)

and
ws(t/aa’) = (25°R3)" f dE’

X exp [2{(E' — iﬂ)t/h]WE+E'-in.E—E’+in<aa') (A10)

and we use these definitions in Eq. (A8) to write
a g.m.e.d.

(_i_P_E(t/aao) _ _
Lol 1 (1/0) ol ~ )

+ 2n Z fot dt'[we(t — ¢ /ad’)P(t /o o)
— wg(t — t'/a’@)P (' Jaay)]. (A11)

We have made use of the following convolution
theorem in obtaining Eq. (Al11):

f " wa(t — ¥ Jac!)P ot Jolas)
0

= (4°B)™ f:, dE’ exp [2i(E' — in)t/h)

X WE+E'—1‘1).E—E'+i1,(aa/)X("')(a’aO)' (A12)

Let us prove the above convolution theorem.
Substitute the definitions of we and Pz into the
left-hand side and perform the time integration,

f dt wg(t — t'/aa”)Pe(t /o’ o)
0

I f AE" AE" Wgogi—iy.5-zrssolac)

X XE+E"—{n,E—E”+in(a,a0)(J” - E’)_l
X {exp [20(E" — in)t/h] — exp [2((E"" — in)i/h]}.
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Since the integrand is analytic on the real axis
nothing is changed by taking the principal parts
@® of the integrals. We do the E’ integration in the
first term and the E’ integration in the second term
to obtain the desired relation (A12). For example,
the E’ integration in the first term is

B=0 [ dB" Xy ooprafela) (B — )

and closing the contour in the lower half plane
(since for large B/, X ~ E’'™*) we obtain

B=¢ f @ Xperoin porsin(@an)(e — B)
C

The singularities of Xg., iy, z-z4iq(a’a,) lie above
the real £’ axis (as follows from the definition of X),
so that the only singularity of the integrand is a
simple pole at z = E’. The integral is easily evaluated
to give (for E’ real, we use the definition of the
principal part)
B = _iTXE-I-E’—iq.E'—E’+in(ala0)'

The E’ integration in the second term is done in
exactly the same way and Eq. (A12) is the result.

The derivation of the g.m.e.n. follows in the same
manner with gz defined by

gu(t/ac'ar) = i2n°R)" f dE’

X exp [Q’L(E/ - ’iﬂ)t/h]FE+E'—ir,,E—E’Hq(a)
X VE+E’—in,E—E'+in(aa,aO)) (A13)

and a convolution theorem identical to Eq. (A12)
with Iz and Y(aa'a,) replacing Pr and X(aaq).

Van Hove' has shown in the limit of weak inter-
action that the inhomogeneous term in Eq. (All)
serves to specify the initial value of P(¢). We wish
to show that this is an exact result. To see this,
we integrate Eq. (1) over all £ and obtain

Q(t/aao) _ ‘/;: dE fz(t/a) 8@ — ao)

dt -
+£szﬁt 1. (Al4)

SWENSON

Designating the inhomogeneous term by A and
substituting Eq. (A9), we obtain

A= §a— ao)f dl i(27r2h,)_’f dE’

X exp [2i(E" — in)t/R]Fpip:inm-5 +in(@).

From the definition of the resolvent, we obtain the
identities

RE+E”—ivl - RE’—-E'+:‘17 = 2( - iﬂ)RE+E’—inRE‘—E’+M

and
[ 0B Bon iR g = —in(® — i)™,
from which it follows that
[ 4B Ryrniy = Booporid) = ~2mi.

Taking a diagonal part and recalling the definition
of F(a),

f dE FE+E’—in,E’—E’+in(a) = -27"1.;
allows us to write A as
A= 8a — a)wh)™ f B’ exp [24(E' — ini/h],

which reduces to
A= 8 — ag) ().
Thus, Eq. (A14) becomes

dP(t/aae) _ .,
+f_m dEftdt'[n-], (A15)

and it is clear that the inhomogeneous term does not
contribute to the time development of P().
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Let the potential of a one-dimensional scalar particle be V(z) =

Vi X% 8z — ;)

— o < g < o, where V; < 0, and where the sequence (z;) is random, with a Poisson distribu-
tion. This paper investigates analytically the number N of electron levels per atom below energy
E = —1%*/2m, when 0 < n/ky K 1 and 0 < x/xy < 2, where n is the expected density of atoms and
kg = —mVo/h2 The region x/ky = 1, with n/k small, is of considerable interest, and some previous
numerical computations have been inaccurate in this region. Explicit bounds on N~! may be written
down which give the asymptotic behavior of N, as xo/n — «,for0 < «/xe < land1l < «x/kg < (2 — 9),

3> 0.

1. INTRODUCTION AND SUMMARY

E are concerned with the distribution of

energy levels of a one-dimensional electron
(scalar particle) moving in a one-dimensional random
array of atoms. The atoms, all of one kind, have
(randomly) fixed positions, and the electron atom
potentials are assumed to be & functions. The
Schrodinger equation for an electron of mass m
and energy F is then

“omaa T Vo2 0@ — )@ = By, (.1
where V. < 0 is the strength of each electron-atom
interaction and the sequence (x;) of positions of
the atoms is random, with a Poisson distribution.

It was shown by Frisch and Lloyd' that the
random variables z; = ¢/(z; — 0)/¥(x;), —» <
j < =, constitute an ergodic stationary Markov
process. The stationary density T(z) of the (z;)
was shown to satisfy the functional equation

@ —ore =¥ - [ 1@ a],

with

(1.2)

T¢) > 0; f_m TQd:=1, (13

where, using the notation of Lax and Phillips,” n is
the expected density of atoms, N is the number of
electron levels per atom below energy E and

ko = —mVo/h; E = —K&/2m. (1.4)
The quantity of interest is N. Numerical calcula-

tions, based on the Monte Carlo method, were made

1 H. L. Frisch and 8. P. Lloyd, Phys. Rev. 120, 1175 (1960).
2 M. Lax and J. C. Phillips, Phys. Rev. 110, 41 (1958).

by Lax and Phillips.” On the other hand, Frisch
and Lloyd' obtained their numerical results by
integrating the (complex) second-order linear differ-
ential equation satisfied by the Fourier transform of
T(z). Their results were least accurate when ¢ < 1
and v & 1, where

(1.5)

This is a region of considerable interest and is one
we consider here.

We study directly the first-order differential
difference equation satisfied by

0 < e=n/k;

VvV = K/KO-

@ =N [, (16)

when 0 < e 1and 0 < v < 2, » # 1. We show
that

N7 =13—-010—-»""1+00];

0<rv <1, 1.7
and
4 _[B=06-1n"F
= 1 4+ 0(9];
Al 6= D7 (1 + 0(9]
1<y <(@-29, s> 0, (1.8)

where explicit bounds may be written down for
the terms of O(e). For Eq. (1.7}, these bounds may
be obtained from Egs. (2.21) to (2.23), (2.25),
(2.26), and (2.28), and for Eq. (1.8) from Eqgs.
(3.12), (3.14) to (3.16), (3.18), (3.22) to (3.25),
(3.27), (3.28), and (3.30). The leading terms in
Egs. (1.7) and (1.8) are precisely those given by
Lax and Phillips® as a modification of the formulas
given by Schmidt,’ who considered » ~ 1 and

3 H. Schmidt, Phys. Rev. 105, 425 (1957).
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instead of ¢/v had just e (allowing for a misprint).
However, Schmidt’s derivation was not rigorous, in
that no bounds on the error terms were given.

Actually, our results are somewhat stronger. Thus,
for 0 < » < 1, we show that

I:N L9 w2 + A<2 + :)/J

K3 A+ 92+
Sbm[ @-» ]Sf

(1.9)

where ¥(—2) and A4 are given explicitly, Egs. (2.13)
and (2.15). Moreover, we indicate how to obtain an
explicit expression for N7}, correct to O(¢’), when
0<v<1.

2, THE CASE 0 < » < 1
From Eqgs. (1.2), (1.3), (1.5), and (1.6),

@ = A)f@) = el — flz+2) + f@)], 2.1
f(—e)=0; f(+e)=N" @20 (22
We first consider x > ». Then,

0<fa) Ce/x® =3); 2> (2.3)

Integration of Eq. (2.3) gives
r+v

X 14

O<[N‘—f()]<—l< > > (24)

Also, From Eq. (2.3) we may obtain
Uz +2) — ()]

e |E+2-n@E+9]|,
Sbm[@+2+wu—»}’x>”

Substitution of this inequality into Eq. (2.1) leads,
upon integration, to

v - 2 g m (2 - ¢

(2.5)

A. MORRISON

upper and lower bounds on [N™' — f(z)], for > ».
From Eqs. (2.1) and (2.2) we may obtain

- {57 2t

X (Z——“_L:)/ dy] N — 1)} S x> 27

Also
y — /2y z f_(?/ + 2l
o = | {52) LR

y + y e/2v _ ) )
X (V“—__ y) dy 1] ; lz] <, 2.8)
and
_ T -y /2y ~v IQ_/ + 2l
fla) = [E<x + v) . W=
y+ V>‘”" _ } . _ ‘
X (y —_ dy — 1] ; < - (2.9
Now, Eq. (2.3) also holds for # < —». Thus,
0 < f(x) < ln <x T ”) sz < = (2.10)

Moreover, Eq. (2.5) holds for z < —(» 4+ 2), and
substitution of this inequality into Eq. (2.1) leads,
upon integration, to

w2 fEm(E5Y) - &

y+z~ww+w] dy }.
Xf‘ [w+2+ww—w(f—ﬂ ;
< —@+ 2. (2.11)

Let us now consider the case 0 < v < 1. Combi-
nation of Egs. (2.7) to (2.9) gives

T — v 2v N = [2 + fx) + ¥(z) + Flz)
y+2—u)(y+u)] dy } L\
Xf ln[(er?-l-v)(y—V) W =) + @& - A>(2+Z> ] o 0<r<ls
>v. (2.6 -+ <z<@P-2, (212
Iteration of the above procedures leads to successive where
_afx =W\ g 2—v—w‘/2"<u—w)‘/2”
V(@) = €<x+v) fm,) (2+v—w> v+ w
{ l: y + 92— )e/zijV + y)s/Zv . dy } dw (‘) 13)
v+2+v v—y/ =2 —-w =]’ -
s x €/2v Z -y —w e/2u<I _ w)e/2v{ w <y + 2 _ v)e/2v<y + y)e/?v
F(x)_6<x > /(2+,)<2+v——w> v+ w .f_yy+2+v vy
N — je+ 2] (2 +u>*/2” ] dy } dw
U;m F-n =) Elu-plle—w—a @MW
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and
_ (2~») 2 — y — w>e/2v<w _ V)e/?v
4= E./; (2 +v—-w w+ v
dw
o, (2—v) 2 _y — w>s/2v<w _ V)e/?u
B=- ./.y (2 +y—w w4+ v
“INT = fly + 2)] (y + v)‘/“ ]
e e e
dw
X @ =w =7 (2.16)
But, from Eq. (2.4),
0 < [N7' — f(@)] < (¢/2) In (1 + »);
x> 2+ 0. (2.17)
Hence, from Egs. (2.13) through (2.17),
0<B<L(¢/2)In(1+»[A—n’"— 4], (2.18)
and
0< Fl@) < (e/2v) In (1 + »)¥(x). (2.19)

Also, it is seen from Eq. (2.13) that

e/2v
. - es2vf X — W A ¢
0 < ¥ < [1 1—-v (———x T y) ] (2.20)
Hence, from Egs. (2.10), (2.12), and (2.18) to (2.20),

i x_vc/Zz'
OS[N —2—\I/(x)+/1<x+y> :|

€ d+n@—1m»]|. .
S2V1n|:—————-—~(x+y) ], 0<rv<1;

-+ << —2. 221

We remark that if we let + = — (v + 2) in Eqgs.
(2.11) and (2.12), from opposite directions of course,
then from Eqs. (2.4), (2.6), (2.10), and (2.13) to
(2.16) we can obtain an explicit expression for N
which is correct to O(¢®), rather than to O(e) as in
Eq. (2.21).

We now set * = —2 (for convenience) in Eq.
(2.21) and examine ¥(—2) and A. From Eq. (2.15)
it may be shown that

0< [A(-}—“-_L—)m - 1] <2l + 9™ — 1].
(2.22)

Also, from Eq. (2.13),
€/2»
0< [W(~2) — 1J] < [(; + :) - 1]

X [(2 - 1’)6/2” _ (1 _ e/2v:|
24 v ?) !

(2.23)

1025
where
I _ <2 + V>(/2v fv (2 —_y - w>e/2v
T2 -, o \ 2+ v —w
y — w €/2v dw
X <v i w) C-w - @M
and
J . '[0 I’l _ <y+2 _v)e/27}<y+y)e/2v dy
b y+2+v y—y o — )
_ 2 —_ /2y <2 - V)c/2v }
‘{[1"<z+v) }“L oty I 22D
It remains to estimate /. It may be shown that
"0 -L) <1<~ Ly
M<L<BE+9""M, (226
where
Y fl |:1 _ v :If/h(l _ )(5/27—1) d
~ 2 - v v
€ € 14 -
_F[—E71’1+5’(2—v):|. (2.27)
But it may be shown that
2 — W\
1
2[1+<2—V> ]SM
2 e/Zv[ (2 _ 21’)(/"]
1 . ‘
= 2(2 - V) L+ 2 —vw (2.28)
Hence, combining the various results,
N ~E2A43 =0 =7 ~ (1 =9
=13 -1 —-»N"P, 0O<r<l), (2.29)

where the error is O(e) and explicit bounds on it
may be written down.

3. THECASE 1 < » < 2

We here consider the case 1 < » < (2 — ),
8 > 0. We also assume that ¢/2v < 1. For |z| < »,
we may write Eq. (2.8) in the form

1+ f@) — o+ 2] = e(,, — x)s/h

v+ x
"y + 2 — {0+ 2] (v + ¥\
X f—v (Vz — y2> (V _ y) dy. (31)

But, from Eq. (2.3),
0<[fo +2) — fly + 2)]

N y+249 ]
S2uln[(1+u)(y+2—v> ;

v —2)y <y

(3.2
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Hence, [f(v + 2) — fly + 2)]/(» — ¥) remains

finite as y — » — 0. Thus, for ¢/2v < 1,

(v - w) f [{o +2) — fy + 2)]
x

v TS
x () s

where

«= ./l, o — ) v—1
From Egs. (2.7), (2.9), and (3.3),
N7 = {24 f@) + [N = {6+ 2]

x| <,

+aP@) - Q@)}; —(Ed—» <z < -y,
where
P) = (x -+ v) (Z: (v + w) -
(g-—f—-:::ﬁ) 2—w)-u]’
and

x [y
x [ Lt 2=t

v + y\'* dw
X (y*—_ :1/) dy} ‘[(2 — w)z _ y—z] .
Also, from Egs. (3.3) and (3.4),
al = o) = [ =D+ B -],

where
a=efv (y_2+y>e/2v
(2-») 2 + vV — y

€/2»
v—y dy
X<u+y> -y’

_ " [fe+2) —fy+ 2]
B = ef(- 2) (1’2“21/2)

/2y
x<v+.1/> &,
vy

[fe + 2) — f(y + 2)] (v + y)’ ay.

3.3

(3.4)

(3.5)

3.6

3.7)

3.8)

(3.9

(3.10)

J. A. MORRISON

and

_ 2‘/“’ (w — 2+ >s/2v< — w>6/2v
LA (2—v) 2+V_w +w

{f Lv+2)—f<y+2)]

o~ )

v_i_y)/ }___dw___-_ 511

x (Y ayp e @)

We now set z = —2 in Eq. (3.5) and obtain,
using Eqgs. (2.4) and (2.10),

0 < [N = 2~ aP(=2) + Q(—2)]
e [a+ne+ u)]_
<z [ 2= (3.12)

We begin by estimating Q(—2). From Eq. (3.2)
CR’)

€ 2+
Sy [(1+u><2—u)

Hence, for ¢/2v < 1, it may be shown from Eq.
(3.7) that

] 0<y<r. (313

0 < Q(—-2)
¢ 2+ :l
<20 " [(1 ) (3.14)
Also, from Eq. (3.11),
e — D% @ + »)
0=7=y (1 - 6/211)1 [(1 + 92 - )]‘ (3.15)

Further, it may be shown from Eq. (3.6) that
G/2)7"(1 - V) < P(=2) £ (1 - V);
(1 =W))<V LI[Q+n/2]"0—W),

where

o]
and hence,
[1 + (zu 22 2)*“:, <w
AR

It remains to estimate « from Eq. (3.8). Bounds
on y are given by Eq. (3.15). Now, for ¢/2» < 1,

(6~ D + 6
? €/2»
= ‘/; . f’(y + 2)(1;—_‘1_-%) dy, (319)

(3.16)

_€ . L.Q:_Jl] -
5 ,1,1—|—2V, " , 3.17)

(3.18)
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as may be shown from Eq. (3.10) by integrating by
parts, and using the relation [f(»v + 2) — f(»)] =
which follows from Eq. (2.1). But, from Eq. (2.1)
and Eq. (2.7), again by integration by parts, it
follows that

o =g G

x[b+£fw+m@f
(3.20)

From Eq. (2.3) it may be shown that, for x > »
and ¢/2v < 1,

0< f 'y + 2)<y + V>(m dy

s-§<u+-n”“[( 5)

v /2y
> dy | ;
14

T > .

4 In (2 Tt )] = . 321
Thus, from Eqgs. (3.19) to (3.21),
ES [ — DY + 8] < &1+ x(o], (3.22)

where

. _ (v+1) (v +2) y — 2 + y)e/?v
E—(,ﬂ”{"'f)—f[‘/; + (v+1)]<2+V_y

€/2v
y—v dy
It may be shown that
e(20) " ’
0SS T 1= (3.24)

Also,

/oy 2 1 e/2v
e -y < (2N <a -
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(1—-2 <y {@+ /20 -2, (3.25)
where
€ 1
z = F[—5,1,1+2 ,(2v_ l):l (3.26)
and hence
21/ _ 2 e/v ( 21/ >€/2I
1 b < L -
2[1+(2v—1> :|S~S2 2y — 1
2 — 2\’
X [1 + <2V — 1) :I (3.27)

The final quantity to be estimated is o, as given
by Eq. (3.9). Now,

c=(@—1)"01—R), (3.28)
where
R — _f 1 — (1 x)e/Zv
X [1 + (V . 1)'13:[ e/2v} (e/2p~1) d.’l‘ (329)
It may be shown that
0<R < {0+ De/2)° + 11— @7} (3.30)
Thus,
1= ={1-0-DD"1+0} (3.3
Combining the results of this section, we obtain
- 14— 1)""]2}
v o o
T ooyt T
[3 _ (V — l)e/v]z
= 14 0(@];
s g T 0

1<v<(2— 9, 5> 0, (3.32)

and explicit bounds on the error term may be
written down.
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An ezact solution is given for the partial differential equation

Yo = [1 4 eyr]ayzz:

NUMBER 3 SEPTEMBER-OCTOBER 1962

which describes the standing vibrations of a finite, continuous, and nonlinear string. The nonlinearity
studied, {1 + ey]*, was motivated by the work of Fermi, Pasta, and Ulam (1955), where they reported
on numerical studies of the “equipartition of energy’’ in nonlinear systems. To obtain the solution,
the above equation is transformed into a linear equation by inverting the roles of the dependent
(u = yz and v = y,) and independent (z and ¢) variables. Riemann’s method of integration is applied
to the problem and the solutions for ¢ and z are written as integrals. The nature of the “inverse
Riemann plane,” how it is related to the initial conditions, and how one unfolds it, are discussed
in detail. A general procedure is described for reinverting the solution, so that y can be written as a
function of z and ¢. 1t is illustrated to order e for the above problem. It is demonsirated that y.. becomes
singular, that is, y, develops a discontinuity afier an elapsed time of order (1/¢). The methods described
are applicable to any nonlinear string where the coefficient of y.. is a function of ¥, only. The effect of
higher spatial derivatives on the formation of the singularity is discussed.

1. INTRODUCTION AND SUMMARY

HE phenomena associated with wave propaga-
tion and standing oscillations in nonlinear media
(or fields) have been of interest to physicists for a
long time.’ The equations of hydrodynamics® and

\f\ 2 /I‘i
200 - \ - / 1

’
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PERIODS OF OSCILLATION

Fi1e. 1. The energy (arbitrary units) in the low modes of
the nonlinear string:

0% /07 = (Wi — 2y + yic) {1 + alyinn — yia)}.
Reproduced from Fermi, Pasta, and Ulam,* Fig. 1 (N = 32,
a =1/4,anda = 1).

* This work was done at the Princeton University Plasma,
Physics Laboratory under the auspices of the U. S. Atomic
Energy Commission. The results were reported at the New
York meeting of the American Physical Society, January,
1962. See Bull. Am. Phys. Soc. 7, 31 (1962).

L T. Taniuti, Progr. Theoret. Phys., Suppl. No. 9, 69 (1958).

2 R. Courant and K. O. Friedrichs, Supersonic Flow and
Shock Waves (Interscience Publishers, Inc., New York, 1948).

nonlinear electrodynamics (for example, the Born-
Infeld theory®) are pertinent illustrations.

Fermi, Pasta, and Ulam* (FPU) published a
report in 1955, wherein they studied, numerically,
the phenomena associated with the vibration of a
nonlinear, loaded (or beaded), and finite string. They
used the nonlinear string as a model of a dynamical
system which they expected would exhibit certain
ergodic properties. In particular, they hoped to
establish computationally the rate of approach to
“equipartition of energy” among the various
modes—that is, the normal modes or degrees of
freedom of the equivalent linear system. They
employed three different types of nonlinear pertur-
bations and started from a variety of initial con-
ditions. However, the same ‘unexpected” phe-
nomenon occurred in all calculations, namely, that
the system of particles showed ‘... very little, if
any, tendency toward equipartition of energy
among all degrees of freedom ... .”

This is exhibited in Fig. 1, which is taken from
FPU (their Fig. 1), where the energy in a given
mode is plotted as a function of time. If initially
the energy resided in a few of the low modes (in
Fig. 1 only the first mode is initially excited), then
during the subsequent vibrations the energy “flowed”

3 M. Born and L. Infeld, Proc. Roy. Soc. {(London) A 144,
425 (1934); A 147, 522 (1934); A 150, 141 (1935).

4+ E. Fermi, J. R. Pasta, and 8. Ulam, “Studies of Non-
linear Problems I,”” Los Alamos Report No. 1940, May, 1955
(unpublished). The problem studied in this report is described
briefly in A Collection of Mathematical Problems by 8. Ulam
(Interscience Publishers, Ine., New York, 1960), Chap. 7,
paragraph 8.

1028



VIBRATIONS OF A NONLINEAR CONTINUOUS MODEL STRING

to the neighboring higher modes due to the non-
linear coupling. After a large number of oscillation
periods of the equivalent linear string (the abscissa
of Fig. 1), the energy-flow direction was reversed
such that the original initial state was almost
reached again.

In formulating their problem, they wished to
consider a ‘“‘one-dimensional continuum.”® How-
ever, for the purposes of numerical computation
they employed the model of a loaded string, which
is equivalent to replacing the spatial partial deriva-
tives by spatial differences. Two nonlinear dif-
ferential-difference equations which FPU studied
are given in Eq. (1.1), the “quadratic” nonlinearity,
and Eq. (1.2), the “cubic’” nonlinearity:

023/;/672 = Wir1 — 2y: + yicy)
a[(y,-ﬂ - yi)z - (yi - yi—1)2J (1-1)
or
622/.-/072 = (Z/i+1 - 2y, + y;-l)
X [I 4 alyivn — y-D1;
and
322/1'/372 = (ym — 2y, + yi—l)
+ B[(?/in - yi)3 - {y: — yi—l)S] (1.2)
or
62%/37'2 = (ym — 2y, + yi—-l){l —+ (%B)
X [Win — yi)2 + Wier — yi—l)z
+ (: — ?/1‘—1)2]}-

y. represents the displacement of the sth mass point.
In some of their calculations they considered as
many as N = 64 equimass particles. These equa-
tions are normalized in the sense that the ratio
of the tension to the particle mass has been set
equal to unity. The spacing between particles has
been absorbed into the normalized time 7.

Kruskal first drew the author’s attention to this
problem at a lecture (January, 1961), where he
presented a procedure which readily yields an
approximate solution to the problem of the vibra-
tions of the continuous (see Sec. 2) nonlinear string.’
After thirteen equivalent linear oscillations, his

5 E. Fermi, J. R. Pasta, and S. Ulam, reference 4, p. 3,
“We imagine a one-dimensional continuum ...

6 This procedure will be described in a forthcommg
paper. The properties of the solution which are derlved will
be studied, and the variation of the energy in the ‘“normal”
modes will be presented.
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solution of (1.1) exhibited a discontinuity in the
first derivative of the displacement. The energy in
the first three modes was obtained by spatially
Fourier analyzing the amplitude of vibration. These
energies, when graphed, are in good agreement with
the FPU plots up until the breakdown (discon-
tinuity) time.

2. PROBLEM STATEMENT

In this paper we will determine the exact solution
for the vibrations of a continuous nonlinear string.
The continuum equations which are equivalent to
(1.1) and (1.2) are obtained by taking the limit
h — 0 (h = particle spacing) and N — = such that:
L = Nh remains finite and (a/N) remains finite and

approaches %e.” Thus,
Werr — ¥ = W — yi)
= 3y — Yim) — My/0%)
and
Wiar = 2ys + yim) = K(8%y/08).

We normalize by introducing

t = 1/N 2.1
x = ¢§/L (2.2)
and obtain the partial differential equations:
O’y/ot = (8%y/92")[1 + e dy/ax], (2.3)
Oy/or = (8°%y/8x")1 + €(ay/90)],  (2.4)
where
= 2o/N and ¢ = 38/N°. (2.5)

e and € are taken as finite in the above limit,
N — . The initial conditions are prescribed over
the range 0 < 2 < 1 as

y(z, 0) = yol)
3y/0t|,.0 = 0.

(2.6)

The procedure which will be described is applicable
to the more general initial condition, where the
temporal derivative at { = 0 is finite.

The boundary conditions in the FPU report and
in the problem considered below are

y0, 1) =y, = 0. 2.7

" The equation which describes the large-amplitude, pure
longitudinal vibrations of a continuous string is given as
pyse = Ts. In general, the tension 7' is a function of y,, and
its speclﬁc form depends upon the stress-strain relationship
of the string material. For a linear stress-strain relation,
T = T¢1 + y.]. The model string, (2.3), employed by FPU
and 'malyzed here, implies that 7' = T[l + y- + }e .2,
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It is the aim of this paper to derive the exact
solution of (2.3) subject to the initial conditions
(2.6) and boundary conditions (2.7). It will be
shown that at values of ¢ of order &2 1/(ear’®) (a is
the maximum amplitude of the initial econdition)
the continuous nonlinear string develops a discon-
tinuity in the first derivative, dy/dz.

The procedure for deriving the exact solution
depends only on the fact that the governing partial
differential equation ecan be written in the form

Oy/ot’ = [F(ay/ax)) (9%y/0x®).  (2.8)

Equation (2.8) is also the Lagrangian representa-
tion for describing longitudinal waves in a non-
linear, hysteresis-free, solid continuum.® Here,
y = y(x, t) is the displacement of an element of the
material from an initial reference state and F*(9y/dx)
is proportional to the derivative of the stress with
respect to the strain [strain = (dy/dz) — 1]. For
ordinary metals, F is an even function of the strain
and vanishes as the strain gets large.

3. TRANSFORMATION TO AN EQUIVALENT
LINEAR REPRESENTATION

A. The Equivalent Linear Partial Differential
Equation

If we define

u=y, o=y (3.1)

then (2.8) can be written as two coupled partial
differential equations of first order:

U, —v, =0 (3.2

v, — F*(uu, = 0. (3.3)

Equation (3.2) is a consistency condition, whereas

(3.3) describes the nonlinear behavior as given in

(2.8). If we multiply (3.2) by F(u) and add and

subtraet the result to (3.3), we obtain the pair of
equations:

v, & Fu, F Fo, — Fu, = 0 (3.4)
or
r, — Flwr, =0 (3.5)
s, + Flws, = 0, (3.6)
where

Tt [ ") dw = 40 + B@).  (3.7)

8 R. Courant and K. O. Friedrichs, reference 2. See
paragraphs 97 and 98.

?* We now employ the subscript notation to designate
partial derivatives. For example, r; = 9r/dt

J. ZABUSKY

The variables r and s are commonly known as the
Riemann invariants, in that r is invariant along the
characteristic dz/dt = —F and s is invariant along
the characteristic dz/dt = +F.

We can express « in terms of (r + s) by adding
the equations of (3.7) and taking the inverse function
of the result,

u = B7'(3[r + s]). (3.8)

We now recognize that an inversion transforma-
tion will linearize exactly the resulting equation. In
this so-called ‘“‘speedgraph’’’® transformation, the
dependent, variables are z and ¢ and are expressed
as functions of the independent variables » and s.
Thus, we write

r. = jt, ro= —jz,

3.9

_jtr sl = jxr;

8, =

where the Jacobian of the transformation from the
(z, t) to the (r, s) plane is given by

J =78 = ST (3.10)
Note that

j=J7" = (3.12)
The resulting equations in the speedgraph plane are

. + Fwit, = 0

[z.t, — z,t]7".

(3.12)
z, — Fwt, = 0.
For example, if
PP = (1 + ew)®, (3.13)
then
L= el + 2170 F @) (319

Thus, adding the equations of (3.14) and taking the
inverse yields

u=—&' + e + 20 + 9VE. (3.15)

Note that » is obtained by differencing the equa-
tions of (3.14)

v = 30 — ). (3.16)
If we substitute (3.15) into (3.13) we can write
F = [8(r + 9], (3.17)
where

8 = el + 2). (3.18)

10 R. von Mises, Mathematical Theory of Compressible Fluid
Flow (Academic Press Inc., New York, 1958).
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In our case, @ = 1 and the resulting expressions
become

L=+ 28901 + ) (3.19)
Flw) = [8(r + 9]'°, where [8 = 3¢/4];  (3.20)
j= —2ns[80 + 9]'°. (3.21)

The symmetrical equations become
z, + [8(r + 81’1, = 0; (3.22)
z, — [B0r + 9%, = 0. (3.23)

If we eliminate z from (3.22) and (3.23), we obtain
the canonical partial differential equation for i,
namely,

Lo + [n/tr + 9]¢ +8) =0, (3.29)
where
n = a2 4+ o]
=1/6 for a = 1. (3.25)

The equation for z (obtained by eliminating ¢ from
the pair) is identical with (3.24) except that n is
replaced by —n.

Equation (3.24) is identically the equation
obtained in the one-dimensional nonlinear hydro-
dynamics of an isentropic medium and was first
derived by Riemann'' in 1860. It is commonly
referred to in the literature as the Fuler-Poisson-
Darboux equation.

Table I summarizes some of the values of «
which yield integral n. A great simplification is
obtained when n is integral, for the solution of (3.24)
and its adjoint differential equation (defined below)
can be expressed as the ratio of polynomials.

In what follows we deal with the x and ¢ equations
separately, since it is easier to visualize the applica-
tion of the boundary conditions.

4. AN INTEGRAL REPRESENTATION FOR
THE EXACT SOLUTION

A. General Considerations

As observed above, the method for obtaining the
characteristic solutions of the z and ¢ equations has

TaBie 1. Values of « corresponding to integral n.

-3

n -2 —1
@ —12/7

0 1 2 3
—~8/6 —4/3 0 —4 —8/3 —12/5

1 Riemann’s Gesammelle Mathematische Werke, 1876, 1.
See Chap. VIII, paragraph 2. First published in Abhandl.
Ges. Wiss. Gottingen, Math.-physik. K1. 8, 43 (1860).
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been given by Riemann. The general concepts
involved in Riemann’s method of integration are
adequately described in several classic textbooks'
on mathematical physics and, therefore, only a
brief outline of it is given below.

If one is given the linear partial differential
equation

L = t., + at, + bt, +ct = 0, (4.1)
then the operator M is defined by
M@G) =G, — (0@), — (b@), + G = 0, (4.2)

and is known as the adjoint of L. G = G(r, s; &, 9) is
commonly called the Riemann function. As described
below, r = £ and s = % are two lines along which G
satisfies specific conditions.

One verifies that

GL(t) — tM(G) = R, + 8., (4.3)
where

R = ¥Gt, — 1G,) + aGt 4.9

S = Gt — 1G,) + bGt. (4.5)

If the functions ¢ and G are such that L{) = 0
and M(G) = 0 in a region bounded by a sufficiently
smooth curve T, and if we apply Green’s theorem
to (4.3), we obtain

0= f drds[R, + 8.] = f R +n.Sldl, (4.6)

where dl represents differential arc length and =,

and n, are components in the » and s directions of

the outward pointing normal, as shown in Fig. 2.
Equation (4.6) can be written as

Pp
f R + n,8] dl

Pa

P P4
+ Rds—-f Sdr=0. (47
P

Pg

Ng=+10

P=(£nn)

P (.}

Fig. 2. Cauchy
problem of the first
kind along an arbi-
trary line.

Pg: (f' sa]
¢ i

12 R. Courant and D. Hilbert, Methoden der Mathematischen
Physik, II (Verlag Julius Springer, Berlin, 1937). Chap. 5,
paragraph 4; A. Sommerfeld, Partial Differential Equations
in Physics (Academic Press Inc., New York, 1949). See
Chap. 3, paragraph 11.
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If we require @, the solution of (4.2), to satisfy the
conditions:

G, — aG@ = 0 ontheliner = ¢; (4.8)
G, — bG = 0 onthelines = y; 4.9
G=1 atthepoint P(r = £,5 = n); (4.10)

then the right side of (4.7) simplifies and we obtain
the classic result

g, m) = UP)
= 3[G(Pp) -1 (Py) + GP4)-HP,)]

Pg
-+ ; n.R + n,S) dl. (4.11)
4
Thus, the value of ¢ at any point P in the region
bounded by P,Pj5, by the horizontal characteristic
through P4, and by the vertical characteristic
through Py can be expressed as an integral. This
integration can be performed provided that ¢ and
the partial derivative ¢, or ¢, are given along P,P5.

B. Application to a Specific Problem

Consider the differential equation (3.24) with r
and s defined by (3.19). We take (2.6) as our initial
conditions and (2.7) as our boundary conditions
in the physical (z, t) plane. The problem is sim-
plified by writing it purely as an initial condition
problem. This is accomplished if we require the
solution to be odd about the origin and periodic
over the spatial interval, Az’ = 2. Thus, the new
initial conditions are written as

o s":“‘[li'tuﬂ]——
— $*7
F—s«(n-4}
w2}
— S-;-G{l‘eav] " r_
4
I
oL ey
L i i .
e a——

] 3/2

2 2 32
r--’—;[l—euyr l'-,—e[l'reuﬂ}

F1g. 3. The {r, 3) plane for a periodic initial condition.
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y(x’7 O) = yO(x/) and yl(x’: 0) = 07
—o <z < o, (4.12)

Let us examine the transformed line in the tnverse
(r, s) plane. Since y,(z', 0) = v = 0 at { = 0, the
initial condition line is the straight line r = s, as
shown in Fig. 3. We call this line the “main
diagonal.” If yo(x’) = a sin #z’, as it was in the
FPU calculations, then along the main diagonal
the mapping is given by

for

p(x’) = slico = o(a’)

= (2/39f"(x"),

im0 =
(4.13)
where

f@) = [1 + ear cos mx]. (4.14)

We have used p and ¢ to designate the values of
r and s at ¢ = 0, that is, along the main diagonal
of the inverse plane. Distance along the string at
t = 0 is indicated by z’.

Let us now emphasize and clarify the distinction
between the coordinate system and the points on
the plane. We have used r and s as a generic designa-
tion for the points along the horizontal and vertical
coordinate axes, respectively. The point r = §,
s = ¢ is an arbitrary point in the (r, s) plane at
which the solution is evaluated. As r and s are
invariant along vertical and horizontal lines,
respectively, then

= (2/39f(xn);  m = (2/39f"(xy).  (4.15)
Hence, the ¢ and x solutions obtained by Riemann
integration can be expressed in terms of ¢ and g or,
equivalently, r, and xz.

Each point in the region 0 < 2z’ < 1 of the
physical plane is mapped uniquely into a point
along the main diagonal of the (r, s) plane. The
solution at P(¢, ) is “influenced” by the initial
conditions along P,P5.

If, at ¢ = 0, one proceeds outside the main
interval, 0 < 2’ < 1, of the physical plane, then r
and s will oscillate to and fro over the region shown
in Fig. 3, because u|,-, was taken as a periodic
function. This suggests a many-sheeted (r, s) plane.
interval, 0 < 2’ < 1, of the physical plane, r and s
will oscillate to and fro over the region shown in
Fig. 3, because u was taken as a periodic function,
(4.14). This suggests a many-sheeted (r, s) plane.
Procedures for continuing the solutions from one
sheet to another by ‘“unfolding” the (r, s) plane
have been developed by Ludford™™ and will be
applied to this problem in Sec. 5.

"G, 8. 8. Ludford, Proc. Cambridge Phil. Soc. 48, 499

(1952).
14 G. S. 8. Ludford, J. Rat. Mech. 3, 77 (1954).
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For any point in the shaded region of Fig. 3 we
can immediately write the solution for 2z and ¢ by
applying Riemann’s method to this Cauchy problem
of the first kind. Along P,Pg, ¢t = 0 and dt = 0.
Thus,

rz’t=0 = Py = (xxl))hl = Sz!t=0 = Oy = (xr,l)_l' (4'16)
Applying (4.16) to (3.9) and (3.21), we obtain the
result that along PPy

—1l, = {p.[Blp + DI} (4.17)

Substituting (4.16) and (4.17) into (4.11) gives the
solution for ¢ as
Pp
feon = -0 [ GLa, @)
P4
where we have taken n, = —n, = (3)"% @ is the
Riemann function associated with the ¢ equation,
(3.24). This integral can be expressed as the integral

over the dummy variable 2’ by substituting into
(4.18) the results

dl = —\V2dp = — V2 (o, dz’)
= —2 (o, da’)

or

dl = V2 ar* V(') sin m’ do’,  (4.19)
and

d /3
ool = b = 37w, (4.20)

We obtain

e, =3 [ 6@ A, @20

where z, = x(P,) and 25 = z(Pp).
Sinece z, = =z, along P,Ps the z solution is
expressed by the general equation (4.11) as

2, 1) = HaPT(PL) + 2(P5) T(P5)]
+3 [ - e e, (22)

where T is the Riemann function associated with
the x equation. For the problem being considered
we can write

G=G% and T =G,

since the ¢t and z equations differ only by the sign
of n. [See Egs. (3.24) and (3.25).] Courant and
Friedrichs'® give G as

(4.23)

15 R. Courant and K. O. Friedrichs, reference 2, para-
graph 82, Eq. (82.18).
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G = [l + o)/ + DI"Pran-n(9),

where P, is the Legendre function of order » [which
has the property P,(q) = P_,_,(¢)] and

g=14+[200 — 8 — I/[E+ N0+ 9)]. (4.25

The terms (p + ¢) and (¢ + %) are both of order
(1/€), whereas (p — &) and (¢ — n) are both of
order (). Att = 0, p = o and

g =1 =[(p — 5 — /120 + 0]
= 0(").

(4.24)

(4.26)

From (4.25) one concludes that ¢ and any function
of ¢ are even periodic functions of  with period 2.
This follows more directly from (4.13), since both
p and ¢ were assumed to be even periodic fune-
tions of z’.

The solutions for ¢ and z are written in more
explicit form by using the above definitions:

i, 1) = HC)™ f PP ) dy (427)

z(E, n) = %Cx{fo_l/4(xA) + xBf_IM(-’L'B)}

- C, fzs ' (') dz’; (4.28)
where C, and C, are functions of £ and » and are
given by
C, = +[Be/HE+ 0] = o) (4.29)
C. = +a(Bre/D*E — 7)

X [(Be/DE + ]™° = o).  (4.30)

II(z’) is an even periodic function of 2’ with period 2,
II(z") = (dP,,s/dq)(sin ma’)f **(x"). (4.31)

To illustrate the essence of these equations, we
recover the solution of the linear equation by
setting ¢ = 0. Therefore, F(y,) = 1, ¢ = 1, and
P,(1) = +1. Equations (4.27) and (4.28) become

t=3i(xp —2y) and z = iz + z.), (4.32)

because the integral contribution in the z equation,
(4.28), is of O(¢®) and C, — 1. We rewrite this set as

25 = (x + 0).
We form the difference 2v = (¢ — 7), and obtain
(2/391f*(x5) — F7(xa)].
Neglecting terms of 0(e) yields

x4 = (x — ¢ and (4.33)

=2y, = (4.34)

Yy, = *am(cos Tz — coswr,]
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or

(4.35)

which is the solution for the linear wave equation
Y+ — Y=o = 0, with the initial conditions: y(z’, 0) =
a sin 72’ and y,(z/, 0) = 0; and with the boundary
conditions: y(0, {) = y(1, ) = 0. An analogous pro-
cedure is used for obtaining the solution of the
nonlinear problem. This is given below.

Y, = —aw sin 7z sin v,

5. THE UNFOLDED INVERSE RIEMANN PLANE

A. General Considerations

In the previous section we have shown that the
periodic initial conditions cause the entire line
—o <z’ < » att = 0 to be projected onto the
main diagonal of Fig, 3 between the points [0] and
[1]. The line [0] — [1] is many valued, and the region
formed by the intersecting characteristics through

NORMAN 1J.
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these points is many sheeted. Each sheet corresponds
to an interval of length 1 in the physical plane.
As we proceed from 2’ = 0 to 2’ = 1 in the physical
plane, we move in the negative r and s directions
from [0] to [1]. If we continue from 2’ = 1 to 2’ = 2
in the physical plane, the transformed point moves
from [1] to [0] in the (7, s) plane, ete. The direction
of movement in the (r, s) plane is evident from (4.19).

A unidirectional movement in the physical plane
is transformed into a to-and-fro movement in the
(r, s) plane. The latter is rendered unidirectional by
“unfolding” the main diagonal. Thus, proceeding
from 2’ = 0 to positive values of z’ is equivalent
to proceeding from [0] down to the left. Passing
through z’ = 1 toward 2z’ = 2 corresponds to
passing through [1] and into the neighboring square
of the unfolded (r, s) plane, where the positive
directions of v and s are reversed. (See Fig. 4.) The
reversal in direction of the coordinate system is

F1¢. 4. The unfolded (r, s)
plane. (Circled numbers cor-
respond to barred numbers
in the text.)
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represented by the right angles in the lower right-
hand corner of each square. Thus, the single square
with sides of length A is unfolded into a sequence
of squares along a line of slope + 1, these squares
having, alternately, the same properties.

The region above and to the left'® of [—1] — [0]
is designated as a 3 region, whereas that above and
to the left of [0] — [1] is a 2 region. In the figures
the barred quantities are designated by circled
quantities. The Jacobian j given by (3.21) reduces to

j = —2[ax’ sin =2’ *(z"))? (5.1)

along the main diagonal, and thus vanishes at the

16 This is the direction of increasing ¢{. This follows from
(4.19), where one sees that ¢, is of the same sign as p.», and,
therefore, negative in the region 0 < z' < 1. If Af = {,dris
to be > 0, then dr must be < 0.
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points ... [—1], [0], [1], ... . This vanishing is
manifest in the linear problem as well, and doesn’t
introduce any difficulty.

In the unfolded plane we require the continuity
of r along a vertical characteristic and the con-
tinuity of s along a horizontal characteristic. Thus,
the remainder of the unfolded (r, s) plane is sub-
divided into squares as shown in Fig. 4. This
introduces two additional regions: In the direction
of “increasing z'” a 1 region lies between a 2 and a 3
region, whereas a 4 region lies between a 3 and a 2
region.

The solution at P, (in region 2) or P} (in region 3)
is readily obtained from (4.27) and (4.28) by giving
the appropriate initial conditions along PsP,, or
P 5P 43, respectively. The points P, (in region 4)
or P} (in region 1) are outside the sequence of

Fia. 5. Evolution of the
solution in the unfolded
(r, s) plane. (Circled num-
bers correspond to
barred numbers in the
text.)
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squares along the main diagonal. The solution at
P, can be obtained in two steps: (1) We construct
the solution along [0]b from the initial conditions
along [0]Ps, and along [Ola, from the initial con-
ditions along [0]P4,; (2) we treat the problem in
region 4 as a Cauchy problem of the second kind
using the solutions along two different intersecting
characteristics, namely, [0]b and [0]a,. It can be
shown that the solution at P, obtained in this way
is identical to that obtained by treating the problem
as a Cauchy problem of the first kind over P 4,P5.

B. The ¢ Solution, in the Unfolded-Inverse Plane,
Expressed as an Integral

Let us consider the evolution of the ¢ solution
along a line of slope = —1 in the unfolded (r, s)
plane, as shown in Fig. 5. ¢{(P;) in a 2 region is
influenced by initial conditions along P,Pz. At
P, ., the corresponding point in the next 2 region,
the solution {(P; ,) is influenced by initial conditions

along P, ,Pg .. Note that
(5.2)

where the 4 in (5.2) corresponds to two full
spatial periods. In general, the solution at P, ,, a
point in a 2 region having the same £ and 7 as P,
is given by

(P =4 [ 65w a

n

%{f:a '--d:v’-l-jjh <o dr’
+ f dx’}, (5.3)

HP,) + mK(P,),

Thixs = Thrk + 4,

or
WPy,m) = (5.4)

where

+2
KP) = [ 617@) ar. (5.5)
-2
This follows because the integrand of (5.3) is
periodic in 2’ with a period of 2.

t(¢, 1) possesses certain symmetry properties in
the (r, s) plane because the integrand in (5.3) is
even in z’ about the points ... [—1], [0], [1], ...

(see Fig. 4). Thus

HPy) = HP1) or &(E, n) = &5(n, 8);
HPy) = tPy) or &E ) = f(n, §); (5.7)
1Py = HPY) or k(g m) = t(n, §). (5.8)
The barred subscripts refer to the type of region.

(5.6)
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C. The x Solution, in the Unfolded-Inverse Plane,
Expressed as an Integral

Consider the evolution of the z solution along a
line of slope = —1 in the unfolded plane. z(P;) is
given directly by (4.28). The value of z at P, , is
given by

x(Py,m) = 3Ci[(xs + 2m)f_1/4(-773)
+ (x4 — 2m)f—]/4(x,4)]

(z g+2m)
— sz ' I(z’) dx’,
(

z4—2m)

(5.9

where C,, C,, and I{z’) are given in (4.29), (4.30),
and (4.31). The integral in (5.9) is decomposed into

three parts:
EFY zp (zg+2m)
[ B
(z 4—2m) EN zp

(zp+2m)
~/;IA—2m) B
This allows us to write (5.9) as

2(Pr,m) = 2(Py) + mCi[f " (@s) — {7 (2a)]

— C2{f ’ o' (z") da’
(£ 4—2m)
(zg+2m)
+ f ' 11(x") dx’}- (5.10)

The z solution, (5.10), differs fundamentally from
the ¢ solution, not only in the presence of the non-
integrated term, but also in the presence of the
monotonic function in the integrand of the integrated
term. If we introduce

—_ 2 .
0 = [ @YUz +z)d  (65.1)

and

—_— . 2 .
0 = [ @) + o), (519
0
then (5.10) takes the form
z(Py,m) = a(P) + mCi[f V4 (=a) — " (@s)]
+ m()'g{ﬁf;) _ 'ﬁg)}’

since MY = T = 0.
Similar considerations apply when P, lies in the
lower part of a 4 or a 1 region.

(5.13)

D. Breakdown of the ¢ Solution

It is a well-known fact that the solutions of the
equations of a one-dimensional, polytropic, hydro-
dynamic fluid always exhibit a breakdown (the
development of a discontinuity or singularity) if
the initial conditions are arbitrary periodic func-
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tions. We will show that the nonlinear string also
develops a singularity in the second derivative after
a “large” number of oscillations.'”

Let us examine the relationship of ¢, and r, (or
equivalently £, and s,)."® Using Eq. (3.9) for ¢, and
the definition of j in (3.21), we obtain

t. = {2r[80 + 91} (5.14)

Similarly,
t, = —{2s[80r + 1} (5.15)

Thus, if ¢, (or t,) vanishes at some point in the (7, )
plane, this indicates that r, (or s.;) has become
infinite, since (r + s) remains finite and nonzero in
each square of the unfolded plane. However,

;’ = +o, + (1 + ew)'u,

T

= £y, + 1 + ) Y.  (5.16)

Hence, a point along the string where r,, or s, is tnfinile
corresponds to an infinite second dertvative, or a
discontinuity in the first derivative. At the correspond-
ing point in the unfolded (r, s) plane, j has become
infinite and J = 0, indicating that the transforma-
tion has broken down.

Let us investigate {; for a zero, using the integral
representation given by (5.4).

2t = sz G (") da’ + [V (@s) Gl ) [da s/ dE)

4+ m | Gf V) d’, (5.17)

where
% = S:% . = —{a7r2[sin 71-1-3](1/2(1;3)]}—1’ (5.18)

where (5.18) is evaluated on the initial condition
line » = s. The Riemann function and its derivatives
on this line are

G = @) {Be/NE + N7 P-se(@)} = 0(),
Gy = —(/9f"(@NBe/HE + ]
X {[Be/H)(E + ] 7P-sse

— (8/¢) OP_56/08} = 0().  (5.19)

17 The oscillations referred to here and in the following
are those of the equivalent linear string, namely, the one
obtained by setting ¢ = 0. For the normalization used, the
period of one linear oscillation is 2. .

18 The methods used in Sec. 5D for studying the forma-
tion of discontinuities have been used in investigations in
hydrodynamics. For example, see G. 8. 8. Ludford, Proc.
Cambridge Phil. Soc. 48, 499 (1952).
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Substituting (5.18) into (5.17) yields
2 = [ G/ @) ar’

— Glar’(sin 72p)f(xs)] ™"

+em [ 22 @/ @) da’. (5.20)

If x4 and z 5 are kept fixed and time (or m) allowed
to increase, the last term, which is of ©(em), increases
until it is of the same order as the second term and
thereby cancels it, yielding a zero for ;. For small ¢,

G: = —|0(e)|, and the zero of ¢; will first occur for
a value of zp which makes sin mzz < 0, that is,
Trp = —'%

We now estimate the minimum time required for
the string to reach breakdown. We assume ¢ to be
small and expand both G and G, to terms of 0(e).
If (em) is assumed to be ©(¢’) and we neglect all
terms of 0(¢) in (5.20), we obtain the relation

b= 0= +41/(ar’) — (me/8)4 + 0(e),
or

m = 2/ear’. (5.21)

We recall that m is the number of equivalent funda-
mental linear periods.”” If one performs the same
calculation for ¢, = 0, one finds z, = +%, and the
same time-to-breakdown as given in (5.21).

In the FPU calculations illustrated in Fig. 1, the
parameters were: N = 32, & = %, and ¢ = 1.0.
Thus, € = 1/64 (Eq. 2.5) and m = 12.95. In Fig. 1,
this corresponds, approximately, to the time when
the energy in the second mode reaches its first
maximum.

If the string is initially displaced in an nth mode,

y(x’, 0) = a,sin mna’,

such that the energy is the same as in a first-mode
displacement, then the tZme-to-breakdown is reduced
by a factor of n. This results from two considerations.
First, the energy invariance requires that a, = a,/n,
where a, is the first-mode amplitude. Second, the
smallness parameter in the continuum limit becomes
e, = ne, = 2an/N. This follows because an nth
mode initial displacement over a discrete string of
N particles looks like a first mode over a string of
N/n particles. Thus, the number of oscillatzons-to-
breakdown is an invariant quantity, since it is pro-
portional to 1/(e.a.,) = 1/(eay). Because an nth
mode makes one oscillation in (1/n) the time re-
quired for a fundamental oscillation, then the time-
to-breakdown is (1/n) times as much.



1038

6. ANALYTIC REINVERSION OF THE SOLUTION

One can study the properties of the solution
most conveniently when it is written in direct form,
that is, in the physical plane where z and ¢ are the
independent variables. The procedure for accom-
plishing the reinversion is given below and is
analogous to that used for reinverting the linear
solution, as described at the end of Sec. 4. For the
purposes of the example, we include only terms to
©(e). A higher order analysis proceeds along similar
lines.

As shown in Fig. 5, we examine the solution
along a line of slope = —1 and in a 2 region of
the (r, s) plane. The ¢ solution, (4.27), is written as

HE, m) = (201)_1{(1‘3 — Z4)
— (ea/4)[sin 7xp — sin mz,] + o)} (6.1)

because the Legendre function in the integrand of
(4.27) contributes only its leading term (= 1).
Similarly, the = solution is written as

z(E, ) = (C,/2){xs[1l — (ear/4) cos wxp)
+ 24[1 — (ear/4) cos wx,] + O(€)}. (6.2)

C,, (4.29), can be expanded in a power series in e
using the definitions of £ (or r) and 5 (or s) as given
in (4.15).

C, = 1 + (ear/8)[cos mx4 + cos wzxp] + 0(). (6.3)

If (6.3) is substituted into (6.1) and (6.2) and the
results rearranged, we obtain

t=3(xs — 2s) — (ea/8) A, — 3e A3, +0() (6.4)
= %(xg + Xa) — %6 AIAC + O(Gz), (65)
where

A, =sinmxy — Sin 7x,; A, =COS 7T — COS WLy

(6.6)
Z, =sinqrp +sinwx,; 2. = coswrp + o8 7y
A, = (an/8)(xs — Z4). (6.7)

We now invert by adding and subtracting (6.4) and
(6.5). Rearranging, we obtain the implicit form

24 =(x — ) — €A, cosTr,

— (ea/8) A, + 0() (6.8)
zp = (x 4+ 1) + €A, cosmay
+ (ea/8) A, + 0(&).  (6.9)

One recognizes the leading terms of (6.8) and (6.9),
z, = x — tand x5 = x -+ ¢, as the linear solutions,
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(4.32). To complete the inversion, one would have
to express x4 and zp explicitly as functions of z and
¢, rather than in the implicit form given in (6.8)
and (6.9).

The direct solution is now recovered by forming
v = y, from the difference of £ and 7 as defined in
(4.15).

v=3E— 1) = @97 [ xs) — )] (6.10)
or
v = tar {A, + (ean/8)[cos 2mxp
— cos 2rz4] + o)}, (6.11)

or
v = —arisin (7/2)(x,4 + z5)

X sin (r/2)(xs — x4) + (ear/8)

X sinw(x, + 25)-sin w(xs — x4)} + ().  (6.12)

Equation (6.12) is put into a more recognizable
form by using the sums and differences of z, and
zp in (6.4) and (6.5). We introduce the parameter =
which gives the temporal variation on a “slow”
time scale:

7 = (eam/8)1. (6.13)

This is obtained by substituting for (1/2)(xz — z.)
in A, the leading term of (6.4), namely, . Equation
(6.12) then takes the form

v = —ar{sin w[z + €A,]
X sin#{t + 72, + (ea/8) A,]
+ (eamw/8) sin 2xlx 4+ 7A.]
X sin 27t + 72, + (ea/8) A,]} + O().

The solution for u is recovered in similar fashion,
namely, from

(6.14)

3r+9) =3¢+ (6.15)

or

(2/39(1 + ew)*” = (1/39)[f**(xa) + f*(xs)]. (6.16)
Solving to first order in e yields

u =1y, = tarZ, + llarA.)’ + 0(). (6.17)

This can be expressed directly in terms of z, ¢, and 7
by using the equations above.

The solutions for u and v given above are qualita-
tively of the form: a periodic function of a periodic
function. Thus, a spatial Fourier decomposition of
these functions will yield modal amplitudes which
involve the Bessel functions of the argument .
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7. CONCLUSIONS

We have shown that the standing vibrations of a
continuous nonlinear string develop a discontinuity
in the first derivative after elapsed times of ©(1/ea).
The computations of Fermi, Pasta, and Ulam
indicate that the vibrations of a finite number N of
coupled, nonlinear, equimass particles do not
develop such a discontinuity. Thus, a continuous
nonlinear system described by a partial differential
equation of second order cannot describe the
vibrations of the equivalent discrete system for
“large’’ times.

To account for the FPU results by a continuum
representation, one is led to include terms which
measure the discreteness or “graininess” of the
medium. These terms appear quite naturally if we
retain quantities of ©(1/N°) that arise in the
limiting process described in Sec. 2. These terms
involve higher derivatives (for example, ¥,.¢s, Yzzze
ete.) and should affect the vibrations most at those

1039

points on the string where breakdown “tends” to
occur. These terms are analogous to the viscosity-
like terms that are added to the lowest order hydro-
dynamic equations to prevent a discontinuity from
forming,
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We prove a mathematical conjecture by Dyson which he used in a study of the statistical dis-

tribution of energy levels in complex nuclei.

HE purpose of this paper is to prove a theorem
that was proposed by Dyson in a recent paper.''?
This theorem (conjecture C of reference 1) may be
stated as follows:
Let z,, --- , zy be a set of N complex variables
and a,, --- , ay a set of N positive integers (> 0).
Let y; for1 < j < N be

v=T(1-%). M

ki 2k

Let
P(zl) ! ZN) = H (yi)a{) (2)

which we shall write P(z) for convenience. P can
be expanded in positive and negative powers of
the z;; we are interested in the constant term F
given by

F = @)™ f e f i daPl), ()
the contours being the unit circle taken counter-
clockwise.

Theorem:

FI(Z(M)!{HG:‘!}“I- €Y

The proof depends on three lemmas, which will
be stated now and proved later.
Define

u; = (y)™ 6)

We compute F by making a change of variable
from 2;, +-- , 2y_, tO Us, -+ , Uy. Lemma 1 will
state that this is possible. We note that because P
is homogeneous in the z’s, the integration over zy
becomes trivial after the other integrations have

* Junior Fellow, Society of Fellows, Harvard University,
now at CERN, Geneva, Switzerland.

1 F. J. Dyson, J. Math. Phys., 3, 140, 157, 166 (1962), this
theorem has also been proved independently by J. Gunson,
J. Math. Phys. (to be published).

2 Conjectures A, B, and D of reference 1 are shown there to
reduce to conjecture C; thus they will not be discussed here.

been performed, and that because the u’s are homo-
geneous in the 2’s, only N — 1 are independent,
which is why we make N — 1 instead of N changes
of variable.

Lemma 1:

f uy' duy

X [J@I7PE  (6)

F = (2m)™""* fu;‘ duy - - -

where J is the Jacobian

_ d(Inuy, - -, Inuy)
J@) = dlnz, -+, Inzy_y)

and the z's are expressed in terms of the u's by
Eq. (5). The paths of integration are the circles

@

lu;| = R; ®

taken © — 1 times counterclockwise, where the R,
are arbitrary except that they satisfy

R.u«<KR; K1:2L1<N—1. 9

Lemmas 2 and 3 will show that J and P are
single-valued functions of the u’s so we do not have
to specify the branch of the solution of Eq. (5).

Lemma 2:
(10)

This is an identity in the z's, when the u; are re-
garded as functions of the 2’s through Eq. (5).

Lemma 3:
J@ = (N — D!u,.

See the note for Lemma, 2.
As a result of these lemmas,
_ (27I"L) ~N+1

S8 o [ [ 02

with u, given by Lemma 2. These integrals are
elementary, but to save space we use a shortcut.

(11)

F
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Tirst we note that
2n)™ f W du = 1/n! (13)

if the contour encloses the origin counterclockwise.
Secondly, if F(\) is defined by Eq. (12), but with

N
U = N — Zui,

=2

(19

where A is on the unit circle, then by making a
change of variable to u! = u;\ we see that

FQ) = \7'F, (15)
where )
N
a = Z a]-, (16)
Hence, by Eq. (13),
F = (2r)~'a! f SFO dh. (17)

Interchanging the order of integration so that we
integrate over A with u,, - - - , uy held fixed, we must
evaluate the integral

L / e){)\ - zN:u}‘M_l d\ = Le"’“““”“’ (18)
27['1' i=2 ! al!

[by Egs. (8) and (9), the pole at X\ = u, + -+ + ux
lies inside the unit circle].
Thus,

a!
F = - fdu fdu

@) (N = Dlatd v
N
ui, —ei—1 __ a!
Xge u; = ol ol (19)

[the factor (N — 1)!is exactly compensated by the
requirement of Lemma 1 that u; execute a circle
j — 1 times].

Now we prove Lemmas 1-3. We start by stating
another lemma. Lemmas 2-4 have probably all
occurred in other work® but it is easier to prove
them than to locate them in the literature.

Lemma 4:

Let G(xy, -+ -
such that

1. @ is a symmetric function of z,, « - , Ty,

2. @ is a ratio of two polynomials in the z’s,

3. G is homogeneous of degree 0 in the z’s,

4. The denominator of G is [[;cx (@ — ).

s Lemma 2 appears in the theory of Lagrangian inter-
polation; see F.” Hildebrand, Infroduction to Numerical
Analysis (McGraw-Hill Book Company, Inc.,, New York,
1956), p. 61, Eq. (3.2.5) withz = o.

, ) be a function of M variables
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Then G is a constant. This is because, since the
denominator changes sign when we interchange the
values of any pair z;, z;, the numerator must also
change sign under this exchange; thus, the numerator
vanishes when z; = x,. Hence the numerator has
z; — x, as a factor (for any j and k), e.g., it has the
entire denominator as a factor; thus G is a poly-
nomial. Since it is of degree 0, it must be a constant.

Proof of Lemma 2:

Since Y.; u; considered as a function of the 2's
satisfies the conditions of Lemma 4, it is constant.
Putting 2, = 0 we obtainu, = 1, u; =0 (G > 1)
50 the constant is 1.

Proof of Lemma 3:

The Jacobian J is the determinant of the matrix
(20)

(rows numbered ¢ = 2 to N, columns j = 1 to
N — 1). Without changing the value of the determi-
nant we may add columns j = 2 through N — 1
to column 1; since In u; is homogeneous in the 2’s
we now have

Ji =0Inwu;/dIng

Ji = —dlnu;/dInz,. 21
Move this column to the right, calling it J.y; thus,
J = (—D"*det |/,
where 2 <7< N, 2<3<N. (22)
Now,
Ji = —zile; — 297 (@ # ), (23)
Ju= X 29)

Evidently J is the ratio of two polynomials in the
2's the denominator being a product of factors
z; — z;. No such factor occurs twice; for a denomina-
tor z; — #; occurs only in the elements J,,, J;,
J,i, and J;; so that a term (2; — 2,)° occurs in the
denominator of J only if it occurs in the 2 X 2
determinant J;,J;; — J:;J;;. However the term
in J,;J;; containing the factor (z; — 2,)"° cancels
the corresponding term in J;;J;;. Furthermore, J
has a factor (zz; --- 2zy), it is symmetric in z,
through zy (but not in 2,), and it is homogeneous
of degree 0 in the 2's. Using the argument of Lemma
4, we must have

N
J=0C[la@ —2)™" = Cu, (25)
k=2

where C is a constant. Since Eq. (4) is known to
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be true if all the a; are 0 we shall have to have
¢=W-D.

Proof of Lemma 1:

We shall prove Lemma 1 by introducing the new
variables one at a time. For convenience we shall
first change variables to {; (2 < j < N), where

(ti)—i“ = Y- (26)

Before making this change we change the paths of
integration in Eq. (3) to be the circles

(I<j<N), (27)

Izil =T
where
Ty <<'r,'+1 (1 S ] S N — 1) (28)

We now use mathematical induction. Suppose the
following propositions are true for m < n:

1. Equation (26) can be solved for2 < j <m 41
to give z, through z, as functions of &, -+ , tns1,
.+, zy. We define functions w; for 1 < j < mby

Zm+1y *
z; = zi+1ti+1(t,-)—(i—l)”e("'/“
X w:‘(tz, «a I ZN), (29)

where we define {, = 1 and 0 < arg t; < 27. The
solution can be chosen so that w; = 1 in the region
of interest. More specifically, w; is analytic as a
function of ¢,,, and z;., to zy, and satisfies

,t,'+1,2,-+1,

lw; = 1] < e (30)
when
bl =R. @2=<k<y), (31)
iR < [tin] < 2R;4, (32)
1A+ o' < Ja] <41 — '
G+1<5k<N), (3
where
R, = (ryy -+ i)Y 70 (34)
and ¢ is a fixed number < 1.*
2.

{@_2 dly  dlnan
dz, dz; dz,,

where the integrations are carried out from right
to left (e.g., 2., first, holding the other z's and #’s

}_l {2122 st zm}_‘lP(z)y (35)

4+ To be precise, we should choose a sufficiently small value
for ¢ then choose the r; with ri.i/ry sufficiently small

G. WILSON

fixed). The contours are the circles |2,| = 7., |t:| = R,.
The symbol di;,,/dz; stands for the partial deriva-

tive 8t,.,/02z, when &y, -+ | b, 2ks1, --- 2y are
held fixed.
We now prove these propositions for m = n.

First, we must examine the dependence of £,., on
Z,, when &y, <<+ |, b, 2,41, -+ 2y are held fixed; 2;
to z,., are functions of these wvariables and =z,
[through Eq. (26)], and satisfy the restrictions of
proposition 1. We obtain

tu+1(tn)*("_l)/n = (yn/ynn)”"

= (_—1)1/nzn(zrhl 1)—.1g(z) y (36)
where
n—1 Zf)lhl( Zi >—l/ﬂ
g(z) B i=1 (l zn 1 B Zn+1
N zn>l/n< Z,,.;.l)_l/n
X 112 (1 -2 - . . (37
Ift;, --- , t,and z,, --- , 2y satisfly the inequalities

(31) and (33), one finds using Eqgs. (29), (30), and
(34) that Eq. (33) is satisfied also by z,, -+ , 2._..
Thus (if the ratios r,/r;., are sufficiently small)
we may define the nth roots in ¢(z) by requiring

lg — 1] < ¢; (38)

the other nth roots are defined as in Eq. (29).

Now consider the equation z = t,.,(z,) for values
of  such that 4R,,, < |z] < 2R,.,. This does not
differ very much from the equation

z— ()" V(= 1D)"20) = 0, 39
which has a unique root z, for a given z.
Now consider the functions
fen) = & — thii(za),
9@) =z — (L)"7V(=D"2n)t,  (40)

where 3R, < |z| < 2R,.,. On the circles |z,| =
r./3 and |z,| = 3r,, f and g are almost equal so that

lg) )] — 1] < 1. (41)

Since g(z,) has a single root between the two circles,
f(z.) does also, by Rouché’s theorem.® From the
explicit formula for the inverse function®

1

2

-1 Qlasn

2(tnsr) = f [fnir(za) — lasi] dz 2, dz,, (42)

where the contour is taken on the two circles, we

5 I. Ahlfors, Complex Analysis (McGraw-Hill Book
Company, Inc., New York, 1953), p. 124.
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see that the inverse function is analytic in ¢,., for
iR,y < l|ter1] < 2R,. Since i,.,(2,) is analytic in
Zu41, **° , 2y, the Inverse function is also. Since
w, = 1/g(#), it satisfies the inequality (30).

This proves proposition 1 for m = n. We now
change variables in Eq. (35) (with m = n — 1)
from 2, to t,.,; the path of i,,, is almost the circle
[tar1] = Ras1; we change it to be exactly this circle
and then interchange the order of integration with
the remaining z's. This proves proposition 2 for
m = n. To complete the proof of propositions 1
and 2 they must be proved for m = 1; with some
changes the above procedure can be used.

Now consider Eq. (35) with m = N — 1. The
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-, dty/dzy_, is the Jacobian®

“y by)
) ZN—I) ’

expression [ = di,/dz, - -
6(152, .
A, -

by Lemma 3,
I=(t - e T (43)

Since u; is a function only of the ¢'s, by Lemma 2,
the integral over zy is trivial. Changing variables
from ¢, to uw, = .~' we obtain Lemma 1 [Eq. (6)].

I am indebted to Dr. Paul Federbush for sug-
gesting this problem.

T ZN—I)_lu;lc

¢ R. Courant, Differential and Integral Calculus, (Inter-
science Publishers, Inc., New York, 1936), Vol. 1I, pp.
247-256.
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It is shown that the Fourier method which was developed by us for the calculation of analytic
functions of circulant matrices can also be applied to calculate analytic functions of continuant
matrices. Similar caleulations are developed for generalized continuant matrices which arise in
connection with problems in greater than one dimension.

I. INTRODUCTION

N a recent paper,’ we have discussed the problem

of calculating analytic functions of ecirculant
matrices and generalized circulant matrices, i.e.,
partitioned matrices whose blocks are successive
cyclic permutations of those submatrices appearing
in the first row. In this paper we shall use a similar
method to that developed in our first paper to
evaluate analytic functions of some types of con-
tinuant matrices. Cyclic matrices arise in many
physical problems in statistical mechanics when
cyclic boundary conditions are employed, that is,
when the system is considered to be wrapped on a
torus of the proper dimensionality. Continuant
matrices arise from the same types of physical
problems when different boundary conditions are
employed. As an example, circulant matrices are
used in lattice dynamical problems when the ends
of the lattice are conmnected together. Continuant
matrices are used for the same problem when the
edge atoms of the lattice are held fixed. It is useful
to be able to calculate analytic functions of both
types of matrices since thermodynamic functions
of the physical system are defined in terms of
analytic functions. Analytic functions of circulant
and continuant matrices are also useful in the
perturbation theory of chemical systems.” The
results for continuant matrices are somewhat less
general than those for circulant matrices since we
are only able to treat matrices with diagonal and
first off-diagonal nonzero elements.

In addition to doing the calculation for ordinary
continuant matrices, we shall introduce the notion

* This research was supported by the U. S. Air Force
through the Air Forece Office of Scientific Research of the Air
Research and Development Command under Contract No.
AYF 18(600)1315.

1P, Abraham and G. H. Weiss, J. Math. Phys. 3, 340
(1962), hereafter referred to as I.

2 P. O. Lowdin, R. Pauncz, and J. de Heer, J. Math. Phys.
1, 461 (1960).

of generalized continuant matrices which are used
to solve physical problems in dimensions higher
than one. The generalization to the calculation of
analytic functions of these matrices is straight-
forward involving no more than the use of multiple
Fourier series rather than Fourier series of a single
variable.

To begin with, we shall recapitulate the principal
ideas contained in I. Let A be a circulant matrix
of order N + 1 of the form A = (S,, Si, - -+ Sv)eve
with eigenvalues A, given by

= 38, ex (27r_wk>
T o M OPAN

The unitary diagonalizing matrix S such that
S AS = A where A is diagonal has elements

(S)me = [1/(N + DI"* exp [2rimk/(N + D], (1)

where m and k run from 1 to N. If F(z) is an analytic
function with a convergent power series in some
region about the origin, then we can write

F(A) = 5; a, A" (2

provided that the eigenvalues all lie within the
circle of convergence. Hence we have

F(A) = SF(A)S™ (3

or

M=

[F(A))uw = (8)mi {F(A)};,(87)a

0

-

I
M=

(S)mi {F(A)}1:(S7)m

=}

4)

I
M=

FA ) (8)ni(S7)

0

I T 21ri(m—n)j}
”N+1,§F(A")e"p{ N+1 J
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The next step in the calculation of [F(A)],, is to
expand F();) in a trigonometric series
N
FQp;) = kzo A% exp [2rijk/(N + 1] (5)
where the A% are found in terms of the Fourier
coefficients of the series for F{2 1. S; exp (¢j0)}.
When Eq. (5) is substituted into Eq. (4) and the
order of summations interchanged, it is found that
the summation over j can be carried out explicitly,
and the resulting matrix element is just one of the 4,.
It ean be seen that the reason for the success
of the method is the fact that the unitary matrix S
has elements proportional to exp {2wijn/(N + 1)}.
Hence the same method will work, with minor
modifications, for any matrix whose eigenvectors
have components

(6)

and by extension, any matrix whose eigenvectors
have components

@) = exp (5jk6)

_ sin jko

W) = @

cos k8.

II. FUNCTIONS OF SIMPLE CONTINUANT MATRICES

A particularly important class of matrices for
which this holds is the symmetric Jacobi matrix

@ b 0 0 --- 0

A |pa b0 0 ®)
0 bab -0
g --- baj

Some properties of this matrix have been elucidated
by Rutherford,®* but he did not discuss the cal-
culation of analytic funetions of A. We can actually
carry out the calculations for a more general matrix
of the form

- -

a b 6 - 0
¢ a bz N
T=1lp ¢ a - 0 ©)
a by
. evor @

3D, E. Rutherford, Proc. Royal Soc. Edinburgh 62A, 229
(1945),

4+ D. E. Rutherford, Proc. Royal Soc. Edinburgh 634, 232
(1951).
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where the condition
b, = const = & (10)

holds for all ¢, since any matrix having the same
form as I' is similar to a symmetric Jacobi matrix
of the form of A. Consider the diagonal matrix T
with elements

(T)i; = (€iCs = -+ €iabibjey + - by_y)'" (11)
Then an easy calculation shows that
@ b 0 --- 0]
b a b - 0
T'rT = 0 b a - ol (12)
b aj

Henceforth we will work with A exclusively because

of the property exhibited in Eq. (12).
The eigenvalues of A are easily found to be
A = a4+ 2b cos [#j/(N + 1)) (13)

and the orthogonal matrix which brings A to diagonal
form has the elements

rml

() = (Tv“—gﬁy sin (N T 1) ’

m5k=132,“‘N.

(14)

In analogous fashion to the proeedure of I, we define

a continuous, periodic function
M8 = a 4+ 2b cos 9. (15)

We will now relate the elements of F(A) to the
Fourier coefficients of F{\(6)}. Inserting the matrix
elements (8),.; into the relation

F(A)]n = 22 FON(S):(S7)0

. mmj \ . ™j
X sin (N T 1> sm (N + 1)
1 & w(m — ﬂ)j)
"N F1 ;FO\"){“S< N +1

- (cos %—?ﬂ)} (16)

We shall assume that F{A(6)} ean be represented
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by a Fourier series tutions are made in the relation
© . -1
FINOY = 20+ 3 A, cosne (17) F(r) = TF(a)T (23)
ot it is found that
where
1 2y [F(r)]mn = [cncn+l vt cm—l/<bnbn+l tee bm—l):'l/2
A, = =) F{\(6)} cosnf d8. (18) X [F(A) ], m>n+1

and therefore that the F(A,) result when 6 is set [F(ID)]mn = [Bubmir =+ buca/Calmer =+ €az))]”
equal to [mj/(N —+ 1)]. Substituting the value of X [F(A)]
F();) from Eq. (17) into Eq. (16), we have ’

n>m+1

ud m(m — n)j
[F(A)] 2(N T X {“’S N1 [F(D)]nm = [F(A) ] (24)
,r(m w(m + n)j| In the following paragraphs we shall give some
N+ 1 specific applications of the formula of Eq. (21).
1 - 1. Calculation of A™*
taw D & . . L
The Fourier coefficients of A™" are
N _ - .
X Z {cos"—r(ﬂj—v—iT@l _1 f __cosnf 46
=1 a + 2b cos 6
1r(m —n+ k)] 2 2\1/2 n
esTTY -2 21/2<(“ 2b) “). (25)
(& — 4b°) 2b
+n—k)j .. . .0
— €08 7|-(_m]_v_+_l_ﬂ When this expression is inserted into the definition
) of the B’s, the resulting series are geometric series
— cos w(m +n + k)J}. (19) and the result can be written in closed form as
N +1
) - _ u(vZn — 1) (1)2(N+1) — va)
To evaluate the finite sums appearing in this equa- (A7) = o 1 — 2
tion we note that they are all special cases of the
prototype sum m2>mn (26)
where
Z_; COSN + 1 =N &, w2rvsny . (@ — 40)* — a
u=1/(a® — 4D, v = 27
+ %[(—1) - 1][1 - 6:.*2r(N+l)] 5.:,&(21+1)(N+1) 2b
— (1 = 8, corirary — B4 mioreny(Wa1y) s, ary (20) 2. Calculation of A” , v 0,1,2, ++-
where r = 0, 1, 2, --- . The use of this formula in The Fourier coefficients can be written

Eq. (19) results in

1 27
[F(A)]n = $(Bp-n + B = ;rfo (@ + 2b cos 6)” cosnd do
mn — 2\PPm-a —(m=n)

-27

- = D (m+n 2 2
Buin = Botnim) me=n @D f — 28 cos 6 + 8%°) cosnd df
where W(l + By
- (28)
B; = Zo Aizrivan (22)  where
and a coefficient A, is zero if s is negative. g = L= (@® + 469"
The results for matrices of the form of ' shown 2b

in Eq. (9) are similar. Assume that F(A) can be Hence the A’s are
calculated. If the matrix which diagonalizes A is
denoted by S [cf. Eq. (14)] then the matrix which , _ 24'8'T(n + v)

n 1(1 . Q2
diagonalizes I" is just TS. When the proper substi- (1 + )’ TEn! Gyt t+ 18, @)
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where F(a, b, ¢; x) is a hypergeometric function.

(A% = « {iF@u+m

TE)(1 + 67 \+=0

' + m —n+ 2r(N + 1))
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Thus we find

—n+2N+1D),m—-—n+2x(N+ 1) +1;8)

Tm —n + 2N + 1) + 1)

6m-—n+2r(N+l)

+ ZF(V,V-I-QT(N-{-I)—m+n,2r(N—|—1)—m+n+ 1; 69

'y —m+n+4+ 2r(N 4+ 1))

—m+n+2r(N+1)
Xt —mELoN +D+1°
—an+m+n+mN+mm+n+mN+n+um
% ' +m~+n+2r(N + 1)) 6m+n+’_’r(N+1)
'm+n+2r(N + 1) + 1)
- 2 Fu,v+ 2N+ D) —m—=n, 27N+ 1) —m —n + 1; 59
I+ 2r(N 4+ 1) —m —n) }
TN +D-m-nFt1° : (30)
3. Calculation of exp (fA) Se = a, S; = b. (34)

The Fourier coefficients are

27
A, = 1 f exp ([a -+ 2b cos 611) cosné do (31)
™ Jo
so that
Ay = 2¢"[1 + I,(—2b1)] (32)
A, = 2(—= 1" I,(—2bt)

where I,(z) is the Bessel function of imaginary
argument of the first kind and the B’s can be
calculated from Eq. (22).

III. FUNCTIONS OF GENERALIZED
CONTINUANT MATRICES

In reference 1 we extended the definition of
circulant matrices to a more general class, in order
to handle physical problems which arise in two and
three dimensions. We will now do the same for
the case of continuant matrices, and show how to
calculate analytic functions of generalized con-
tinuant matrices. We shall restrict ourselves to the
generalization of symmetric continuant matrices.

The first-order continuant matrix is defined by
its elements

B = Sii-ily
=0

[t — 4] > 1

(33)

where, for the particular case in Eq. (8), we have

For the definition of the generalized continuant of
order » we define a function S, where k is an r-
dimensional vector with integer components:

k=(k1,k2,"',k,), ki=0:1721"')N' (35)
We will assume that S, differs from zero only when
k; =0orlforj=1,2, ---r. Now define an integer
vector

I=(2,%, - 1) (36)

where ¢; = 1, 2, --- N. Then we define the general-
ized continuant matrix with elements A(I, J) by

A(I, J) = S|1_J| (37)

where the vector |[I — J| is defined to have com-
ponents

|I_JI = ([74 —jll’liZ—jZI! Iir—jrl)‘ (38)
In analogy to the one-dimensional case, we make
the rule that there are no components of A which
have indices greater than N. An rth order contin-
uant matrix is formed by replacing each scalar
element in an (r — 1)th order continuant, by a
continuant matrix.

As an example of the application of this defini-
tion, the equations for the steady-state amplitudes
of the displacements in an r-dimensional simple-

cubic lattice with nearest-neighbor interactions only
are:
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2 2

+ve A + - F v Aum (39)
where
m = (m,, my, -, M),
and where, for example
Aol = U, oeomisn, eomy
F Uy, oeomymteome — Qb (40)

If the edges of the lattice are fixed, then u = 0
if any one of the indices is equal to 0 or N + 1
(where we have assumed that the crystal has =
atoms on an edge). The solution to Eq. (39) is
equivalent to finding the eigenvectors and eigen-
values of a generalized circulant matrix A

= _2(71+‘Yz+ +’Yr)

Sa.0.0.0000 =M1

S(O,O.--'O)

(41)

\ —
»5(0.1,0.---0) = Y2

J —_—
AS(O.O,---J) = Yr-

In two dimensions the matrix A can be written as

A BoO O --- 0
A = B ABO --- 0 ’ (42)
0 BAB --- 0
where
—2(71 + 'Y2> Y1 0, < 0
A= v —2(vi +v2) v - 0
0 . O
B = (43)

y2 0 2
L

It is a simple matter to find the eigenvalues and
eigenvectors of the generalized continuant A(I, J).
Let us write the eigenvalue equations as

A, JJU = \U, (44)

where U is a vector with components u(n,, n,, - - - n,)
where n,, 1y, -+ 0, = 1,2, -+ |, N. Assuming a
solution of the form

P. B. ABRAHAM AND G. H. WEISS

@y, ny, - n,) = A [] sinn;é, (45)
i=1

we fit the boundary condition that « be equal to
zero if any index is equal to N + 1 by setting
§=xN+1" (46)

and A will be chosen so that the vector U is nor-
malized;

A = [2/(N + D] 47)
The eigenvalues of A are readily found to be
Ak) = ; 2 S enieren
ki€ whse, ke, .
XcosN_l_lcosN_l_l-- s N1 (48)

The matrix which diagonalizes A(I, J) has the
explicit representation ‘

2 Y? . mgm
T(n,m)—<N+1> sin 3
L TMeMy L T,
X sin N+1 sin = (49)
Finally, we find as a representation for #(A)
. 2 ’
F(A)]mn = < = ) F[A(k
% sin amak, TMaoky .. sin am,k,
N+1" N+ N+1
. anky Tk .k,
><s1nN+1s1nN+1.-‘smN_}_l- (50

where A(k) is the diagonal matrix of eigenvalues.
The following analysis is exactly analogous to
the one dimensional case. We define the function
of a continuous vector of variables 6 = (8,, 6,, - - - 6,):
}\(0) = Z 2€‘+€2+“.+“S(e,.“-ey)
{e)

cos e, 0,

(31)

and assume that F{x(8)} has a Fourier expansion

X cos e 8, COS Texfly - - -

A
FIN®) = D 5"2 cos N, 6, oS N2y -« - cOSN,H,,

n =0,1,2, .-, (52)

where p is the number of »’s that are equal to zero

in the particular term and

27
A, = lr ..
T

Ny Mgy *

= = . f“ F{\8)} cosn, 6,

0

cosn.8, d'6. (53)

The value of F{A(k)} required for the general

X Cos Ny » -+
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formula of Eq. (52) is A B o |
N N B
P - 5 B e
1k .k,
XCOSN—I—l cosN_*_1 (54) B
The B*'s are found from 0 B AJ
Ao (N + 1) where A and B may be generalized matrices them-
Bt = > - 2 —%5———— , (55) selves of the m'th order, then the diagonalizing

129 ir

where the vector | = (I, I, -+, I,) has positive
integer components which go from zero to infinity.
When Eq. (55) is inserted into Eq. (52) we see that
the sum over the k’s is separable and can be carried
out using the quantities

=N Om, w25 (N+1)

Z cosN + 1
+ 3(=D7

- 1][1 - BM.*ZS(N-H)] O, v (2541) (N41)
- (1 - 6m,*28(1\7+1) - 5m.*(2s+1)(1\f+1)) 6m,*2s; (56)

where s = 0, 1, 2, . The final formula for the
r-dimensional circulant matrix is

% ZB;?: H [Vm-—nsﬂz.
P g=1

+ Vm.—n.—m - Vm.+ru~p-]' (57)

It does not seem possible to find a result analogous
to Eq. (9) without additional assumptions being
made on the commutativity of the submatrices
which appear in the definition of the generalized
continuant matrix.

It may be remarked at this stage that if one
defines a lexicographical order for the vectors I,
as was done in I, it is possible to write down ex-
plicitly the orthogonal matrix which brings the
generalized continuant matrix to the form of a
generalized diagonal matrix, regardless of dimen-
sionality.

For instance if A is the matrix

[F(A)]m . =

VM.+7A. +ps

orthogonal matrix U has the matrix elements:

—_ 2 i s Tk] (m)
Uiy = (T" ¥ 1) AT
k}j = 17 ")Tn) (59)

where 3™ is the unit matrix of mth order, the

vectors K, J are n-dimensional vectors whose com-
ponents are taken from a set of 7 numbers (not
necessarily integers) and k, j are the positions of
K and J, respectively, in the lexicographical order
employed.

The generalized eigenvalues are

» = A+ 2B cos——— o + I ;
Therefore, instead of having to diagonalize a matrix
of order m X 7" we have to diagonalize one of order
m only. Equation (60) is valid regardless of the
commutability of A and B. If A and B are simple
continuant (therefore commuting) we recover the
formulas (48), the simple eigenvalues of A being
given by:

= >\k(A)

i=1, 7 (60)

..,m

+1’ . n

]:1}...’7-

+ 2\(B) cos s = (61)

In general if A and B commute and their eigen-
vectors and eigenvalues satisfy the periodicity re-
quirements stated above, one can calculate analytic
functions of A using a single Fourier expansion.
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The usual formalism for determining symmetry relations, due to macroscopic space symmetry,
among the components of constant tensors, is shown to apply equally well to tensors that are a function
of the applied fields. It differs only in two respects from the special case of constant tensors: (a) Only a
subgroup, containing, in general, drastically fewer members than the entire group of symmetry
operations, yields symmetry relations. (b) This subgroup contains elements other than the identity
only for directions of the applied fields that are left invariant by the elements of macroscopic symmetry
of the medium. Examples using first- and second-order tensors arising in electrical conductivity,
with and without a magnetic field, are given and the even and odd parts of the tensor are separated.

I. INTRODUCTION

YMMETRY relations in tensors are due to

intrinsic symmetry, such as the Onsager rela-
tions," for example, and macroscopic space sym-
metry. The latter is geometrical in nature whereas
the former is derived from physical arguments inde-
pendent of maecroscopic space symmetry. We shall
be concerned with the effects of macroscopic space
symmetry and suppose the intrinsic symmetry
given.

If a tensor is a function of the applied fields, it is
the practice to expand it in a power series with
respect to these fields. Symmetry considerations are
then applied to the constant coeflicients of the power
series that define new tensors. The study of sym-
metry restrictions in constant tensors in material
media with space symmetry has recently been
formulated with great elegance.*”*® The practical
occasion for the study of higher rank constant
tensors is the oceurrence of interesting nonlinear
phenomena, which one desires to describe approxi-
mately by a finite number of terms in a power series
expansion. The number of independent tensor com-
ponents appearing in the tensor coefficients of such
a finite expansion is reduced by symmetry restric-
tions. Applications of this procedure to magneto-
conductivity are given in various references''~'°.

1 Present address: National Bureau of Standards, Wash-
ington, D.C.

* Deceased.

1 1., Onsager, Phys. Rev. 37, 405 (1931); 38, 2265 (1931).

2 F. G. Fumi, Acta Cryst. 5, 44 (1952).

3 F. G. Fumi, Acta Cryst. 5, 691 (1952).

+ F. G. Fumi, Nuovo cimento 9, 739 (1952).

6 R. Fieschi and F. G. Fumi, Nouvo cimento 10, 865
(19??%1): Wondratschek, Neues Jahrb. Mineral. Monatsh. 85,
217 (1952); 86, 25 (1953).

7 Handbuch der Physik, edited by S. Fligge (Springer-
Verlag, Berlin, 1955), Vol. VII, Part 1, p. 40.

A power series expansion is practical only to the
first few terms and for some applications this
may restrict its usefulness to a limited range of
applied fields. We therefore divide the applied
fields into “weak’ and “strong” fields. Weak fields,
by definition, are those with respect to which the
effect is well described by an expansion of only a
few terms; strong fields those for which this is
not the case. If we expand the effect in terms of
the weak fields only, the coefficients of the power
series are tensors which are a function of the strong
fields and one is led to inquire what restrictions
space symmetry imposes on such ‘“‘field dependent
tensors.”” We find that the symmetry restrictions
upon field dependent tensors is determined by the
intersection of the symmetry group of the medium
and the symmetry group which leaves the strong
applied fields invariant, in contrast to constant
tensors where the much larger symmetry group of
the medium imposes the symmetry restrictions on
the tensor.

With respect to the physical basis for all sym-
metry relations it might be mentioned that it is
founded in the principle of covariance; i.e., the
assumption that the mathematical form in which
physical laws are expressed must be identical in

8 C. S. Smith, Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1958), Vol. 6.

9 A, C. Pipkin and R. S. Rivlin, Arch. Ratl. Mech. Anal.
4, 129 (1959).

1 A, C. Pipkin and R. 8. Rivlin, J. Math. Phys. 1, 127
(191610)'. Seitz, Phys. Rev. 79, 372 (1950).

2 W. P. Mason, W. H. Hewitt, and R. F. Wick, J. Appl.
Phys. 24, 166 (1953).

18 H. J. Juretschke, Acta Cryst. 8, 716 (1955).

14T Qkada, Mem. Fac. Sci. Kyusyu Univ. Bl, 157 (1955).

15 J. R. Drabble and R. Wolfe, Proc. Phys. Soc. (London).

B69, 1109 (1956).

181, P. Kao and E. J. Katz, J. Phys. Chem. Solids 6,
2923 (1058).
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equivalent coordinate systems. Thus, the method
and point of view of this analysis are inherently
identical with that used for constant tensors and
the formalism established there can be carried over
entirely to the present problem once it is recognized
that only the elements common to the symmetry
group of the medium and the symmetry group
which leave the “strong” fields invariant are effec-
tive in producing symmetry restrictions on a field
dependent tensor.

Our procedure will be to develop in Sec. IT the
mathematical formalism corresponding to these
remarks and to give examples taken from electrical
conductivity in Secs. ITI and IV,

II. CONVARIANCE APPLIED TO
FIELD DEPENDENT TENSORS

In an orthogonal reference frame (k) consider
the coupling relation between an effect £ and n
applied fields F --. F™ through a tensor E....;
which is a function of F®* ... F™ .

Eioey = B f(F® oo B ROSD RO ()

The fields F may be tensors of arbitrary rank. The
superscripts identify the field. The symbol F stands
for the ordered set of all components of F, thus if
F is a vector, F = (F,, F,, F;). Now, if for the
particular application in mind, the fields F* - .. F™
are “strong,”’ whereas F*" ... F™ are “weak,”
we expand (1) in terms of the “weak’ fields. Thus,

E...; will be a sum of expressions of the form:
Ei...f = ¢,‘...,‘;k...l(F(l), F(z), et F(m))
X B P 2

where ¢;...;.5...; 18 a derivative of E,...; with respect
to the weak fields.

Examples of (1) and (2) are electrical conduction
in a magnetic field: £, = E;(H, I) in which E, H,
and I are the electric field, magnetic field, and
current density. Expanding E;(H, I) with respect
to H or I depending on which of these fields is
“weak,” we get:

E; = Fi(I) + Ri:’(.I)Hi + .- (3)
E;, = f«(H) + Pi:‘(H)Ii + .- (4)
where R;;(I) = 9E,/0H;, p;;(H) = 0E,/dl;.

The connection between the geometrical proper-
ties of the medium and the laws of physics is pro-

vided by the principle of covariance according to
which the laws of physics are form invariant with

17 The notation of tensor analysis is used throughout.
Summation over repeated indices is understood.

1051

respect to geometrically equivalent frames; i.e., if
another frame (') is related to (k) by a symmetry
operation of the medium, then in (%) the phe-
nomenon is represented by

Y __ 1) (2)
Eﬁ...,— - d’i"':‘;k"'l(F, 3 F’ g ° 0

o FIOYFLTY L (5)

where ¢ is the same function as in (2).

The simultaneous validity of Eqs. (2) and (5),
together with the transformation rules for tensors,
allows us to deduce the general nonintrinsic sym-
metry conditions on the functions ¢,...;.

In the interest of clarity of notation we shall
show these for a tensor of arbitrary rank which is a
function of a single applied field, an axial vector.
This particular case shows all the essentials and the
generalization to a tensor which is a function of any
number of applied fields of arbitrary rank will be
obvious. Given two Cartesian frames (k) and (k')
and the orthogonal transformation connecting them
z! = s;z;, the components of ¢ in the primed
system are determined by the usual laws of tensor
transformation:

ol (F], i, FY) = s,

Equation (6) allows us to determine ¢ as a function
of F’ merely by expressing (F,, F,, F;) in terms of
(Fi, F, FY) . F, = |s|s,.F7-|s| is the determinant of
the coordinate transformation and must be included
since F is assumed to be an axial vector.

However, if s is a symmetry operation of the
medium without applied fields, the function
¢'(F;, F;, F}) is known from the principle of co-
variance to be the original function ¢, so that when
either set of field components F is expressed in
terms of the other, Eq. (6) becomes a set of
functional relationships constituting the symmetry
conditions on ¢ imposed by s:

"'Slr¢p"'r(F1)F2) F3)' (6)

¢(’S| SlaFa; [S} 32(1Fu; |8] s3aFa)
= sip"'slr¢p"'r(F’1) I”g, F‘;;). (7)
The obvious generalization of (7) is:
¢' Z(F,(l) F/(i’) Ve Fr(fﬂ))
, ,
= Siper S,y (FP BP0 B (8)

where the F’s are tensors of arbitrary rank and in
which the applied fields on the left-hand side of (8)
are to be expressed in terms of those on the right-
hand side as is done in the example (7), and where
the polarity (axial or polar) of the various fields must
be taken into account as in (7). Equation (8) is
identical with Eq. (3.8) of reference 9.



1052

Equation (7) or the more general Eq. (8) is the
point of departure for all discussions of symmetry
restrictions. The complete set of spatial symmetry
conditions is obtained by letting s run over all
point group operations of the space group. That is, if

xl = s;%; + vs,

where »; may be a whole or fractional lattice trans-
lation, is a symmetry operation of the lattice, then
since translations do not affect our (constant) fields,
the coordinate transformation

TP = 8,%;

is acceptable to us.

The experimental content of Eq. (8) is given by
a reinterpretation of the transformed field com-
ponents in the left member as the components of
differently oriented fields in the same coordinate
system. We are searching for symmetry restrictions;
ie., for numerical relationships among the tensor
components in a given coordinate system for a
given orientation of the ““strong’ fields. Clearly such
exist whenever the ‘“‘strong”’ fields are oriented
such that

F® =F® 1 =h<m;

i.e., such that the transformation s leaves the field
components invariant.

It should be noted that in the special case of
constant tensors every symmetry operation of the
medium yields, in general, a symmetry restriction.
However, for field dependent tensors only those
symmetry operations of the medium yield symmetry
restrictions which leave the applied fields invariant;
i.e., the intersection of the symmetry group of the
medium with the symmetry group which leave the
applied fields invariant. Thus, the general case of
field dependent tensors differs in two respects from
the special one of constant tensors: (a) Only a
subgroup, containing in general drastically fewer
members than the entire group of symmetry opera-
tions yields symmetry restrictions. (b) This subgroup
contains elements other than the identity only for
special directions of the “strong’’ fields.

III. APPLICATIONS

Intrinsic symmetry relations (Onsager relations,
for example) usually state restrictions on a tensor
under sign reversal of the strong fields. When only
one strong field is involved, which is the case in our
applications, the effect of intrinsic symmetry is
more conveniently incorporated in the results by
working with the “even” and “odd” tensors ¢ and

L. GRABNER AND J.

A. SWANSON

¢ where ¢ = ¢ + & and
2¢:..(F) = i i(F) + ¢i.u(—F)
2(5{...];(F) = ¢i'--k(F) - ¢,’...k(‘—F).

The tensors ¢ and ¢ are obtained experimentally
by reversing the direction of F. Equation (8) clearly
applies to ¢ and ¢. Furthermore, these tensors possess
the properties ¢(F) = &(—F), ¢(F) = —¢(~F)
which allows us to extend the domain of allowable
symmetry operations to those that reverse the large
fields. In our applications we first apply this en-
larged domain of spatial symmetry operations to the
even and odd tensors. Further restrictions due to
intrinsic symmetries are then easily applied to
& and ¢. ,

We shall be concerned with the terms of the
“partial”’ expansions (3) and (4). In (3), F;(I) de-
scribes nonlinear conduction, B;;(I) nonohmie con-
duction in a weak magnetic field. In (4), p.;(H) is
the resistivity tensor in the approximation of Ohm’s
law, f,(H) vanishes because of time inversion
symmetry.”®"*?

As the independent symmetry elements of the
point group symmetries of crystals we choose the
proper rotation n = 1, 2, 3, 4, 6, and the improper
rotations # = 1, 2, 4. 1 is an inversion, 2 a reflection
with respect to a plane. With our choice of inde-
pendent symmetry elements 3 and 6 are not inde-
pendent. 3 is generated from 3 and 1, 6 from 3 and
2. Once a tensor is reduced for the independent sym-
metry elements, its form for dependent symmetry
elements is easily obtained by virtue of the fact
that if the symmetry operations s, and s, exist
independently, a tensor satisfies s; = s, if it
satisfies s; and s,. With respect to the details of
obtaining the symmetry relations, the easily applied
“direct inspection method”’** can be used to ad-
vantage. Many examples using this method are
given by Nye.” We shall make frequent use of a
theorem due to Hermann® according to which a
tensor of rank r < = cannot distinguish an n-fold
proper rotational symmetry axis from one for which
n = o, ie., cylindrical symmetry. In the following
we use an orthogonal reference frame in which z,
is parallel to the axis of rotation, z, and z, are
arbitrary.

18 H. Zocher and C. Té6rok, Anais acad. brasil. cienc. 20,
143 (1948).

19 H, Zocher and C. Toérok, Proc. Natl. Acad. Sci. U. S.
39, 681 (1953).

20 J. F. Nye, Physical Properties of Crystals (Oxford
University Press, New York, 1957).

2 C. Hermann, Z. Krist. 89, 32 (1934); see also reference
7, page 53.
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A. Nonlinear Electrical Conduction: E, = F,(I)

F.(I) is a polar vector. Equation (8) for this case is:
I”i(slqla) quIuysﬂuIa) = SiiF,i(Il) I27 I3) (9)

Applying (9) to F.(I) and F,(I) we find symmetry
restrictions on F.(I) only for the following directions
of I
i.n=123,46

I parallel to an % axis or perpendicular to a 2n fold
axis. In the latter case a twofold rotation is used
to reverse the current. According to Hermann's
theorem we need not distinguish axes with n > 1.

0 0]
FIln>D)=[0[+]0 (10)
Py ]
"o .
FIL2m)=10|+|F, (1D
LF 0
2. =124 )
A center of inversion destroys F;:
~,l
F() =|F (12)

Thus, #f an intrinsic symmetry relation exists in the
form: F,(—I) = £F.,J), it must be odd to agree
with the possibility of a center of inversion. For
2 and 4 we find: )

1 To
FA|2) = F,|+]|0 (13)
Lol LA
a1 I
FOLY) =|F|+F, (14)
L0l L0

o
FaAly =10 (13)
Py

F.I L %) is covered by (11) since the group %
contains the element n = 2. F;(I || 3) or F,(I || 6)
is obtained by compounding (10) and (12), and (10)
and (13), respectively.

For example,

RESTRICTIONS ON FIELD DEPENDENT TENSORS
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0
FL]6 =0
F,

The cases F:(1 ]| 3), F:(1 || %) and F,(I ]| 6) are found
to give the same result.

B. Nonohmic Conduction in a Weak Magnetic
Field: E;, = R,;(I)H,

We treat this case in the approximation to which
the first power of the magnetic field is adequate.
Since E 1s a polar vector, H an axial vector, R,;(I)
must be an axial tensor, and Eq. (8) for this case is:

Rii(slala’ s2an; SSaIa)
= [8, simsjann(Ily I2} I3) (16)
Applying (16) to R.;(I) and R, ;(I) we find symmetry
restrictions only for the following directions of I:
1.n=123,4,6
According to Hermann's theorem we need not
distinguish axes with n > 2.

R, 2)
" Ry R, 0 [ B, R, 0
=| Ry Rw 0 |+| Ry B 0 (17
L 0 0 Ryl L O 0 Ry
R,Iln>2)

[ R, R. 0 R, R, 0 ]
=|—~R, R, O |+ |—R, R, O (18)
L0 0 Ry L 0 0 R

R, L 2n)
| Ry R, 0 0 0 Byl
=! Ry R O |+]| 0 0 Ryl (19
L 0 0 Ry Ry R 0
2.n=124 )
A center of inversion destroys K;;(I):
R, R. R,
R.;A) =Ry Ry PRu (20)
R, Ri. R
For 2 and 4 we find:
B, 2
0 0 Ry R, Ry, 0
=10 0 Rul+| Ry R 0 (21)
Ry Ry O 0 0 Ry



R,I 12
0 0 R.l [ 0 0 BRs
=10 0 Ru|+| 0 0 Rl (22
Ry, R O L By B, O
A )
(B, R. 0 | B, B, 0
=|R, —R, 0 |+|-F, B, 0 (23)
10 0 0 L 0 0 Ry

R,A L 4, R, 3), and R,;(I]| 6) are treated in
the same way as the analogous cases for F,(I) in
Sec. A. R,;(I L 4) gives, of course, the result (19)
and R;;(I || 3) and R,;(I || 6) are found to give the
same result:

R]l Rl2 O
R,‘]’(I ” 3 or 6) = _ng Rll O
0 0 R

C. Ohmic Conduction in a Strong Magnetic Field:
E;, = o,;(H)I,

This case is important in practice. p;;(H) is a
polar tensor. Equation (8) for this case is

pii(lsl slaHav lS! s2aHa: ISI SBaHa)

= Simsinpmn(Hl) H2> Ha)- (24)

Since H is an axial vector, a center of inversion
leaves (24) invariant and therefore may be added
to the existing space symmetry as far as this phe-
nomenon is concerned. Thus ohmic conduction in a
magnetic field is unable to distinguish proper and
improper symmetry operations.”

As an intrinsic symmetry relation we have the
Onsager relation™: p,;(H) = p,;(—H) and as a

2 D, Schoenberg, Proc. Cambridge Phil. Soc. 31, 265,
271 (1935).

L. GRABNER AND J. A. SWANSON

result 5,;(H) is symmetric in the indices and g,,(H)
antisymmetric in the indices.

It is necessary merely to apply these intrinsic
conditions to the results listed in Egs. (17) to (19),
which apply now equally well to the corresponding
improper rotations:

pe;(H ” 2 or 2)
rb'u Pz O i 0 g O 1
=Pz Pz 0 |+ |—f 0 O (25)
L0 0 Pl 0 0 0 |
piH | n>20r7 > 2)
5, 0 0 ] 0 prz O]
=10 py 0 |4+ -5 0 0 (26)
0 0 Pl o 0 0]
pi;(H L 2n or 27)
B Pz O] 0 0
= P2 P 0 |+ 0 0 pu (27)
10 0 Pl —ps —h 0

IV. APPLICATIONS TO PARTICULAR MEDIA

In many cases there will exist more than one
symmefry operation which leaves the “strong”
fields invariant when they possess a particular di-
rection. In such cases, just as with constant tensors,
the tensor is to be reduced as far as possible by the
simultaneous application of the different sets of
symmetry operation. A complete characterization of
the symmetry restrictions upon a field dependent
tensor is obtained by listing the reduced tensors
together with the field directions which occasion
the reduction.
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Simple normal forms are given for symmetric, skew symmetric, and general complex matrices.
These three cases can be combined into a single one, if one considers matrices with elements in a

suitable ground field.

1. INTRODUCTION

N this paper we state and prove several theorems
on square complex matrices which do not seem
to be described in the mathematical literature. Use
of these theorems leads to simplifications in the
treatment of some problems in quantum field theory
and in the theory of superconductivity. The
theorems also occur in the study of quantum
mechanical time inversion. The physical applica-
tions, however, will be published separately.

Some of the results given in this paper have
already been used by other authors. For instance,
Lemma I is implicit in Wigner’s work on time
inversion." Theorem 1 is suggested by some work
of Valatin in the theory of superconductivity.” It
was actually proven by Yang who used it in his
discussion of long range order in Fermi systems.?

The three theorems given below as Theorems I,
II, and III can be combined into one single very
elegant theorem, stated below as Theorem IV. This
fact was pointed out by F. J. Dyson in a letter to
the author. Dyson’s argument is reproduced in the
Appendix. It is not difficult to give a direct proof
of Theorem IV, but this shall not be done here.

2. NORMAL FORMS

We first prove two lemmas.
Lemma I. If 8 is unitary and skew symmetric,
then*

S = UFU

where U is unitary and

* This work was supported in part by the Office of Naval
Research under Contract No. Nonr 285-40, and in part by
the Army Research Office (Durham) under Contract No.
DA-ARO-(D)-31-124-G133.

1 E, P. Wigner, Group Theory and tts Application (Academic
Press Inc., New York, 1959).

2 J. G. Valatin, Phys. Rev. 122, 1012 (1961).

3 C. N. Yang, Revs. Modern Phys (to be published).

4 The transposed of a complex matrix M is denoted by M,
the corzr&)lex conjugate by M* the Hermitian adjoint by
Mt = M*,

Proof. Since St = S™'and § = -8, §* = — 8L
Therefore S and S* commute. The matrices 4, =
S 4+ S8* and 4, = (S — 8*) are real, skew sym-
metric, and commute with each other. By a known
theorem,® they can be transformed simultaneously
by means of a real orthogonal transformation O into
the normal form

0 —» (1)

Ty
are real numbers. The same is then
- now complex.

where y, v, ---
true of S, however with g, »,
Since S is unitary, we have

§=0"80=10 —¢°

Finally, with the unitary matrix

5 See, e.g., F. R. Gantmacher, The Theory of Mairices
(Chelsea Pubhshmg Company, New York), Vol. I, p. 203.
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~ia/2
—-ta/2
e—iﬁ/2

e—viﬂ/?

we have
V8V =F.

This proves the lemma.

An analogous lemma is valid for symmetric
matrices.

Lemma I1. If S is unitary and symmetrie, then

S=UEU = UU,

where U is unitary and F is the unit matrix.

Proof. One can always write S = exp ¢» where »
is symmetric (and real).® Then, with U = U =
exp 41/2, the proof of the lemma is completed.

We now proceed to prove the following two
theorems.

Theorem I. If M is a complex skew symmetric

matrix, then
M = UXU, 2

where U is unitary and X has the normal form (1)
with u, », - -+ non-negative real numbers.

Theorem II. If M is a complex symmetric matrix,
then (2) applies, but X is now diagonal, real, and
non-negative.

Proof. (upper signs refer to Theorem I, lower
signs to Theorem II). Consider the Hermitian
matrix H = MM = FM*M. Introduce M,
through M = VM,V with V unitary. Then

H = V*MV'VM,V = V*H,V,
with
H, = MM, = FM*M,.
Furthermore,
MH — H*M = MH, — H*M, = 0.  (3)

Now V* is also unitary, and it can be chosen so
that H, is diagonal, since H is Hermitian. Let &, be
the eigenvalues of H (and H,). Clearly A, > 0.
Equation (3) becomes, for the matrix elements
My, of My,

(hv - hx)mxa = O°

This shows that m,, = 0 unless &, = h,. The matrix
& See, e.g., reference 5, Vol. I, p. 4.

BRUNO ZUMINO

M, breaks up into submatrices corresponding to
groups of 2.’s which are equal.

Consider one such submatrix ¥. Dropping the
index «, we can write

VW =hl k>0,

where I is the corresponding subunit matrix. Clearly

v = FV¥.

Now, if & = 0, then ¥ = 0. If & 5 0, then (1/A"*)¥
is unitary. From Lemmas I and II, one can perform
a further transformation of the type (2) and arrive
at the normal form F or E. This transforms ¥ into
(B)'*F or (h)’E, respectively, and completes the
proof of the theorems.

Finally, we prove the following theorem.

Theorem II1. If M is any complex matrix, then

M =UXV (4)

where U and V are unitary and X is diagonal, real,
non-negative.

Proof. First assume that M has an inverse. Then
MM is Hermitian and positive, and (MM)™/*M*
is unitary. The matrix M (M*'M)"*M* is Hermitian
and positive, and one can choose U unitary such
that UM (MTM)™“?MtU is diagonal, real, and
positive, If we identify

V= @' M'U,

this proves our theorem.

If M is singular, one must perturb it infinitesimally
so that the perturbed M has an inverse. One can
then go through the proof just given. When the
perturbation goes to zero, (4) is still valid. However,
some of the elements of the real diagonal positive
matrix X can tend to zero with the perturbation.

As explained in the introduction, Dyson has
pointed out that Theorems I, 11, and III are different
aspects of a single more general theorem, Theorem
IV below. Let ¢ be a ground field which can be real,
complex, or quaternion. In all three cases, the
coefficients are assumed to be complex numbers.
Therefore ¢ real means that the numbers in ¢ are
ordinary complex numbers, ¢ complex that they
are complex numbers with complex coefficients,
¢ quaternion that they are quaternions with com-
plex coefficients. Consider matrices ¢ which have
elements in ¢. Define the adjoint Q” to be @ trans-
posed with each element ¢ conjugated, but no¢
coefficient conjugated. Define the Hermitian adjoint
Q' to be Q transposed, with the elements ¢ con-
jugated and coefficient conjugated. One has the
following theorem.
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Theorem IV. If Q = Q is self-adjoint, then
Q = RXR®

where R is unitary and X is diagonal, real, scalar
and non-negative.

As we show in the Appendix, this Theorem IV is
equivalent to Theorems I-III proven above.

3. APPENDIX

We consider separately the three cases.

Case 1: ¢ Real.

In this case ¢ consists of ordinary complex
numbers and Q° = §. Theorem IV becomes identical
with Theorem II.

Case 2: ¢ Complex.

In this case the numbers in ¢ are of the form
a + jb with e and b complex numbers and 5° = —1.
We have, for any matrix @ with coeflicients in ¢,
Q = M, + jM, where M, and M, are ordinary

complex matrices. Similarly, @ = U, + jU..
Furthermore,
Q° = i, — jff.,, R'= U, - jU,.

Theorem IV states that, if @ = Q°, then
M, + M, = (U, + jUIX(U; — jUs),
where
(U, + jU)T; = §U)
= (U] = jUNU: + jU) = 1,

and X is diagonal, real, and non-negative. This is
easily seen to be equivalent to Theorem III, either
directly or making use of the representation

1057

a+ b 0
0 a — b

a+ jb =

b

where 7 is the ordinary imaginary unit. The corre-
spondence with the quantities occurring in the
statement of Theorem III is as follows:

{M =M, +iM, U=U +:iU,
M =M, - iM, V =U, —:U..
Case 3: ¢ Quaternion.

In this case the numbers in ¢ are of the form
a + a,r; + a,1; -+ as7s where a, a,, a., a; are ordinary
complex numbers and the quaternion units can be
represented as

0 1 0 —1

0 1 0

We observe that any 2n X 2n complex matrix M
can be written as an n X n quaternion matrix @Q.
The transposed of M corresponds to the quaternion
matrix —7,Q°7, and the Hermitian conjugate of M
to the quaternion matrix (Q°)*, where the * denotes
ordinary coefficient conjugation.

In quaternion notation, our Theorem I takes the
following form:

If Q = —7,Q"r,, then

Q= RXTz(— TzRDTQ)

where X is diagonal, real, scalar, non-negative, and
R is the unitary quaternion matrix corresponding
to the unitary complex matrix U. Introducing
Q' = —Qr,, we see that

@)° = Q" and @ = RXR".

This shows that case 3 is equivalent to Theorem I.

T = , Ty = s Ty =

)
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Erratum: Variational Method for the Quantum Statistics
of Interacting Particles.

[J. Math. Phys. 3, 131 (1962)]

M. GIRARDEAU
Enrico Fermi Institute for Nuclear Studies, The University of Chicago, Chicago, Illinots

EQUATION (54) contains a misprint. The minus bracket in the first line of Eq. (54) should be identi-
sign in front of the &’ summation in the first cal with that in the first line of Eq. (562).
line should be changed to a plus sign; the curly
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